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Abstract—Patient motion can cause image artifacts in single ~ Numerous motion correction methods have been described in
photon emission computed tomography despite restraining the literature. Manual shifting of projections using visual align-
measures. Data-driven detection and correction of motion can ment [5] and fiducial marker alignment [6] has been used to

be achieved by comparison of acquired data with the forward t in-ol Hi d axial t lati Th thod of
projections. This enables the brain locations to be estimated correct In-plané motion and axial transiation. 1he method o

and data to be correctly incorporated in a three-dimensional ‘temporal image fractionation” was used [7] to compile a set
(3-D) reconstruction algorithm. Digital and physical phantom of motion-free data from multiple acquisitions by excluding

experiments were performed to explore practical aspects of this motion-affected data. Cross correlation of multiple projection
approach. Methods: Noisy simulation data modeling multiple sets [8], [9] has also been used to exclude motion-affected data

3-D patient head movements were constructed by projecting the . . . . .
digital Hoffman brain phantom at various orientations. Hoffman prior to reconstruction. Various electromagnetic and optical de-

physical phantom data incorporating deliberate movements were Vices have been applied in SPECT and positron emission tomog-
also gathered. Motion correction was applied to these data using raphy (PET) to measure patient motion [10]-[12]. Ful&tral.

various regimes to determine the importance of attenuation and ysed these data to correct fully general movements in SPECT
successive iterations. Studies were assessed visually for artifactusing a three-dimensional (3-D), iterative reconstruction algo-

reduction, and analyzed quantitatively via a mean registration . . . .
error (MRE) and mean square difference measure (MSD). Re- rithm [12]-[14]. A different approach to motion correction uses

sults: Artifacts and distortion in the motion corrupted data were ~ forward projection of the SPECT reconstruction [15], [16] to
reduced to a large extent by application of this algorithm. MRE determine the movements necessary for obtaining a consistent
values were mostly well within 1 pixel (4.4 mm) for the simu- projection set, but these groups have restricted their investiga-
lated data. Significant MSD improvements(>2) were common. tinn to axial and transaxial translations

Inclusion of attenuation was unnecessary to accurately estimate Thi K d b tical ts | lidati |
motion, doubling the efficiency and simplifying implementation. IS work describes practical aspects in validating a novel,

Moreover, most motion-related errors were removed using a single fully 3-D, data-driven motion correction method.
iteration. The improvement for the physical phantom data was

smaller, though this may be due to object symmetry. Conclusion: Il. METHODS

These results provide the basis of an implementation protocol for

clinical validation of the technique. A. General Methodology

Index Terms—mage registration, motion compensation, single  The principles underlying our novel approach to 3-D motion
photon emission computed tomography (SPECT), three-dimen- correction and the feasibility of implementation are described
sional (3-D) reconstruction. briefly in previous work by this group [17], [18]. A more com-

plete description is provided here.
|. INTRODUCTION We wish to estimate radionuclide distributigfr) wherer

o enotes position in the 3-D-object space. We define the acquired
_INGLE-photon emission computed tc_Jmogr_aphy_ (SPEC rojections in projection spaceaccording to
s a valuable diagnostic tool in functional imaging, how=
ever, itis well recognized that patient motion during data acqui- P(s) = {pi(s):i € I} L
sition can result in artifacts in the reconstructed image that may ao

compromise accurate diagnosis [1]-[3]. Moreover, use of he@‘i‘\erepi is the ith simultaneously-acquired group of projec-

restraint does not necessarily rectify the problem [4]. tions, i is the set{0, 1, . . ., imax } @Ndimax iS given by
. . . . total projections
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was presented in part at the Australian and New Zealand Society of Nuclear number of camera heads
Medicine Annual Scientific Conference, 2002sterisk indicates corre- . L
sponding author. Let F; be the operation of forward projecting at the angles

*A. Z. Kyme is with the Diagnostic Physics Group, Department of NUCleat_orresponding to théth group. We also define the process
Medicine and Ultrasound, Westmead Hospital, Sydney, NSW 2145, Australia

(e-mail: nak@imag.wsahs.nsw.gov.au).

B. F. Hutton, R. L. Hatton, and D. W. Skerrett are with the Diagnostic Physics !J: = R[Q7 !Is] (3)

Group, Department of Nuclear Medicine and Ultrasound, Westmead Hospital,

Sydney, NSW 2145, Australia. . ___whereg*(r) is the updated reconstruction obtained when an it-
L. R. Barnden is with the Department of Nuclear Medicine, Queen Elizabeth .. =~ . . .

Hospital, Woodville, Adelaide 5011, Australia. erative reconstruction algorithiR reconstructs an arbitrary set
Digital Object Identifier 10.1109/TMI.2003.814790 of projections)(s) using an initial image estimate(r).

