UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Non-invasive measurement of a metabolic marker of infant brain function

Siddiqui, MF; Lloyd-Fox, S; Kaynezhad, P; Tachtsidis, I; Johnson, MH; Elwell, CE; (2017) Non-invasive measurement of a metabolic marker of infant brain function. Scientific Reports , 7 (1330) 10.1038/s41598-017-01394-z. Green open access

[thumbnail of art%3A10.1038%2Fs41598-017-01394-z.pdf]
Preview
Text
art%3A10.1038%2Fs41598-017-01394-z.pdf - Published Version

Download (1MB) | Preview

Abstract

While near-infrared spectroscopy (NIRS) haemodynamic measures have proven to be vastly useful in investigating human brain development, the haemodynamic response function (HRF) in infants is not yet fully understood. NIRS measurements of the oxidation state of mitochondrial enzyme cytochrome-c-oxidase (oxCCO) have the potential to yield key information about cellular oxygen utilisation and therefore energy metabolism. We used a broadband NIRS system to measure changes in oxCCO, in addition to haemodynamic changes, during functional activation in a group of 33 typically developing infants aged between 4 and 6 months. The responses were recorded over the right temporal lobe while the infants were presented with engaging videos containing social content. A significant increase in oxCCO was found in response to the social stimuli, with maximum increase of 0.238 ± 0.13 μM. These results are the first reported significant change in oxCCO in response to stimulus-evoked activation in human infants and open new vistas for investigating human infant brain function and its energy metabolism.

Type: Article
Title: Non-invasive measurement of a metabolic marker of infant brain function
Open access status: An open access version is available from UCL Discovery
DOI: 10.1038/s41598-017-01394-z
Publisher version: http://dx.doi.org/10.1038/s41598-017-01394-z
Additional information: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Keywords: Science & Technology, Multidisciplinary Sciences, Science & Technology - Other Topics, NEAR-INFRARED SPECTROSCOPY, MAGNETIC-RESONANCE
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Institute of Ophthalmology
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/1556767
Downloads since deposit
47Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item