UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Integrated photonics for millimetre wave transmitters and receivers

Mohammad, Ahmad Wasfi Mahmoud; (2019) Integrated photonics for millimetre wave transmitters and receivers. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of print_phd.pdf]
print_phd.pdf - Accepted Version

Download (6MB) | Preview


This PhD thesis entitled “Integrated photonics for millimetre wave transmitters and receivers” aimed at investigating the possibility of employing the uni-traveling carrier photodiode (UTC-PD) in millimetre wave (MMW) wireless receivers and, eventually, demonstrating a photonic integrated transceiver, by exploiting the concept of optically-pumped mixing (OPM). Previously, the UTC-PD has been successfully demonstrated as an OPM, by mixing an optically-generated local oscillator (LO) with a high frequency RF signal to generate a replica of the RF signal at a low intermediate frequency (IF), defined by the difference between the LO and the RF signal. This concept forms the foundation of this PhD thesis. The principal idea is to deploy the UTC-PD mixer in MMW wireless receivers to down-convert the high frequency data signal into a low frequency IF, where it can be easily processed and recovered. The main challenge to this approach is the low conversion efficiency of the UTC-PD mixer. For example, a conversion loss of 32 dB has been reported at 100 GHz. Also, the detection bandwidth in previous demonstrations was very narrow (around 100 Hz), which is too narrow to be useful in high-speed data communications. Consequently, a significant effort was made, in this thesis, to improve these parameters before the implementation in wireless receivers. The characterization and optimization works done in this thesis on the input parameters to the UTC-PD mixer have advanced the state of the art significantly. For example, conversion losses as low as 22 dB have been reported here. Also, the detection bandwidth has been increased to up to 10 GHz, allowing for multi-Gbps communication links. Based on these promising results, proof of concept wireless data transmission experiments were successfully conducted at different carrier frequencies (33 GHz, 35 GHz, and 60 GHz) using separate non-integrated UTC-PDs at the receiver with speeds of up to 5 Gbps. To the best of the author’s knowledge, this is the first demonstration of the UTC-PD at the receiver. Upon these successful demonstrations, further research was done on a photonic integrated circuit, which comprises UTC-PDs, lasers, optical amplifiers and modulators. The outcome of this research was the first demonstration of a photonic integrated transceiver. This transceiver is suitable for short distance communications and could find interesting applications in 5G and future networks, including: high definition (HD) video streaming, file transfer, and wireless backhaul.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Integrated photonics for millimetre wave transmitters and receivers
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2019. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Electronic and Electrical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10074780
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item