0278-0062/03$17.00 © 2003 IEEE



KYME et al. PRACTICAL ASPECTS OF A DATA-DRIVEN MOTION CORRECTION APPROACH FOR BRAIN SPECT 723

1) Identification of Misaligned ProjectionsObtain the first dentify
estimatej, by reconstructing the full set of acquired projection: Angle
P, with aflat (gray) imagéd/ as the starting reconstruction G’Ips { SIMPLEX
A — : Attenuation
9u = RIP,U]. 4) Partial _ Select | Map (A, I2)
The subscript denotes that this reconstructiomrisorrected ~ Lieconstruction | *f group |

Forward Project |

and, therefore, may contain motion artifacts. (The positionvar . ___ -
ablesr ands have been left out for simplicity.) "
To identify groups of projections corresponding to discret "
. . Proceed to
locations of the brain, we compute the square of the norm ! Next Angle | Compare with
the difference between forward projections and acquired pr 1 Group | :| Reorient Acquired Data

jections. The similarity measure for two discrete (projection ¢ x
object) functionse andy is given by
2 — ylI?
C(z,y) = ———— 5
(=.9) Ny ® N N
whereN,, is the number of nonzero elementsiin Ctg:egted Update Partial
By calculatingC(p;, F;[§.]) for each value of, sets ofp; (End A, NA) Reconstruction

can be identified for which the position/orientation of the brait.

was fixed, i.e., we identi C P such that ) . . )
f)Pm - Fig. 1. Flowchart describing the general methodology of data-driven motion

P ={pi:icl,} (6) correction and the different modes of correction. An attenuation map is used
m v mle in the optimization cycle for modes A and 12 to account for attenuation
Here.I.. is a subset of containing the indices of all acquired(reconstruction and reprojection). Mode 12 involves a repeat of the cycle using
om . . w .» . the Mode A motion-corrected result as the starting reconstruction.

groupsp; that were collected with the brain at, or “close” to,
locationm.

2) Estimation of Motion: To estimate motion parameters forB. Implementation

each change in brain location, consider using a transformation1 c G trvThi thodol . licabl

operatofT to apply arigid-body transformation (three rotations, ) Camera GeometryThis methodology is applicable

three translations) in the object space. The aim is to choose Eﬁ% any muIt|head_ gamma camera g_ec_)metry. We simulated
transformation so as to minimiz&(P,,, P, ), whereP’, here qal-hea_ld 99 acquisition dat_a _f(_)r the digital phf_;lntom and ob-
is given by tained trlple—head_(lz’() acquisitions of the phy_smal phantom.
2) Reconstruction:The operatoR was defined above as
Pl = {F[gu(T)]:i € I;n} (7) any iterative, tomographic reconstruction algorithm capable of
] ) o updating some specified startimage with an arbitrary set of pro-
i.e., P, is the set of forward projections generated from (th@ tions. We chose the ordered-subsets expectation-maximiza-
transformed);,, at all angles identified as belonging to movey;gn, (OSEM) algorithm [19]. The projection sef$, used in
mentm. o _ _ each motion-correction update were divided into OSEM sub-
Denoting the optimized transformation from location— 1 et For the digital phantom experiments, a subset size of two
to locationm asT.,, the setofl',,'s (m > 1) are sought using a5 sed whei/3 of the data or less were available, otherwise
a dlrect-s_earch opt|m|zat|on algorlthm_. . . _asubset size of four was used. For the physical phantom experi-
3.) Motlon Correctlon: Formthe p‘?‘r“a' ref:onstructlon USIN9ments, projections were grouped together using a subset size of
projections acquired at the = 0 brain location three.
0 = R[P,, U]. (8)  3) Optimization: The similarity measurgC) was mini-
mized using the downhill simplex algorithm (maximum 250
function evaluations). Simplex was chosen for simplicity of
implementation, its common use in registration problems, and

The superscript o1, indicates we take this to be thaitial
motion-corrected estimate.

