UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

An Optical Transmission Spectrum for the Ultra-hot Jupiter WASP-121b Measured with the Hubble Space Telescope

Evans, TM; Sing, DK; Goyal, JM; Nikolov, N; Marley, MS; Zahnle, K; Henry, GW; ... Williamson, MH; + view all (2018) An Optical Transmission Spectrum for the Ultra-hot Jupiter WASP-121b Measured with the Hubble Space Telescope. The Astronomical Journal , 156 (6) , Article 283. 10.3847/1538-3881/aaebff. Green open access

[thumbnail of Eberhardt_An Optical Transmission Spectrum for the Ultra-hot Jupiter WASP-121b Measured with the Hubble Space Telescope_VoR.pdf]
Preview
Text
Eberhardt_An Optical Transmission Spectrum for the Ultra-hot Jupiter WASP-121b Measured with the Hubble Space Telescope_VoR.pdf - Published Version

Download (26MB) | Preview

Abstract

We present an atmospheric transmission spectrum for the ultra-hot Jupiter WASP-121b, measured using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. Across the 0.47–1 μm wavelength range, the data imply an atmospheric opacity comparable to—and in some spectroscopic channels exceeding—that previously measured at near-infrared wavelengths (1.15–1.65 μm). Wavelength-dependent variations in the opacity rule out a gray cloud deck at a confidence level of 3.7σ and may instead be explained by VO spectral bands. We find a cloud-free model assuming chemical equilibrium for a temperature of 1500 K and a metal enrichment of 10–30× solar matches these data well. Using a free-chemistry retrieval analysis, we estimate a VO abundance of -6.6^{+0.2}/{-0.3} dex. We find no evidence for TiO and place a 3σ upper limit of −7.9 dex on its abundance, suggesting TiO may have condensed from the gas phase at the day–night limb. The opacity rises steeply at the shortest wavelengths, increasing by approximately five pressure scale heights from 0.47 to 0.3 μm n wavelength. If this feature is caused by Rayleigh scattering due to uniformly distributed aerosols, it would imply an unphysically high temperature of 6810 ± 1530 K. One alternative explanation for the short-wavelength rise is absorption due to SH (mercapto radical), which has been predicted as an important product of non-equilibrium chemistry in hot Jupiter atmospheres. Irrespective of the identity of the NUV absorber, it likely captures a significant amount of incident stellar radiation at low pressures, thus playing a significant role in the overall energy budget, thermal structure, and circulation of the atmosphere.

Type: Article
Title: An Optical Transmission Spectrum for the Ultra-hot Jupiter WASP-121b Measured with the Hubble Space Telescope
Open access status: An open access version is available from UCL Discovery
DOI: 10.3847/1538-3881/aaebff
Publisher version: https://doi.org/10.3847/1538-3881/aaebff
Language: English
Additional information: This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: methods: observational, planets and satellites: atmospheres, planets and satellites: gaseous planets
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
URI: https://discovery.ucl.ac.uk/id/eprint/10064398
Downloads since deposit
69Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item