
Object-oriented Database Management
Systems for Construction of CASE

Environments?

Wolfgang Emmerich, Petr Kroha and Wilhelm Sch�afer

University of Dortmund, Dept. of Computer Science
D-44221 Dortmund, Germany

femmerich|kroha|wilhelmg@ls10.informatik.uni-dortmund.de

Abstract. We argue that a fully object-oriented database management
system is a very suitable basis of every modern CASE environment. We
describe how the features provided by an OODBMS are exploited to
build a CASE tool or environment. We discuss especially problems con-
cerning inter-document consistency constraints and multi-user support.
We �nally sketch the features which are still missing in OODBMSs.

1 Introduction

The enormous increase in the size of software and the reliability required from
modern software intensive systems has focussed attention on languages and cor-
responding tools which do not only support programming but also speci�cation,
design, and documentation of software. In fact, speci�cation or design docu-
ments have become equally important as the �nal code in order to check and
verify correctness, completeness and reliability of a delivered software product.
In addition, the industrial-scale production of software today requires teams of
developers who should be supported by tools which organise access to a large
amount of shared and frequently changing information. This information con-
sists of the above mentioned documents for the various phases of the software
production process. Examples for such documents are data-
ow diagrams, state-
transition diagrams, petri-nets, entity-relationship diagrams, and modular design
descriptions.

Tools supporting the construction of documents usually work in a syntax-
directed mode, which is the adequate support for those mostly graphical lan-
guages. In more detail, the user selects a graphical element from a panel, places
it on a drawing board and can possibly annotate it with textual explanations.
This mode especially enables the tool to check the correct syntactic construction
during editing.

Even for textual input, syntax-directed manipulation is useful, because it
avoids a lot of typing errors (templates for the concrete syntax of a language
are generated automatically) and, more than that, static semantic consistency

? This work has been partly funded by the CEC under contract No. 6115 (ESPRIT-III
project GOODSTEP)

can immediately be checked, e.g. the use of a variable is checked against its
declaration and the user is immediately informed about errors.

In general, syntax-directed tools support the syntactically and static semanti-
cally correct construction of documents which is often denoted as intra-document

consistency.

An integrated software development or CASE-environment is a collection
of tools supporting various phases of the production process. It has two main
additional features compared to tools supporting the construction of single doc-
uments in a single language.

The �rst feature is the possibility to handle inter-document consistency, e.g.
a name of a function or a parameter should be the same in the requirements
speci�cation, in the interface de�nition of a module, in the design document
and in the implementation. Even more, changing the name in one document can
result in a propagation of this change into the other documents concerned. If an
environment maintains such inter-document dependencies, it is able to support
an incremental intertwined development and maintenance of the documents. As
a further illustration for the advantage of an incremental production process as-
sume that a programmer may have detected an error in the code which is due to
a wrong requirements speci�cation of a particular function. If then the speci�-
cation is changed, the environment could inform the user about all other places
in all other documents which are a�ected by this change. In contrast, doing such
a small incremental change in a phase-oriented environment is rather tedious,
because such an environment is usually based on a complete transformation of
all documents concerned from one phase into the next one. For more details we
refer to [8].

The second main feature of an environment ismulti-user support which means
document change in general and in particular the above sketched change prop-
agation must be subject to concurrency control and access rights de�ned for a
team of developers, e.g. an automatic immediate update of one document as a
consequence of a change in another document can not be performed in any case.

The two features of an environment, i.e. maintaining inter-document depen-
dencies and even inter-document consistency and providing multi-user support
demand complex-structured, persistent data and thus the use of a sophisticated
database management system as a key architectural component of a CASE-
environment. In commercial CASE-environment development this demand is
often not (yet) taken very seriously, i.e. a lot of existing tools or environments
are still based on rather rudimentary extensions of �le systems. This is, to our
view, due to the lack of appropriate database management systems for CASE
(cf. Section 5 and and [7]).

This paper argues that fully object-oriented database management systems
(OODBMSs) like O2 or GEMSTONE are the most appropriate ones and it will
illustrate how an integrated CASE environment is built on top of such a database
system, i.e. it will explain the construction of the database scheme, and the
exploitation of other database features like transaction management, and the
performance capabilities o�ered by OODBMs. Thus, the next section will sketch
the concept of an integrated CASE environment, whereas section 3 describes

the scheme construction in terms of a class hierarchy of an object-oriented data
de�nition and manipulation language. Section 4 explains how OODBMs have
to be extended in order to fully meet the requirements of CASE environments.
Section 5 sketches related work. Section 6 reports about the implementations we
used for evaluating the results described in this paper.