If we define acumulativetransformation operator accordingits good performance in reasonably well-behaved parameter

to spaces.
So=Id, m=0 4) Detection of Motion GroupsThe first stage of the algo-
S, =Ty Ty 1...Ty. m>0 9) rithm is to reconstrucg,, using all the acquired data and com-

. ' _ pute the similarity functiod®(p;, F;[g.]) for each allowed value
then updated motion-corrected estimates> 0) are given by of ;. This may yield clearly differentiated groups as in Fig. 2(a),

the recurrence relation but will not define the movement groug,, conclusively. Ad-
ggm)(snl) -R [Pm, ggm*U(Tm . Sm_l)} ' (10) ditional information regarding the ;tart and end points of move-
ments can be found by transformiig prior to forward pro-

Whenm = M = max{m}, the motion-corrected result is ob-jection. The transformation in this case is an arbitrary set of
tained. This can be returned to the initial frame of reference bigid-body parameters obtained using a random number gen-
applying the inverse cumulative transformat'ﬁ@l. Fig. 1 il- erator with bounds specified. Computiigas a function of
lustrates the general methodology. after applying each of these transformationg tastablishes a
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Fig. 2. Similarity (MSD) between acquired and forward-projected data for the
indexed angle pairg; ) of a simulated phantom study. With no transformation
of the reconstruction (a) was obtained. Transforming the reconstruction three (b)
different ways before calculating the similarity gave (b), (c), and (d). Note that at
certain orientations of the brain [e.g., (b)] some movements may not be detectéid. 3. (a) “Hybrid” projection sets formed by increasing the proportion of
These data suggest three distinct angle grofipsP, Ps. P2 projections. (b) Demonstrates how the “full” reconstruction was used to
determine how well data frof?1 and P2 could be distinguished. The hybrid
set was reconstructed, forward projected, and the forward projections used to

more conclusive picture ofthe motion relationships between eﬂirs_tinguish betweef’1 andP2. For the partial reconstruction, only projections
. . .. in H; that belonged td’1 were used to reconstruct.

gles, as can be seen in Fig. 2 for a dataset containing three head

positions.

At present, identification of the motion groups from the mul
tiple C versusi curves is done visually. In future development, The justification for using a partial reconstruction to get im-
an automatic method will be investigated relying on the fact thatoved motion parameter estimates was obtained via the fol-
variation of C' within a motion group tends to be much smallelowing experiment: two complete projection sdtd and P2
than between groups (Fig. 2). were generated by analytically projecting the digital Hoffman

5) Partial Reconstruction:Instead of transforming,, (un- phantom at two different orientations. “Hybrid” projection sets
corrected reconstruction) to estimate the motion parameters férwere formed containing an increasing proportiod’afpro-
each movement (as per Section 1I-A), a partial reconstructiggctions [Fig. 3(a)]. To determine whether forward projections
can be used. The partial reconstruction contains a consist@sterated from the fully or partially reconstructed data provided
but incomplete, set of projection data. First, we form the initidletter differentiation betweeff1 and P2, a distinguishability
motion-corrected estimate as in (8), but choBse@s the largest index was calculated as
of the P,,’s. Then, theT,,’s are obtained by minimizing the . .
similarity functionC(P,,, P.,), whereP/, in this case is given d = C(PLFRIH}, U]) - C(P2, FRIH, U]) (12)
by where for full reconstructio{ = H; and for partial recon-

struction 4 was the subset off; belonging toP1. The oper-
ator F', without subscript, denotes forward projection at all an-
P, = {Fz [@ﬁm_l)(smA)] ,1 € Im} (11) gles. Fig. 3(b) illustrates the experiment.
Fig. 4 shows a plot of versus the number @?1 projections
i.e., P! is the set of forward projections generated from theontained in the full and partial reconstructions. For full recon-
(m—1)th estimate at all angles identified as belonging to movstruction, the ability of the forward projections to differentiate
mentm. Here,m > 0 and updates proceed as before. P1 and P2 data rapidly declined to a minimum as the propor-

6) OSEM Subset Considerationt has been suggestedtion of P2 data inH increased to 50%. By comparison, forward
that OSEM reconstructions preferably should use subsetspobjections generated from the partial reconstruction showed an
well-dispersed angles in order to maximize information pexcellent ability to differentiate, even wheri /4 of the P1 data
sub-iteration [19]. This principle was applied to all OSEMvere used to reconstruct.
reconstructions performed. Also, where possiBIB,,} were On the assumption that improved motion parameter estima-
chosen so that consecutin€s did not correspond to spatially tion results when there is improved differentiability of data,
adjacent angle groups. In this way, progressive updates of tksults of this experiment suggest partial reconstruction should
reconstruction had a more balanced addition of the availalpovide more robust motion correction. The partial reconstruc-
projection data. tion approach was used in all our motion correction experiments.

