UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Structural and functional investigation of the cytoplasmic domain of the Fas death receptor

Wildsmith, GC; (2015) Structural and functional investigation of the cytoplasmic domain of the Fas death receptor. Doctoral thesis , UCL (University College London). Green open access

[thumbnail of Gemma Claire Wildsmith_corrected_thesis_.pdf]
Preview
PDF
Gemma Claire Wildsmith_corrected_thesis_.pdf
Available under License : See the attached licence file.

Download (79MB)

Abstract

Activation of the transmembrane death receptor Fas (CD95/APO-1) by a membrane bound ligand (FasL/CD95L) activates the extrinsic pathway of apoptosis. Intracellular Fas death domains (DDs) are induced to oligomerise enabling binding to the adaptor protein FADD, thereby leading to the recruitment of procaspase 8 and other proteins to form the death inducing signalling complex (DISC).This thesis describes an investigation of the structure and function of the cytoplasmic Fas-DD. A model for the solution structure of the Fas-DD was published in 1996, it has since been reported that the death domain can form at least one other conformation when in complex with FADD. As a foundation to the work in this thesis, modern multidimensional NMR techniques have been used to solve the structure of the FasDD, to further probe the potential for alternative conformations. It has previously been reported that Fas can be phosphorylated at Tyr291, providing a platform for the recruitment of binding partners that can affect non-apoptotic signalling. The second part of this thesis details the development of an expressed protein ligation methodology to prepare a Tyr291 phosphorylated Fas DD to provide a basis for in vitro studies of the structural, dynamic and functional effects of phosphorylation. It is widely accepted that Fas is palmitoylated at Cys199 and recognised by the membrane cytoskeletal protein, ezrin. Fas palmitoylation is important for clathrinmediated internalisation of the DISC, and amplification of the caspase cascade. There are multiple reports detailing the binding of ezrin to Fas, but it is not clear whether this interaction occurs in a palmitoylation-dependent manner. Efforts to characterise an interaction between bacterially expressed intracellular Fas and ezrin proteins were carried out using a number of biophysical assays, described in the third part of this thesis. Building upon this, the fourth section explores the preparation of a palmitoylated Fas construct suitable for biophysical analysis by incubating recombinant Fas with palmitoyl-CoA.

Type: Thesis (Doctoral)
Title: Structural and functional investigation of the cytoplasmic domain of the Fas death receptor
Open access status: An open access version is available from UCL Discovery
Language: English
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
URI: https://discovery.ucl.ac.uk/id/eprint/1462353
Downloads since deposit
39Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item