2 The Concept of Integration in a CASE-Environment

Syntax-directed document manipulation and maintenance of inter-document
consistency is based conceptually on a graph-like representation scheme of a doc-
ument. The graph (usually called abstract syntax graph) describes the syntactic
structure of each document [8, 1]). Additional edges describe inter-document de-
pendencies. Operations which are performed by the user of a CASE-environment,
are conceptually graph operations. They have to be de�ned in a way that they
respect static semantics and inter-document consistency. Note, that consistency
is given by the de�nition of those operations. For example, an operation which
changes the name of a function in a design document could be de�ned in such a
way that it performs the corresponding name change in all other documents con-
cerned by traversing the graph along the edges connecting various occurrences
of a function name in di�erent documents.

As an example for a graph scheme (without considering the de�nition of the
operations) see Fig. 1. It sketches the dependencies within and between three
documents which are technical documentation, modular design and implemen-
tation of the module bodies. The solid arrows represent the syntactic structure
of each document, i.e. the so-called abstract syntax tree. This tree is usually
turned into a graph by indicating inter- and intra-document dependencies also
by (dashed) edges. Finally, node attributes describe values like e.g. names of
identi�ers, modules etc.

More generally speaking, a project-wide ASG is a directed attributed graph
which conceptually consists of a subgraph for each document. Each document
subgraph in turn is spanned by a tree which is determined by the grammar of
the language, the document is written in. Subtrees of this spanning-tree that
are units for manipulation at the user-interface are called increments. An ex-
ample of an increment of the design document depicted above is the proce-
dure InitWindowManager with its identi�er and parameter list. Edges of this
spanning-tree are called syntactic edges. All other edges which consequently de-
scribe inter- and intra-document dependencies between nodes are called non-

syntactic edges.
For the scope of this paper the given informal explanation of ASGs should

do. A few languages have been developed (e.g. PROGRESS developed in the
IPSEN project [8]) which allow to formally specify such rather complex graph
schemes and especially the consistency preserving operations on those schemes.

The whole concept of integration is becoming more complicated if di�erent
users work on di�erent documents at the same time. Then the execution of a
particular operation on the graph by a particular user is subject to an access
right which was granted to this user and allows the execution of the operation.

Documentation

Paragraph
List

TitleSection

Paragraph

Section
List

Value=’WindowManager’

ToNext

ToNext

ToSection
List ToFirst ToTitle

ToParagraph
List

...

ToFirst

ToLast

......Documentation Subgraph

Value=’The Module ...’

Decl
Ident

ToIdent

Ident
List

Proc
Decl

ToFirst Decl
Ident

ToIdentToExport

ToImport ...

Name=’WindowManager’

Operation
List

Name=
’InitWindowManager’

Function
Module

ToFirst
Par
List

ToFirstToParList
...

Module Design Subgraph

Function
Module

Decl
Ident

ToIdent

Proc
Decl

ToFirst Decl
Ident

ToIdent

Name=’WindowManager’

Name=
’InitWindowManager’

ToProcs Operation
List

T
oN

ex
t

ToDecl

T
oI

m
pl

Par
List

ToParList ToFirst

ToStat

Proc
Decl

Decl
Ident

ToIdent

ToDecl

Par
List

ToFirst

ToStat

Name=’ComputePosition’
T

oN
ex

t

ToParList

T
oI

m
pl

T
oI

m
pl

ToImport
...

... ...

...

...

...

...

...Module Implementation Subgraph

ToDoc

Fig. 1. Intra- and inter-document consistency

In addition, automatic change propagation across document boundaries have to
be treated di�erently depending on the particular document, the owner of the
document, and the state of the document. For example, if one user works on
some speci�cation and another one started already to develop a corresponding
implementation, then change propagation should only happen after both have
�nished a major piece of their work and explicitly require the environment to
renew document consistency (maybe only partly automatically). Thus the envi-
ronment just has to keep track of inconsistencies for some time and it may only
display warnings to users about possible inconsistent states.

In more sophisticated environments which however only exist as research
prototypes so far, the concurrent manipulation of (integrated) documents is
supported by versioning, i.e. users may change di�erent versions of the same
document concurrently. Then strategies for handling merging versions have to
be de�ned as well. In addition, versioning is, of course, already a useful concept
even in the single user case.

Finally, document representation and integration schemes as described un-
dergo changes even during the construction of documents according to the de-

�ned scheme. For example, a user may add new document dependencies which
have not been anticipated or the syntax de�nition of a language could change.

3 OODBMSs in a Multi-User CASE Environment

3.1 Scheme De�nition and Generation

The objects stored in a database of a CASE environment represent user's docu-
ments, and, as we have argued, they have to be stored persistently in a structured
way according to their syntax.
Consequently, a database scheme for a CASE environment �rstly de�nes all
possible syntactical constructions as classes according to the language de�ni-
tions. The scheme de�nes additional classes for representing objects describing
static semantics, e.g. a symbol table. Further a scheme de�nes syntactic and
non-syntactic relationships among classes.