Distinguish P1 & P2

C. Basis for Using a Partial Reconstruction
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Fig. 4. Performance of forward projections generated from the full and partial
reconstructions in distinguishing between the detsand P2 (Fig. 3). Error 6
bars represent the standard deviation of the MSD/projection values used to | || A l || A |A
obtain the distinguishability index. 1 16 32 48 64
D. Dat(-':\- | o 7 AT B B’
_1) Dl_gltal Phantom: _Startl_ng projection daFa for the 1 16 39 48 64
simulations performed in this work were obtained by pro- i i
jecting a 128x 128x 80 pixel (2.2-mm/pixel) version of the Projection

digital Hoffman brain phantom to 64 (6440) projections
&ig. 5. Schematic showing the location of movements (A, B, C) incorporated

(4.4-mm_/p|xel) “S'”g a hlgh resolution, paralle!-hole collimat Into the seven digital phantom datasets. See Table | for the actual parameters.
model with attenuation but no scatter. Each pixel was replacgds’ and C’ represent angles at 900 A, B, and C, respectively.

by a random, Poisson-distributed count after scaling the
maximum counts/projection to 50 000.

Projection data simulating an acquisition with head move- TABLE |

; ivid- i MULATED ROTATIONS (°) AND TRANSLATIONS (PIXELS) AND NUMBER OF

ment were generated by a_pplylng r|g|d bOdy. tljanSfOr!’nat.lon§|ANG|_E PAIRS AFFECTED FOR THESEVEN DIGITAL PHANTOM DATASETS
to the phantom, forward projecting, then combining projections
from the resulting datasets. Seven studies simulating up to three Data Label Pairs Applied Movements
head movements (fourdis.crete po;itions) were.qeated. Th.e mo- X Y 72 X Y Z
tions included 3-D head tilting, twisting, and sliding—feasible

1 A 8 -8 -3 5 -1.0 05 -2.0
movements resulting from coughing, discomfort, and tiredness
of the patient in a clinical setting [4], [12], [20]. In addition, A 16 -8 3 5 10 05 -20
simulated sets varied in the angular location and extent of move- 3 A 6 3 0 6 04 -05 -1.0
ment, and the magnitude in each degree of freedom (DOF). A B 6 3 3 5 03 00 20
summary of the motion-corrupted datasets is shown in Fig. 5
and Table 1. 4 A 6 6 0 12 .5 -1.5 -3.0
2) Physical Phantom:The Hoffman physical phantom B 6 708 -10 -15 0.0 4.0
data were acquired at a separate institution on a Philips Irix
triple-head gamma camera200 MBq %°™Tc, 120 projections oA 8 25 2 0812 02
(40/head), 30 s/proj., 3.5-mm/pixel). Three studies were col- B & -3 0 6 05 -05 -12
lected: two had a single 3-D movement manually applied tothe ¢ A 1 -2 5 12 -08 12 -02
phantom for<1/4 of the acquisition, and the third had two 3-D B H 3 o 6 05 05 -12
movements each held fdr/3 of the acquisition. Independent ’ ' ’
measurement of the applied motion was obtained usingthe 7 A 8 0 4 4 00 15 10
Polaris motion tracking system from Northern Digital Inc. B 8 2 7 7 05 20 15
[11], [12]. This system tracks rigid-body movement of infrared
reflecting targets attached to the object. Movements applied c 8 4 10 7 L0 25 20
during the physical phantom studies, as recorded by the Polaris,
are listed in Table V. optimizations to estimate the brain orientation for each iden-
. . ) tified group. After each optimization the current estimate was
E. Motion Correction Experiments updated with the optimized group. Once all data were in-

As described above, motion correction involved identificacluded, the resulting reconstruction was regarded as motion
tion of motion groups followed by a series of simplex-drivelgorrected.
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1) Motion Correction RegimesFour regimes based on this TABLE I
methodology were compared for each of the seven datasets. MRES (PXELS) FOR THEMOTION ESTIMATES IN THE DIGITAL
PHANTOM EXPERIMENTS
a) Regime A (“attenuation”):Attenuation effects were ac-
counted for in the motion identification and estimation Data Regime A B C
stages of the algorithm using a 3-D attenuation map trans- ! A 0.72
formed synchronously with the emission data. NA 068
b) Regime NA (“no attenuation”)it was suggested previ- 12 0.21
ously [18] that leaving attenuation out of the motion iden- 2 A 2.08
tification and estimation stages of the algorithm may be NA 1.05
possible. The NA regime tested this hypothesis. Note that 12 1.25
attenuation correction was included in the final motion- 3 A 0.19 1.78
corrected reconstruction. NA 0.69 239
c) Regime 12 (“second iteration”)The result from regime A 2 020 128
was used as the starting estimate for a second iteration of 4 A 080  1.08

motion estimation and correction.

