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Entanglement and dynamics of spin-chains in periodically-pulsed magnetic fields:

accelerator modes
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We study the dynamics of a single excitation in a Heisenberg spin-chain subjected to a sequence
of periodic pulses from an external, parabolic, magnetic field. We show that, for experimentally
reasonable parameters, a pair of counter-propagating coherent states are ejected from the centre of
the chain. We find an illuminating correspondence with the quantum time evolution of the well-
known paradigm of quantum chaos, the Quantum Kicked Rotor (QKR). From this we can analyse
the entanglement production and interpret the ejected coherent states as a manifestation of so-called
‘accelerator modes’ of a classically chaotic system.

PACS numbers: 03.67.Mn,05.45.Mt,05.45.Gg,03.67.Hk

There is considerable interest in the fidelity of quan-
tum state transmission and entanglement measures in
spin chains because of their relevance to quantum in-
formation applications. In [1] state transmission in a
Heisenberg chain was investigated. In [2] it was shown
that such a chain, in the presence of an external, static,
parabolic magnetic field, can give perfect transmission of
coherent spin states of appropriate width. Obtaining co-
herent states of specified widths, represents a technical
challenge, though.

Here, we investigate the dynamics of a Heisenberg spin-
chain subjected to short, time-periodic pulses from an
external parabolic magnetic field. We find that this pro-
vides an effective technique for generating well-defined
coherent states, starting from a single excitation at the
centre of the spin chain. The key to the analysis is that
we note, for the first time, a close correspondence be-
tween the time-evolution of a Heisenberg chain and that
of the well-known chaotic system the Quantum Kicked
Rotor (QKR) [3, 4] in its quantum resonance regime.
Our additional parabolic external field extends the cor-
respondence between the Heisenberg spin-chain to the
non-resonant QKR. The non-resonant, chaotic, QKR has
been well-investigated experimentally with cold atoms in
optical lattices [5]. The QKR in the resonant regime has
also been investigated experimentally [6].

There is also much current interest in the interface
between quantum chaos and quantum information [7].
In some studies of entanglement measures, the quantum
chaos is generated by extrinsic disorder [8], in others with
a clean but chaotic Hamiltonian [9, 10]. The question of
whether chaos aids or hinders entanglement generation
relevant to quantum information applications has not yet
yielded a clear answer [10]. In [11] it was shown that a
class of kicked Ising-type chains have quantum behaviour
related to those of one-body ‘image’ systems with a well-
defined classical limit, which can be chaotic or integrable.

But, to our knowledge, the correspondence between
the dynamics of the QKR, a leading paradigm of quan-
tum chaos and the Heisenberg chain, a system of such
key interest in quantum information, has not been noted

or exploited previously. We show it means that with
the pulsed parabolic field, we can employ certain ‘text-
book’ [12] expressions found for the QKR and the Stan-
dard Map to describe the entanglement properties. It
means also that we see not only generic forms of quan-
tum chaotic behaviour in the spin-chain like exponen-
tial localization (analogous to Anderson localization seen
in disordered metals) but will also generate phenomena
(such as ‘accelerator modes’) due to additional correla-
tions specific to a ‘clean’ chaotic system -and to the QKR,
in particular. We show that, as we can remain in the one-
excitation sector with this Hamiltonian, there are new
possibilities for quantum information applications from
the entanglement properties of the accelerator modes.

We consider a time-periodic Hamiltonian of the form:

H = Hhc +

N
∑

n=1

BQ

2
(n− n0)

2σn
z

∑

j

δ(t− jT0) (1)

where Hhc = −J
2

∑

n σ
n ·σn+1−

∑

nBσ
n
z is the Hamil-

tonian for the Heisenberg chain studied in [1]. T0 is the
period of the pulses; BQ is the amplitude of the applied
parabolic magnetic field; the length of the chain,N & 100
in the present work. The spin-transmission properties for
the time-independent part were investigated in [1]: for a
non-zero static field, where ~B ≫ kT one may restrict
the study to the single excitation regime (ie restricted to
the basis of states |s〉, which have a spin-up at a single
site s on the chain but all other spins down (along −ẑ).

