UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Unprecedented Piezoresistance Coefficient in Strained Silicon Carbide

Cui, J; Zhang, Z; Liu, D; Zhang, D; Hu, W; Zou, L; Lu, Y; ... Guo, D; + view all (2019) Unprecedented Piezoresistance Coefficient in Strained Silicon Carbide. Nano Letters , 19 (9) pp. 6569-6576. 10.1021/acs.nanolett.9b02821. Green open access

[thumbnail of acsnanolett9b02821.pdf]
Preview
Text
acsnanolett9b02821.pdf - Accepted Version

Download (2MB) | Preview

Abstract

Reports reveal that the piezoresistance coefficients of silicon carbide (SiC) nanowires (NWs) are 2 to 4 times smaller than those of their corresponding bulk counterparts. It is a challenge to eliminate contamination in adhering NWs onto substrates. In this study, a new setup was developed, in which NWs were manipulated and fixed by a goat hair and conductive silver epoxy in air, respectively, in the absence of any depositions. The goat hair was not consumed during manipulation of the NWs. The process took advantage of the stiffness and tapered tip of the goat hair, which is unlike the loss issue of beam sources in depositions. With the new fixing method, in situ transmission electron microscopy (TEM) electromechanical coupling measurements were performed on pristine SiC NWs. The piezoresistance coefficient and carrier mobility of SiC NW are −94.78 × 10–11 Pa–1 and 30.05 cm2 V–1 s–1, respectively, which are 82 and 527 times respectively greater than those of SiC NWs reported previously. We, for the first time, report that the piezoresistance coefficient of SiC NW is 17 times those of its bulk counterparts. These findings provide new insights to develop high performance SiC devices and to help avoid catastrophic failure when working in harsh environments.

Type: Article
Title: Unprecedented Piezoresistance Coefficient in Strained Silicon Carbide
Open access status: An open access version is available from UCL Discovery
DOI: 10.1021/acs.nanolett.9b02821
Publisher version: https://doi.org/10.1021/acs.nanolett.9b02821
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Piezoresistance coefficient, strain, in situ TEM, electromechanical coupling, SiC
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
URI: https://discovery.ucl.ac.uk/id/eprint/10085656
Downloads since deposit
382Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item