UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Design, simulation, and fabrication of a three-dimensional printed pump mimicking the left ventricle motion

Vignali, E; Manigrasso, Z; Gasparotti, E; Biffi, B; Landini, L; Positano, V; Capelli, C; (2019) Design, simulation, and fabrication of a three-dimensional printed pump mimicking the left ventricle motion. The International Journal of Artificial Organs , 42 (10) pp. 539-547. 10.1177/0391398819856892. Green open access

[thumbnail of REVIEW_SAGE_special_issue_IDBN.pdf]
Preview
Text
REVIEW_SAGE_special_issue_IDBN.pdf - Accepted Version

Download (8MB) | Preview

Abstract

The development of accurate replicas of the circulatory and cardiac system is fundamental for a deeper understanding of cardiovascular diseases and the testing of new devices. Although numerous works concerning mock circulatory loops are present in the current state of the art, still some limitations are present. In particular, a pumping system able to reproduce the left ventricle motion and completely compatible with the magnetic resonance environment to permit the four-dimensional flow monitoring is still missing. The aim of this work was to evaluate the feasibility of an actuator suitable for cardiovascular mock circuits. Particular attention was given to the ability to mimic the left ventricle dynamics including both compression and twisting with the magnetic resonance compatibility. In our study, a left ventricle model to be actuated through vacuum was designed. The realization of the system was evaluated with finite element analysis of different design solutions. After the in silico evaluation phase, the most suitable design in terms of physiological values reproduction was fabricated through three-dimensional printing for in vitro validation. A pneumatic experimental setup was developed to evaluate the pump performances in terms of actuation, in particular ventricle radial and longitudinal displacement, twist rotation, and ejection fraction. The study demonstrated the feasibility of a custom pneumatic pump for mock circulatory loops able to reproduce the physiological ventricle movement and completely suitable for the magnetic resonance environment.

Type: Article
Title: Design, simulation, and fabrication of a three-dimensional printed pump mimicking the left ventricle motion
Open access status: An open access version is available from UCL Discovery
DOI: 10.1177/0391398819856892
Publisher version: https://doi.org/10.1177/0391398819856892
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Science & Technology, Technology, Life Sciences & Biomedicine, Engineering, Biomedical, Transplantation, Engineering, Heart, mock circulation loop, pump, 3D printing, twist rotation, ejection fraction, VOLUMES, DEVICE
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science > Childrens Cardiovascular Disease
URI: https://discovery.ucl.ac.uk/id/eprint/10092013
Downloads since deposit
212Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item