Garcia Kerdan, I;
Raslan, RM;
Ruyssevelt, P;
(2016)
An exergy-based multi-objective optimisation model for energy retrofit strategies in non-domestic buildings.
Energy
, 117
(Part 2)
pp. 506-522.
10.1016/j.energy.2016.06.041.
Preview |
Text
Garcia-Kerdan_ENERGY_manuscript.pdf Download (2MB) | Preview |
Abstract
While the building sector has a significant thermodynamic improvement potential, exergy analysis has been shown to provide new insight for the optimisation of building energy systems. This paper presents an exergy-based multi-objective optimisation tool that aims to assess the impact of a diverse range of retrofit measures with a focus on non-domestic buildings. EnergyPlus was used as a dynamic calculation engine for first law analysis, while a Python add-on was developed to link dynamic exergy analysis and a Genetic Algorithm optimisation process with the aforementioned software. Two UK archetype case studies (an office and a primary school) were used to test the feasibility of the proposed framework. Different measures combinations based on retrofitting the envelope insulation levels and the application of different HVAC configurations were assessed. The objective functions in this study are annual energy use, occupants' thermal comfort, and total building exergy destructions. A large range of optimal solutions was achieved highlighting the framework capabilities. The model achieved improvements of 53% in annual energy use, 51% of exergy destructions and 66% of thermal comfort for the school building, and 50%, 33%, and 80% for the office building. This approach can be extended by using exergoeconomic optimisation.
Type: | Article |
---|---|
Title: | An exergy-based multi-objective optimisation model for energy retrofit strategies in non-domestic buildings |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1016/j.energy.2016.06.041 |
Publisher version: | http://doi.org/10.1016/j.energy.2016.06.041 |
Language: | English |
Additional information: | © 2016 Elsevier Ltd. All rights reserved. This manuscript version is made available under a Creative Commons Attribution Non-commercial Non-derivative 4.0 International license (CC BY-NC-ND 4.0). This license allows you to share, copy, distribute and transmit the work for personal and non-commercial use providing author and publisher attribution is clearly stated. Further details about CC BY licenses are available at https://creativecommons.org/licenses/. Access may be initially restricted by the publisher. |
Keywords: | Building simulation; Exergy; Optimisation; Genetic algorithms; Building retrofits; Non-domestic buildings |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of the Built Environment UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of the Built Environment > Bartlett School Env, Energy and Resources |
URI: | https://discovery.ucl.ac.uk/id/eprint/1499604 |
Archive Staff Only
View Item |