. . NA 1.08 1.50
d) Regime A (“ideal”): Theknownmovements were used

. . . . 12 0.43 0.83
for motion correction. This regime represents the best-
. . 5 A 0.38 0.32
achievable correction. 0.22)
Fig. 1 illustrates these correction regimes. i
. . . . NA 0.75 0.23
2) Analysis: Motion-corrupted and motion-corrected im- 081)
ages were compared visually for improvement in perfusion D 0.46 oéz
artifacts. For the digital phantom simulations, difference - -
images were formed between a motion-free stgdand each 6 A 0.83  0.66
motion-corrupted and corrected study to assess residual error. (0.66)
A mean registration error (MRE) was calculated for each move- NA 076  0.23
ment estimate by averaging the linear distance (millimeter) (1.03)
between the vertices of a bounding box enclosing the brain in 2 059 071
the true location and the extracted location. Finally, to quantify 7 A 139 076 0.85
the overall improvement derived from motion correction, a NA 074 072 0.70
mean square difference ratio (MSDR) was calculated as 12 090 078 0.24

C(§r(Sar), §u(Snr)) (13)

A ~(M :
Cgr(Sn), 58 (Sw)) TABLE I
MEAN ABSOLUTE DEVIATION OF EXTRACTED ROTATIONS (°) AND
TRANSLATIONS (PIXELS) FROM APPLIED PARAMETERS

MSDR =

Note that the motion-corruptedg,) and motion-free(g,)
reconstructions were transformed to the orientation of the
motion-corrected reconstructiofyj.) for this calculation. A
3-D Gaussian filter (FWHM= 9 mm) was applied to the

Regime  X° Y° Z° X Y Z
A 063 079 15 057 0.75 0.31

studies before measuring the MSDR so that measured differ- NA 073 056 161 079 070 048
ences were due primarily to corruption rather than noise. The
MSDR was calculated over 19 central brain slices. 2 020 045 122 040 035 0.18

lll. RESULTS (y), and 0.9 mm£). The mean absolute deviatiofispplied —

.- extracted|) for each DOF and each correction regime are shown
A. Digital Phantom in Table Ill. These were similar using a single iteration with and
Table Il summarizes the accuracy of extracted motion padthout attenuation (A and NA, respectively) but were smaller
rameters in terms of the MRE for each of the applied mové all DOF using a second iteration (12). Moreover, theis ro-
ments in the seven datasets. The majority of values were ctetion was the most error-prone rotation parameter ane axes
siderably less than 1 pixel. Generally, the MRE obtained afteainslation the most accurate translation parameter, irrespective
a second iteration of motion correction (12) improved on thef the correction regime used.
single-iteration value (A) as expected. There was no clear in-Upper, middle, and lower brain slices are shown for datasets
dication that including attenuation (A) gave consistently bettérand 7 in Fig. 6(a) and (b), respectively. Rows (top to bottom)
motion estimates. The raw data (not shown) used to derive tt@respond to motion-free (R), motion-corrupted (U), and mo-
MRE values indicated that all rotational and translational DOion-corrected (A, NA, 12) slices. Severe perfusion distortions
were transparent to the algorithm. Maximum deviations froend edge defects were evident in the motion-corrupted slices of
the applied values (across all optimizations) weré 34rota- both datasets. After motion correction using each regime, slices
tion), 4.2 y-(rotation), 5.6 z-(rotation), 1.8 mm«), 2.2 mm resembled their motion-free counterparts much more closely.
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TABLE IV
MSDR VALUES AFTER MOTION CORRECTION OF THESEVEN DIGITAL
PHANTOM DATASETS USING EACH CORRECTIONREGIME

1 2 3 4 5 6 7
A 2.1 3.8 1.6 29 33 4.5 5.9

NA 24 43 1.6 2.8 3.1 5.4 9.4
12 24 42 1.6 3.0 34 4.8 9.3

A+ 25 4.5 1.7 3.1 3.8 6.1 11.4

@ 0o

Fig. 6. Upper, middle, and lower (left to right) brain slices for (a) dataset 5
and (b) dataset 7. The three slices are shown for the motion-free (R), motion-
corrupted (U), and motion-corrected (A, NA, 12) reconstructions.

*A

05 & ENA
0'4 A2
0:3 © |deal

Fraction of Ideal

Dataset

Fig. 8. Plot of MSDR values for each correction regime, expressed as a
fraction of the MSDR for idea A+) correction.

ferences that were most obvious around the perimeter of the
motion-corrupted slice were reduced by a similar extent using
all correction regimes. For dataset 6 [Fig. 7(b)], distortions
in the motion-corrupted slice were predominantly anterior
and posterior. The bulk of these differences were removed
by motion correction. A second iteration (12) removed the
postero-lateral difference still present after correction using
regime A. These defects were removed using a single iteration
without attenuation (NA). Clear residual differences existed
after motion correction. However, the close resemblance
between these difference images indicates that motion-induced
distortions were reduced close to the potential of the technique.
Noise and interpolation incurred between OSEM updates may
be contributors to the residual error observed.

