UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Practical zero-knowledge Protocols based on the discrete logarithm Assumption

Bayer, SGM; (2014) Practical zero-knowledge Protocols based on the discrete logarithm Assumption. Doctoral thesis , UCL (University College London). Green open access

[thumbnail of Bayer_Stephanie_Thesis_13.12.13.pdf] PDF
Bayer_Stephanie_Thesis_13.12.13.pdf

Download (1MB)

Abstract

Zero-knowledge proofs were introduced by Goldwasser, Micali, and Rackoff. A zero-knowledge proof allows a prover to demonstrate knowledge of some information, for example that they know an element which is a member of a list or which is not a member of a list, without disclosing any further information about that element. Existing constructions of zero-knowledge proofs which can be applied to all languages in NP are impractical due to their communication and computational complexity. However, it has been known since Guillou and Quisquater's identification protocol from 1988 and Schnorr's identification protocol from 1991 that practical zero-knowledge protocols for specific problems exist. Because of this, a lot of work was undertaken over the recent decades to find practical zero-knowledge proofs for various other specific problems, and in recent years many protocols were published which have improved communication and computational complexity. Nevertheless, to find more problems which have an efficient and practical zero-knowledge proof system and which can be used as building blocks for other protocols is an ongoing challenge of modern cryptography. This work addresses the challenge, and constructs zero-knowledge arguments with sublinear communication complexity, and achievable computational demands. The security of our protocols is only based on the discrete logarithm assumption. Polynomial evaluation arguments are proposed for univariate polynomials, for multivariate polynomials, and for a batch of univariate polynomials. Furthermore, the polynomial evaluation argument is applied to construct practical membership and non-membership arguments. Finally, an efficient method for proving the correctness of a shuffle is proposed. The proposed protocols have been tested against current state of the art versions in order to verify their practicality in terms of run-time and communication cost. We observe that the performance of our protocols is fast enough to be practical for medium range parameters. Furthermore, all our verifiers have a better asymptotic behavior than earlier verifiers independent of the parameter range, and in real life settings our provers perform better than provers of existing protocols. The analysis of the results shows that the communication cost of our protocols is very small; therefore, our new protocols compare very favorably to the current state of the art.

Type: Thesis (Doctoral)
Title: Practical zero-knowledge Protocols based on the discrete logarithm Assumption
Open access status: An open access version is available from UCL Discovery
Language: English
Keywords: Zero-knowledge, Shuffle, Blacklist
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/1416402
Downloads since deposit
839Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item