UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Quantum Computation, Markov Chains and Combinatorial Optimisation

Dervovic, Danial; (2020) Quantum Computation, Markov Chains and Combinatorial Optimisation. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Danial_Dervovic_thesis_final.pdf]
Preview
Text
Danial_Dervovic_thesis_final.pdf - Submitted version

Download (7MB) | Preview

Abstract

This thesis addresses two questions related to the title, Quantum Computation, Markov Chains and Combinatorial Optimisation. The first question involves an algorithmic primitive of quantum computation, quantum walks on graphs, and its relation to Markov Chains. Quantum walks have been shown in certain cases to mix faster than their classical counterparts. Lifted Markov chains, consisting of a Markov chain on an extended state space which is projected back down to the original state space, also show considerable speedups in mixing time. We design a lifted Markov chain that in some sense simulates any quantum walk. Concretely, we construct a lifted Markov chain on a connected graph G with n vertices that mixes exactly to the average mixing distribution of a quantum walk on G. Moreover, the mixing time of this chain is the diameter of G. We then consider practical consequences of this result. In the second part of this thesis we address a classic unsolved problem in combinatorial optimisation, graph isomorphism. A theorem of Kozen states that two graphs on n vertices are isomorphic if and only if there is a clique of size n in the weak modular product of the two graphs. Furthermore, a straightforward corollary of this theorem and Lovász’s sandwich theorem is if the weak modular product between two graphs is perfect, then checking if the graphs are isomorphic is polynomial in n. We enumerate the necessary and sufficient conditions for the weak modular product of two simple graphs to be perfect. Interesting cases include complete multipartite graphs and disjoint unions of cliques. We find that all perfect weak modular products have factors that fall into classes of graphs for which testing isomorphism is already known to be polynomial in the number of vertices. Open questions and further research directions are discussed.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Quantum Computation, Markov Chains and Combinatorial Optimisation
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/10094151
Downloads since deposit
382Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item