MSDR values calculated for each correction regime are
- shown in Table IV. All corrections resulted in improvement,
(a) (b) generally by a factor of two or more. The improvement
increased with the magnitude and extent of corruption (e.g.,

Fig. 7. (a) Dataset 5 and (b) dataset 7. A middle brain slice (left column) i ;
shown for the motion-free (R), motion-corrupted (U), motion-corrected (A, NA&)mparlng datasets 1 and 2, 3 and 4, and 5 and 6)' A second

12), and ideal-correctedA *) reconstructions. Shown alongside each slice iferation of motion correction (12) bettered the single iteration
the difference image formed by subtracting the motion-free slice. (Differenggsult in all cases, though the additional benefit was minor
images were scaled to the same range.) (dataset 7 the exception). This suggests most errors were cor-
rected in the first pass. Moreover, ignoring attenuation during
Only minor differences were apparent between correcti@ptimization (NA) gave higher MSDRs than 12 for three of the
regimes. datasets (2, 6, 7), and equal or marginally smaller MSDRs for
Fig. 7 repeats the vertical sequence of slices shown time remainder. Fig. 8 shows the MSDR results expressed as
Fig. 6, with the difference image between each slice amdfraction of the best-achievablé.™) MSDR. This fraction
the motion-free counterpart shown alongside. The last rdar the NA and 12 regimes was80% in all cases. Regime A
(AT) corresponds to the best-achievable correction (obtainadpeared to reduce in effectiveness as the magnitude and extent
using the known parameters). For dataset 5 [Fig. 7(a)], ddf corruption increased, being least effective for dataset 7.
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TABLE V
EXTRACTED AND POLARIS-MEASURED ROTATIONS (°) AND TRANSLATIONS
(PIXELS) FOR (@) THE FIRST (LEFT) AND SECOND (RIGHT)
AND (b) THIRD PHYSICAL PHANTOM DATASETS

DOF Extracted Polaris DOF __ Extracted Polaris

X -9.8 -9.1 X -0.6 -0.1
Y 8.6 7.7 Y 0.0 0.1
V4 1.5 -0.7 zZ -2.2 -0.2
X 1.1 2.8 X 3.9 2.4
Y 0.4 2.5 Y 3.2 4.1
Z 2.7 3.0 Z -4.0 -3.7
(@
Movement 1 Movement 2
DOF Extracted Polaris Extracted Polaris
X -1.2 -1.3 -0.7 0.1
Y 14 1.9 8.1 8.4 Fig. 10. Upper, middle, and lower brain slices (left to right) shown for physical
7z 26.8 259 17 02 phantom dataset 3 (three head positions). The uncorrected study (U) had sig-
e e o : nificant artifacts. Using the NA regime (NA) and Polaris measurements (P) for
X -0.5 -0.1 -3.9 -5.7 correction gave a very similar result, each significantly reducing the distortion.
Y -0.2 -0.1 -0.5 0.1
Z -0.3 -0.3 -1.4 -1.4

gave significant improvement relative to the uncorrected slices.
(b) The similarity of the corrected slices suggests the data-driven
motion correction was close to the best achievable in this case.

IV. DISCUSSION

The digital phantom results demonstrate that attenuation
effects can be ignored in the motion estimation and updating
stages of the algorithm. This regime achieved a level of correc-
tion similar to two iterations with attenuation accounted for.
Moreover, efficiency was approximately doubled since compu-
tations related to transformation and projection of the attenuation
map were bypassed. Although the results suggest further im-
provement could be obtained from a second iteration without
attenuation, we believe it preferable to retain the single-iteration
speed advantage since the relative improvement from a second
iteration would be small.

Fig. 9. Surface plot of the similarity measure for one of the physical phantom The digital phanfcom Correct|on_s Conflrme_d t_he §urpr|smg ro-
datasets, showing a valley traversing theranslationz-rotation parameter ustness of a partial reconstruction for optimization [18] even
space. Shallowness made locating the minimum difficult and resulted invéhen only a small fraction of the data were utilized. In three
discrepancy between the extracted and Polaris-measured values in some Capeg catg (5, 6, 7), less thii?l/32 angle pairs were used to form

) the partial reconstruction, yet correction80% of that achiev-
B. Physical Phantom able using the ideal motion parameters were obtained.

