UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Miniature Broadband-NIRS System to Measure CNS Tissue Oxygenation and Metabolism in Preclinical Research

Kaynezhad, Pardis; (2018) Miniature Broadband-NIRS System to Measure CNS Tissue Oxygenation and Metabolism in Preclinical Research. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Kaynezhad_thesis.pdf]
Preview
Text
Kaynezhad_thesis.pdf

Download (12MB) | Preview

Abstract

In-vivo measurement of CNS tissue oxygenation and metabolism is critical in health and disease. Broadband-near infrared spectroscopy is a non-invasive optical technique which measures tissue oxygenation, haemodynamics and metabolism through in-vivo quantification of concentration changes of oxy- and deoxy-haemoglobin (Δ[HbO2] and Δ[HHb]) and oxidised cytochrome-c-oxidase (Δ[oxCCO]). Current commercially available NIRS systems only use a few wavelengths to measure concentration change that fails to provide accurate Δ[oxCCO] measurement. Broadband-NIRS instruments however, use more than 100 wavelengths which enables quantification of change in [oxCCO], an important marker of cellular oxidative metabolism. These systems tend to be bulky, requiring extensive calibrations and trained staff to operate them; making them less versatile and difficult to be adapted in the clinical environment. Furthermore, existing broadband-NIRS systems quantify chromophore concentration changes assuming a fixed optical pathlength across all the subjects using a previously measured DPF (differential pathlength factor) with time or frequency domain systems. This thesis describes the development of a portable broadband-NIRS system called mini-CYRIL “CYtochrome Research Instrument and appLication”, based on easily sourced components. A miniature white light source (HL-2000-HP) and miniature spectrometers (QE65pro and Ventana VIS-NIR) by Ocean Optics were customised for measuring CNS tissue oxygenation and metabolism. While having the features of commercially available NIRS systems in terms of portability, ease of use and no need for wavelength calibration, in terms of performance mini-CYRIL is comparable to broadband-NIRS instruments providing reliable Δ[oxCCO] measurements that have been validated and assessed through in-vivo tissue studies in (a) preclinical model of: (i) neonatal hypoxic-ischaemic (HI) encephalopathy, (ii) multiple sclerosis (MS) and (iii) low-light level therapy in the aged retina; (b) infants during brain functional activation. Mini-CYRIL is furthermore novel in offering calculation of absolute change in the concentration of chromophores based on real-time measurement of the optical path of light traversing the tissue. None of the current NIRS systems offer this feature which is crucial in case of changing pathology following an injury.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Miniature Broadband-NIRS System to Measure CNS Tissue Oxygenation and Metabolism in Preclinical Research
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Institute of Ophthalmology
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10047580
Downloads since deposit
175Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item