In [1] it was shown that the eigenstates of Hhc , |m̃〉
are delocalized along the chain ie

|m̃〉 = am

N
∑

j=1

cos
[ π

2N
(m− 1)(2j − 1)

]

|j〉 (2)

where am =
√

2−δm1

N . Using the eigenstates, an ana-

lytical form for the time-evolution operator Uhc(t, 0) =
exp{− i

~
Hhct} may be obtained in the single-excitation

basis:
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〈r|Uhc(t)|s〉 =

N
∑

m=1

a2
me

−2iJt[1−cos π
N

(m−1)]

cos[
π

2N
(m− 1)(2r − 1)] cos[

π

2N
(m− 1)(2s− 1)]

(3)

where we disregard the uninteresting overall phase due
to the uniform static field B (or formally set 2BT0 =
2π). For the periodically-pulsed system described by the
Hamiltonian in (1), the matrix elements of the one-period
time-evolution operator U(T0, 0), in the single excitation
basis, are:

Urs(T0) = e−i
BQ

2
(r−n0)

2 · 〈r|Uhc(T0)|s〉 (4)

In Fig.1, we show the effect of repeated application of
(3) and (4) on the state ψ(t = 0) = |n0〉 (a state initial-
ized on a site at, or very near, the centre of the chain. The
spin-amplitude spreads out into a very irregular ‘chaotic’
distribution around the site n0. But most strikingly, we
can see a pair of counter-propagating spikes, ‘hopping’
around 2π/BQ ≃ 94 spin-sites each consecutive period.
In order to analyse this behaviour, we re-examine the
form of Uhc

rs (T0, 0).
For large N , it is easy to see that (3) becomes the dis-

cretized version of an integral: as N → ∞, 〈r|Uhc|s〉 →
Frs where

Frs =
e−2iJT0/~

2π

∫ π

0

[cos(r + s− 1)x+ cos(r − s)x] (5)

e
2iJT0

~
cos x dx

The x = π(m − 1)/N is nominally a position coordi-
nate but in fact represents motion through the subspace
of |m̃〉, the eigenstates of Hhc. Eq. (5) can be compared
with the time-evolution operator of one of the most ex-
tensively studied system in quantum chaos, the Quantum
Kicked Rotor (QKR) [3].

The QKR corresponds to the Hamiltonian H = P 2

2 −
K cosx

∑

n δ(t − n). where K is the kick strength and
T = 1 is the kicking period. The equations of motion for
its classical limit produce the ‘Standard Map’, the text-
book paradigm of classical Hamiltonian chaos [12]. The
time evolution operator of the QKR, UQKR is generally
given in a plane wave basis [4]; ie

〈n|UQKR|l〉 = e−il2~/2 in−lJn−l(K/~) where J denotes
an ordinary Bessel function. Note that in the so-called
quantum-resonance regime, where ~ = 2π, (also stud-
ied in cold atom experiments [6]) we obtain simply
〈n|UQKR|l〉 = in−lJn−l(K/~). In the experiments, ~

represents an effective value obtained from the optical
lattice parameters and kick period T , typically of order
~ ∼ 1 [5, 13].

However, since parity is conserved, the basis states of
the QKR are generally symmetrised, ψ±

l = 1/
√

2[|l〉±|−
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FIG. 1: Time evolution of the state ψ(t = 0) = |n0〉 (ie initial-
ized with a single spin-excitation at the centre of the chain)-
showing the effect of accelerator modes. P (s) represents the
probability of finding the excitation at site s. The accelerator
modes are the ‘spikes’ at the leading edge of the distribu-
tion. They correspond to a counter-propagating pair of co-
herent states ejected from the centre. We take BQ = 1/15 and
2JT0 = 100. The upper line is at t = 3T0; the lower curves
correspond to consecutive periods jT0 with j = 4, 5, 6... as
numbered. The dotted line indicates the form of the parabolic
field (scaled by a constant factor) which is pulsed on/off every
period at times t = jT0. The accelerator modes represent over
25% of the total probability; they advance an equal distance
(shown below to be 2π/BQ ≃ 94 spin sites) each period, and
after just 3 pulses are well separated from the central, ‘chaotic’
remnant.

l〉] with l = 0, 1, 2, ...M , where M is where we truncate

our basis, and |l〉 = 1/
√

2π exp{ilx}.
It is evident that, to within an overall phase, the form

of the integral in (5) is equivalent in form to the ‘kick’
part of the QKR operator.

Frs = 〈ψ+
r−1/2|e

i K
~

cos x|ψs−1/2〉 (6)

if 2JT0 = K = β~; above, |r−1/2〉 indicates plane waves
shifted by half a quantum ie |r − 1/2〉 = 1√

2π
ei(r−1/2)x.