Table V shows the motion parameters extracted using theDiscrepancy in some DOF for the Hoffman physical phantom
data-driven approach, and those measured by the Pola&geriments was due to a nearly flat region of the similarity
motion tracker. For datasets 1 and 2 [Table V(a)] which hdtnction. We postulate that this behavior is a result of object
single corrupting movements, there was good agreement fymmetry not expected to be problematic in clinical data. An
three DOF ¢ and yrotation, z translation) and reasonableoff-axis, axial rotation of a cylindrically symmetric, uniform ac-
discrepancy for the remaining DOFr (and y translation, tivity distribution cannot be uniquely estimated using the pro-
z rotation). Fig. 9 shows a surface plot of the similarity measujection images. The physical phantom design allows activity to
(C) as thez-translational and:z-rotational parameters werespread around the circular insert, leading to a hot rectangle of
manually driven through the rangel to 8 pixels, and—4° to  activity in the projection images. This possibly biases the esti-
5°, respectively (fixing the remaining parameters at the Polarisation by confusing axial rotation with translational movement
values). The topology shows there is difficulty in identifyingn the plane of projection.
the parameters corresponding to the minimum C value. Clearly, the number of possible movements and the pattern

For dataset 3 [Table V(b)], there was much better agreemefitmovement is prohibitively large to simulate. Nevertheless,
overall between the extracted parameters and Polaris parametions were chosen to enable some assessment of how the
ters. Applying each set of parameters for motion correction rggpe, amplitude, angular location, and angular duration of mo-
sulted in the corrected slices shown in Fig. 10. Motion correctidion influenced performance of the algorithm. For example, the
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slow, drifting motion that has been observed by some auth@ence to the full reconstruction to provide better estimates of
(e.g., [12] and [20]) can be approximated by a stepwise serla®in movements. Attenuation can be ignored in the optimiza-
of discrete movements as in dataset 7 (see Fig. 5). The ovetialh stage and the bulk of motion error is removed using a single
accuracy of extracted results shows that this motion correctibaration. Work is in progress to implement these findings in a

approach has the potential to rectify studies corrupted by couiinical validation study.

plex movements, occurring at any stage in the acquisition, and
of a magnitude typical of that observed clinically [4], [20].

Currently, only list-mode acquisition methods that bin data
according to the location of the (tracked) brain are capable
fully correcting patient motion in SPECT since inter and in-
traprojection motion is accounted for. We have shown previ-
ously that our data-driven approach will correct the average
movement within a projection [17]. However, it is clearly lim-
ited when extensive motion occualsiring projections.

It was assumed that the simplex algorithm would converge|[2]
to a better solution if all angles corresponding to a particular
brain position were included in the cost function. Under this as- 3,
sumption, identification of maximal-size motion groups is de-
sirable. The method of applying arbitrary transformations to the
reconstruction enabled such groups to be found in most datasetgf]
For datasets 5 and 6 it was necessary to define one additional
group. It is recognized that identification of large angle groups [5]
could be less likely if motion is slow and progressive. In terms of
motion correction, this means more optimizations—the extreme
case being a separate optimization for each angle pair/triple. F0{6]
dual-head 99 camera geometry this in turn would require re-
construction updates using subsets of two (angle pairs). Though
OSEM may be limited here by the subset balance condition,m
the more general form of this iterative reconstruction algorithm,
rescaled block iterative (RBI), should have no such limitation.
Further investigation of this is required. In theory then, the iden- 8
tification of angle groups is not a limitation, though at the cur-
rent speed, failing to identify reasonably sized groups would
make the algorithm prohibitively long to be practical. [

An additional complicating factor when finding motion rela-
tionships between angles is the choice of reconstruction subset?]
For dataset 2, no motion groups were identifiable from the ini-
tial comparison of acquired and forward-projected data sincet1]
all subsets were equally weighted with moved and unmoved
data. (However, arbitrarily transforming the reconstruction ber, »
fore comparison did allow the two angle groups to be clearly
identified.) Also, despite a smaller proportion of the study bein
corrupted, motion estimates were poorer than for some mo
significantly corrupted studies. In this case, the partial recon-
struction was noticeably asymmetric due to the location of availt14]
able data. Further investigation is necessary into how influen-
tial OSEM subset ordering is in distinguishing angle groups
and estimating motion. Again, subset-based reconstruction &
gorithms not reliant on subset size or ordering may provide
improvements. [16]

(1]

3]

V. CONCLUSION [17]

A novel, 3-D motion correction technique for brain SPECT
has been described that is relatively simple to implement. The
method uses forward-projected data to determine brain motior&]
and incorporates this information in a 3-D reconstruction. Arti-
facts were reduced significantly in phantom data corrupted b2l
single and multiple 3-D motions of varying magnitude and ex-
tent. Specifically, a partial reconstruction should be used in pref20]

ACKNOWLEDGMENT

fThe authors would like to acknowledge Dr. R. Fulton and
Br. M. Braun for their ideas and help in this work.

