Hong, Xianze;
(2020)
Experimental and Theoretical Analysis of Pressure Coupled Infusion Gyration for Fibre Production.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
Xianze_Hong_Submission.pdf - Submitted Version Download (36MB) | Preview |
Abstract
In this work, we uncover the science of the combined application of external pressure, controlled infusion of polymer solution and gyration in the field of nanofiber preparation. This novel application takes gyration-based method into another new arena through enabling the mass production of exceedingly fine (few nanometres upwards) nanofibres in a single step. Polyethylene oxide (PEO) was used as a model polymer in the experimental study, which shows the use of this novel method to fabricate polymeric nanofibres and nanofibrous mats under different combinations of operating parameters, including working pressure, rotational speed, infusion rate and collection distance. The morphologies of the nanofibres were characterised using scanning electron microscopy, and the anisotropy of alignment of fibre was studied using two dimensional fast Fourier transform analysis. A correlation between the product morphology and the processing parameters is established. The response surface models of the experimental process were developed using the least squares fitting. A systematic description of the PCIG spinning was developed to help us obtain a clear understanding of the fibre formation process of this novel application. The input data we used are the conventional mean of fibre diameter measurements obtained from our experimental works. In this part, both linear and nonlinear fitting formats were applied, and the successes of the fitted models were mainly evaluated using Adjusted R2 and Akaike Information Criterion (AIC). The correlations and effects of individual parameters and their interactions were explicitly studied. The modelling results indicated the polymer concentration has the most significant impact on fibre diameters. A self-defined objective function was studied with the best-fitted model to optimise the experimental process for achieving the desired nanofibre diameters and narrow standard deviations. The experimental parameters were optimised by several algorithms, and the most favoured sets of parameters recommended by the non-linear interior point methods were further validated through a set of additional experiments. The results of validation indicated that pressure coupled infusion gyration offers a facile way for forming nanofibres and nanofibre assemblies, and the developed model has a good prediction power of experimental parameters that are possible to be useful for achieving the desirable PEO nanofibres.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | Experimental and Theoretical Analysis of Pressure Coupled Infusion Gyration for Fibre Production |
Event: | UCL (University College London) |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > UCL School of Management |
URI: | https://discovery.ucl.ac.uk/id/eprint/10089564 |
Archive Staff Only
View Item |