Further,

Frs = 〈ψ+
r−1/2|e

i K
~

cos x|ψ+
s−1/2〉 ≃ ir−sJr−s(β) (7)

provided we neglect terms which are only significant at
the edges of the basis (ie r ≈ 1 or r ≈ N). Note that for a
spin-chain on a ring, these ‘edge’ corrections are entirely
absent and the time evolution of a Heisenberg chain ring
is entirely equivalent to the kick part of the QKR. The
addition of the parabolic-field ‘kick’ completes the anal-
ogy with the full QKR: the fact that the parabolic field
is now the δ − kick term, while for the QKR the kinetic
energy provides the time-independent term, represents
only a simple re-scaling of the parameters in U(T0, 0).
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Note that all our numerics employ (3) and not the
QKR form in (7) above. Nevertheless, we found the spin-
chain dynamics are sufficiently analogous that we can
simply make the substitutions: (a) BQ = ~ is an effective
value of Planck’s constant. (b) 2JT0BQ = K, where
K is the stochasticity parameter which fully determines
the classical dynamics of the kicked rotor; eg K & 4.5
indicates fully chaotic dynamics. We can then directly
apply the well-known QKR results to the spin dynamics:

1)Short-time diffusion of spin-excitation: For K &
4 the QKR initially displays diffusion of momentum,
〈p2〉 ≈ D(K) t, which follows the classical behaviour:

the form D(K) ≈ K2/2{1 − 2J2(K) + 2J2(K)2} [14] is
obtained from a study of the classical diffusion for the
Standard Map. The first term in the expression for D
represents uncorrelated diffusion (equivalent to a random
walk); the J2(K) terms result from short-time correla-
tions present in the classical kicked rotor. We obtain
analogous behaviour in our pulsed spin chain; substi-
tuting 2JT0BQ = Ks, and starting out with a spin ini-
tialised on a site s = s0 anywhere on the chain, we find
〈(s − s0)

2B2
Q〉 ≈ D(Ks)t. The diffusion of spin excita-

tion obtained from the time-evolution operator in Eq.3 is
compared, in Fig.2(a), with the form of the classical diffu-
sion rate of the QKR. For Ks = 10, the correction due to
short-range correlations is large, but for Ks = 5, we find
D ≈ K2

s/2 since J2(5) ≈ 0. After the so-called ‘break-
time’, t∗ ∼ (Ks/BQ)2 the quantum diffusion no-longer
follows the classical behaviour and the spin-excitation
stops spreading onto neighbouring sites.

2) Dynamical Localization: The Floquet states (eigen-
states of UQKR(T, 0) ) of the QKR are known to be de-
localized in the resonant regime; hence, as investigated
in [1], a spin-excitation can spread (imperfectly) from
one end of the chain to the other. In the non-resonant
case, however, the corresponding Floquet states exhibit
Dynamical Localization, a phenomenon analogous to An-
derson Localization in a disordered metal [4]. Hence, for
the spin-chain in pulsed parabolic field, a single excita-
tion anywhere in the chain will spread up to a maxi-
mum and will ‘freeze’ (localize) at the break-time, t∗.
For t > t∗,

Ploc(s) ∼
2

L
exp{−2|s− s0|/L}. (8)

The quantum localization length L ≃ (2JT0)
2/4. Fig.

2(b) demonstrates the typical probability distribution of
a dynamically localized state, obtained by evolving a
state initially in an arbitrary site.

3)Entanglement: Our knowledge of the time evolution
and spreading of the spin distribution enables us to es-
timate some entanglement measures; in particular, the
Q-measure [15] and the Concurrence [16]. The former is
a measure of the global entanglement for a pure (multi-
partite) state:

Q(|ψ〉) =
4

N

(

1 −
N
∑

k=1

|αk|4
)

≃ 4

N

(

1 − 1

L

)

where the αk are the amplitudes when the state is pro-
jected on to the basis of spin sites, {|k〉}. We note the
relation of this formula to the well known Inverse Par-
ticipation Ratio, R = 1/

∑ |ak|4; for a localised system
R ≃ 2L.

We assign a measure to the bipartite entanglement of
two separated sites i and j with the Concurrence. Given
a pure state in the single excitation basis Ci,j = 4|αi||αj |
[17]. With the exponentially localized form, (8):

Ci,j ∼ 8

L
exp

{

− 2

L
(|i− s0| + |j − s0|)

}

if the separation between two sites di,j = |i − s0| + |j −
s0| > 0, the maximum of the concurrence occurs at L =
2d, with the value 4

de
−1.

4)accelerator modes: For values of K ≈ 2π, transport-
ing islands of stability re-appear in the classical phase
space. Their phase-space area is ∼ 1/10 and hence can
support quantum states if ~ . 1/10. Their effect has
been experimentally observed for cold cesium atoms in
pulsed standing waves of light [18]. Because of the rela-
tively large effective values of ~ & 1 in the atomic exper-
iments, their effect there was diluted by the chaotic ‘sea’
of trajectories; nevertheless, the accelerator modes (and
Levy flights due to their environs) manifested themselves
as an enhancement of the diffusion for K ≃ 2π.