REFERENCES

K. M. Silver, G. M. Currie, and A. F. McLaughlin, “Patient motion arte-
fact characterization in cerebral SPECT acquisitignN.Z. Nucl. Med.

pp. 22-25, 1994.

J. A. Cooper and B. K. McCandless, “Preventing patient motion during
tomographic myocaridal perusion imaging,”’Nucl. Med, vol. 36, pp.
2001-2005, 1995.

E. H. Botvinick, Y. Y. Zhu, W. J. O’Connell, and M. W. Dae, “A quantita-
tive assessment of patient motion and its effect on myocardial perfusion
SPECT images,J. Nucl. Med, vol. 34, pp. 303-310, 1993.

M. V. Green, J. Seidel, S. D. Stein, T. E. Tedder, K. M. Kempner, C.
Kertzman, and T. A. Zeffiro, “Head movement in normal subjects during
stimulated PET brain imaging with and without head restrathtNucl.
Med, vol. 35, pp. 1538-1546, 1994,

M. K. O’'Connor, K. M. Kanal, M. W. Gebhard, and P. J. Rossman,
“Comparison of four motion correction techniques in SPECT imaging
of the heart: A cardiac phantom study]” Nucl. Med, vol. 39, pp.
2027-2034, 1998.

G. Germano, T. Chua, P. B. Kavanagh, H. Kiat, and D. S. Berman, “De-
tection and correction of patient motion in dynamic and static myocar-
dial SPECT using a multi-detector camerd,'Nucl. Med. vol. 34, pp.
1349-1355, 1993.

G. Germano, P. B. Kavanagh, H. Kiat, K. Van Train, and D. S. Berman,
“Temporal image fractionation: Rejection of motion artifacts in myocar-
dial SPECT,"J. Nucl. Med, vol. 35, pp. 1193-1197, 1994.

] M. lvanovic, D. A. Weber, S. Loncaric, C. Pellot-Barakat, and D. K.

Shelton, “Patient motion correction for multicamera SPECT using
360 deg acquisition/detector?roc. IEEE Nuclear Science Sympp.
989-993, Nov. 1997.

9] C. Pellot-Barakat, M. Ivanovic, D. A. Weber, A. Herment, and D. K.

Shelton, “Motion detection in triple scan SPECT imaging,EE Trans.
Nucl. Sci, vol. 45, pp. 2238-2244, Aug. 1998.

S. R. Goldstein, M. E. Daube-Witherspoon, M. V. Green, and A. Eidsath,
“A head motion measurement system suitable for emission computed
tomography,”lEEE Trans. Med. Imagvol. 16, pp. 17-27, Feb. 1997.

B. J. Loprestiet al, “Implementation and performance of an optical
motion tracking system for high resolution brain PET imagingEE.
Trans. Nucl. Scj.vol. 46, pp. 2059—-2067, Dec. 1999.

R. R. Fulton, “Correction for Patient Motion in Emission Tomography,”
Ph.D. dissertation, Univ. Technol., Dept. Appl. Phys., Sydney, New
South Wales, 2000.

R. R. Fulton, B. F. Hutton, M. Braun, B. Ardekani, and R. Larkin, “Use
of 3D reconstruction to correct for patient motion in SPECHHys.
Med. Biol, vol. 39, pp. 563-574, 1994.

R. R. Fulton, S. Eberl, S. R. Meikle, B. F. Hutton, and M. Braun, “A
practical 3D tomographic method for correcting patient head motion in
clinical SPECT,”IEEE Trans. Nucl. Sci.vol. 46, pp. 667-672, June
1999.

L. K. Arata, P. H. Pretorius, and M. A. King, “Correction of organ mo-
tion in SPECT using reprojection data,”lIBEE Nuclear Science Symp.
Conf. Rec.1996, pp. 1456-1460.

K. J. Lee and D. C. Barber, “Use of forward projection to correct patient
motion during SPECT imagingPhys. Med. Biol.vol. 43, pp. 171-187,
1998.

B. F. Hutton, A. Z. Kyme, Y. H. Lau, D. W. Skerrett, and R. R. Fulton, “A
hybrid 3D reconstruction/registration algorithm for correction of head
motion in emission tomographyJEEE Trans. Nucl. Sci.vol. 49, pp.
188-194, Feb. 2002.

A.Z.Kyme, B. F. Hutton, R. L. Hatton, and D. W. Skerrett, “Optimizing
data-driven motion correction in brain SPECT: Partial reconstruction
and attenuation correction. Nucl. Med, vol. 43, p. 222P, 2002. Abs.

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction
using ordered subsets of projection dat&FEE Trans. Med. Imagvol.

13, pp. 601-609, Dec. 1994.

L. R. Barnden, private communication, 2002.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


