Katsimpali, Aspasia;
(2020)
Dimentional stability and microleakage of SMART dental composites in primary teeth.
Doctoral thesis (D.Dent), UCL (University College London).
Preview |
Text
Katsimpali_10089160_thesis_id_removed.pdf Download (3MB) | Preview |
Abstract
Dental composites were a revelation when they were introduced into the market. Even though they have kept evolving by becoming mechanically stronger, less technique sensitive and aesthetically appealing, they are still not easy to place and fail due to bacterial microleakage which leads to recurrent caries. Therefore, they have not been the staple material of choice for paediatric patients since they are not as reliable as preformed metal crowns long-term. AIMS AND OBJECTIVES: The aim of this project was to develop novel SMART composites which will target the paediatric patient. They have antibacterial polylysine and remineralising MCPM incorporated in them which could potentially address the bacterial microleakage problem of existing materials. They are self-etching and can be used as a bulk filling after soft caries removal. Good monomer conversion at depth and dimensional stability are essential for bulk filling and prevention of microleakage respectively and therefore the focus of this work. METHODS: An FTIR machine was used to measure the monomer conversion at 2 different sample depths (1mm, 2mm) with three different curing times (10s, 20s, 40s) in order to determine the effect of low versus high MCPM and PLS. In addition, mass and volume change was measured and shrinkage was calculated in order to determine the volumetric stability of the SMART composites. To assess microleakage, a dye test was performed in natural primary teeth drilled and directly filled with the SMART composite. This had the highest MCPM and PLS content. Three commercial materials which included Activa (following tooth etching) and two glass ionomer cements were used as comparators. RESULTS: Antibacterial polylysine and remineralising MCPM had negligible effect on monomer conversion. Volume change (2%) upon water sorption could help balanced polymerization shrinkage (3%). Microleakage of the SMART composite was equivalent to Activa but less than the glass ionomer cements. CONCLUSION: SMART composites good monomer conversion, volumetric stability, microleakage resistance and ease of placement should enable a more viable and predictable composite restorative paediatric option in the future.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | D.Dent |
Title: | Dimentional stability and microleakage of SMART dental composites in primary teeth |
Event: | UCL (University College London) |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences |
URI: | https://discovery.ucl.ac.uk/id/eprint/10089160 |
Archive Staff Only
View Item |