In the spin-chains there is no evident bar to a low
~ = BQ: it simply requires a weaker magnetic field. Ac-
celerator modes, in fact, are stable for a broad parameter
range K = α2π where α = 1.03−1.10 so there is no need
for very precise fine tuning of the parameter 2JT0. The
associated islands of stability span a width (of spin sites)
of order ∆s ∼ 1

102π/~, (about 10 sites for Fig. 1, so
there is no need to prepare the initial state exactly at the
centre of the chain either, in order for the initial state to
overlap strongly with the accelerator islands.

We find useful coherent states are obtained provided
BQ . 1/5. The width of these states is simply deter-
mined by the effective ~ : we verified numerically that
their form is given by ψ(s, t = jT0) ≃ Aj exp{−BQ(s −
sj)

2} where sj = 2πj/~ and j is the pulse number. We
find that, for j ≃ 1 the coherent state pair represents
about 30% of the total probability. For finite ~ we expect
the amplitude to gradually ‘tunnel’ out of the accelera-
tor island: for ~ = 1/10 we estimated the decay numeri-
cally |Aj |2 ≃ |Aj=1|2 exp{−j/24}, so even after 30 pulses
there is a substantial amplitude. For ~ = 1/15 (shown in
Fig. 1) the island can in fact support more than one
eigenstate, leading to a slight oscillation in its ampli-
tude. It only requires 2 − 4 pulses to cleanly separate
the travelling states from the chaotic remnant, though,
so even ~ ≃ 1/5 would give coherent states with proba-
bility ≥ 20%. These could then be taken into a static,
parabolic field region and transmitted onwards with per-
fect fidelity [2].

For an actual realization we might suggest BQ ∼ 1/10;

in an experiment, BQ = B̃Qδt where δt ≪ T0 is the
pulse duration. If our maximum magnetic field Bmax is
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FIG. 2: (a) Shows that, the rate of spreading of a spin exci-
tation initially at an arbitrary site |s0〉 in the chain, at short
times, is determined solely by the ‘classical stochasticity pa-
rameter’ Ks = 2JT0BQ. At longer times, the spreading sat-
urates. The straight line indicates the behaviour expected of
the classical chaotic kicked rotor. The smaller the effective
value of Planck’s constant, BQ, the longer the spin spreads
linearly at the ‘classical’ rate. Note that in the accelerator
mode regime however, the increase would be quadratic in
time, not linear. (b) Shows that at sufficiently long times
the spin probability distribution saturates into an exponen-
tially localized form. This is the analogue of Anderson Lo-
calization in a disordered metal. P (s) ∼ exp{−2|s − s0|/L}
so ln(P (s)) ∼ 2/L takes the characteristic ‘triangular form’.

The straight lines correspond to L =
K2

s

4B2

Q

for Ks = 10 and

agree well with the numerically calculated distributions.

of order 0.1 Tesla, Bmax ∼ (N/2)2B̃Q ∼ 10−6 au , for

N ∼ 100 − 1000, implies B̃Q ∼ 10−10 au so the pulse
duration δt ∼ 109 au ∼ 25 ns. As we have made a split-
operator approximation in Eq. (4), we require 2Jδt is a
small phase, whereas 2JT0 is significant. This constrains
2J ∼ 10−9 ∼ 1 − 10 MHz, so we are in a weak spin-
coupling regime, for this choice of parameters.

We now propose an application of the accelerator
modes in context of quantum communication. It has
been noted that encoding quantum information in Gaus-
sian wave-packets of excitation (where the presence and
absence of the wave-packet depicts logical |1〉 and |0〉
states of a qubit) is a useful way of transmitting it down
a Heisenberg coupled chain of spins [2, 19]. However,
precisely how to create a superposition of the presence
and absence of a Gaussian wave-packet remained un-
clear. The work presented here suggests, in fact, that
after 3-4 kicks one creates a superposition of two Gaus-
sian wave-packets traveling in opposite directions and a
exponentially localized state in the middle of a Heisen-
berg spin chain. If one measures the exponentially lo-
calized part and does not find the spin excitation there
(which can have nearly 30% probability of occurrence for
appropriately chosen parameters), then the spin chain is
projected on to a superposition of oppositely traveling
Gaussian wave-packets of excitation. If one denotes the
left and right traveling wave-packets as |GL〉 and |GR〉
(which are each a Gaussian distribution of spin up), and
|0L〉 and |0R〉 as the absence such a wave-packet (which
are each an all spin down state at the sites where |GL〉
and |GR〉 would otherwise be) then the maximally entan-
gled state |GL〉|0R〉+|0L〉|GR〉 is effectively created. This
state can now be distributed among well separated par-
ties by switching on a constant parabolic field (instead
of the kicks) in which a Gaussian wave-packet can travel
for a significant distance without distortion [2].
In conclusion: we have demonstrated that there is a
close correspondence between a spin-chain in a pulsed
quadratic field and the well-known chaotic kicked rotor;
we find potential applications in quantum information
processing.
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