UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

In situ regeneration of retinal pigment epithelium by gene transfer of E2F2: a potential strategy for treatment of macular degenerations

Kampik, D; Basche, M; Luhmann, UFO; Nishiguchi, KM; Williams, JAE; Greenwood, J; Moss, SE; ... Ali, RR; + view all (2017) In situ regeneration of retinal pigment epithelium by gene transfer of E2F2: a potential strategy for treatment of macular degenerations. Gene Therapy , 24 pp. 810-818. 10.1038/gt.2017.89. Green open access

[thumbnail of Kampik et al - In situ RPE regeneration by E2F2 - merged.pdf]
Preview
Text
Kampik et al - In situ RPE regeneration by E2F2 - merged.pdf - Accepted Version

Download (26MB) | Preview

Abstract

The retinal pigment epithelium (RPE) interacts closely with photoreceptors to maintain visual function. In degenerative diseases such as Stargardt disease and age-related macular degeneration, the leading cause of blindness in the developed world, RPE cell loss is followed by photoreceptor cell death. RPE cells can proliferate under certain conditions, suggesting an intrinsic regenerative potential, but so far this has not been utilised therapeutically. Here, we used E2F2 to induce RPE cell replication and thereby regeneration. In both young and old (2 and 18 month) wildtype mice, subretinal injection of non-integrating lentiviral vector expressing E2F2 resulted in 47% of examined RPE cells becoming BrdU positive. E2F2 induced an increase in RPE cell density of 17% compared with control vector-treated and 14% compared with untreated eyes. We also tested this approach in an inducible transgenic mouse model of RPE loss, generated through activation of diphtheria toxin-A gene. E2F2 expression resulted in a 10-fold increase in BrdU uptake and a 34% increase in central RPE cell density. Although in mice this localised rescue is insufficiently large to be demonstrable by electroretinography, a measure of massed retinal function, these results provide proof-of-concept for a strategy to induce in situ regeneration of RPE for the treatment of RPE degeneration.

Type: Article
Title: In situ regeneration of retinal pigment epithelium by gene transfer of E2F2: a potential strategy for treatment of macular degenerations
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1038/gt.2017.89
Publisher version: http://dx.doi.org/10.1038/gt.2017.89
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Cell biology, Gene therapy, Genetic vectors
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Institute of Ophthalmology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
URI: https://discovery.ucl.ac.uk/id/eprint/10039445
Downloads since deposit
219Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item