The overall integrity constraint of a database which all tools must obey is that
document subgraphs must represent syntactically correct documents in which
static semantics and inter-document consistency constraints are only violated in
a controlled way. To enforce this constraint, we implement the constraints within
the database scheme and exploit the fact that each tool (as a database appli-
cation) can only perform those modi�cations that are in-line with the scheme
de�ned.

We now present how we de�ne the structure of abstract syntax graphs using
an object-oriented scheme de�nition language. The common properties of nodes
are de�ned within classes of the database scheme. Nodes are complex objects

whose instance variables represent edges. Navigation along these edges is done
by dereferencing instance variables. In case the number of edges that may start
at a node is not known in advance, object constructors such as lists or sets are
used. For navigation purposes a query language is used then.

The type-compatibility in the scheme should be checked at compile-time in
order to achieve safety and better performance. The set of target nodes of a
particular edge should therefore be restricted to those types of nodes which are
allowed according to syntax and static semantics of the language. Therefore, we
exploit the type-system provided by typed OODBMSs (such as O2) to de�ne the
types of instance variables.

For further scheme simpli�cation, inheritance is used to de�ne common prop-
erties of nodes such as outgoing syntactic or non-syntactic edges or attributes in
a superclass only once. In addition, edges connect not always nodes of the same
type. In case of alternative productions in grammars such as A::=B|C, we have
edges that may connect di�erent types of nodes. We must therefore allow that
all edges which point to nodes of type A can also point to nodes of type B or
C. In the example, we declare the classes which represent node types B and C
to inherit from the class derived from A. Exploiting polymorphism, we can then
assign instance variables of class A also values of class B and C.

Integrity constraints are enforced by encapsulation, i.e. applications are not
allowed to modify instance variables directly, but must use the methods de�ned.

For example, terminal increment classes have a scan method which guarantees
that values assigned to lexem attributes obey the lexical syntax. In case of the
non-syntactic edge, we can declare a method with which a declaring identi�er can
be changed. That method may additionally perform a propagation of the change
along all non-syntactic edges to all objects that represent the identi�ers' usage. In
the multi-user case, this method can additionally test whether the identi�ers are
contained in documents which the user is allowed to modify or not. Depending on
that decision the method performs a change propagation or marks the identi�er
as inconsistent. Hence, we de�ne multi-user support statically already in the
scheme.

The computations necessary for performing these methods, however, require
computational completeness of the scheme de�nition language.

class increment
type tuple(father:increment)
method
 public init(f:increment),
 public get_father:increment,
 public set_father(f:increment)
end;

class parameter_list inherit increment
type tuple(pl:list(parameter))
method
 public init(f:increment),
 add_parameter(par:parameter),
 delete_parameter(par:parameter),
 insert_parameter(par:parameter),
 parse(t:string;pl:parameter_list):boolean,
 unparse:string
end;

class identifier inherit increment
type tuple(value:string)
method
 public scan(t:string):boolean,
 public unparse:string
end;

class parameter inherit increment
type tuple(name:identifier,
 type:identifier)
method
 public expand_name(t:string):boolean,
 public expand_type(t:string):boolean,
 public change_name(t:string):boolean,
 public change_type(t:string):boolean,
 public parse(t:string,p:parameter):boolean,
 public unparse:string
end;

class cbv inherit parameter
method
 public parse(t:string,p:parameter):boolean,
 public unparse:string
end;

class cbv inherit parameter
method
 public parse(t:string,p:parameter):boolean,
 public unparse:string
end;

Fig. 2. Example of a Scheme De�nition

A major advantage of scheme construction for CASE environments is that
normalised grammars [8] of the languages can be used for deriving the scheme
partly automatically. Each terminal and non-terminal symbol of the grammar is
translated into a class. An instance variable of type string (for textual languages)
used to store the value of lexems is attached to each terminal class. Instance
variables for storing syntactic edges are attached to each non-terminal class
according to the production on which the respective non-terminal appears on the
left-hand side. The types of these instance variables are de�ned as the classes
derived from the symbols on the productions' right-hand side. Classes which
represent optional increments are declared to inherit from a prede�ned class
representing the properties of optional increments. Symbols that appear on the
right-hand side of an alternative production are transformed into subclasses of
the class representing the symbol on the left-hand side. Productions like fAg are
transformed into a class with an instance variable that is a list constructed from
the class derived from the repeated symbol.
Methods for scanning lexems are generated from regular expressions and are

provided by each terminal class. Methods for parsing and construction of the
spanning-tree which represents an increment are generated for each non-terminal
class using parser-generation techniques. Methods for unparsing (i.e. to compute
the external representation of data structures) are attached to all classes. Also,
methods for expanding and collapsing increments which are frequently used in
template-based editors can be attached to each non-terminal class.
The algorithm sketched is the basis of our scheme generator. So far, the de�nition
of static semantics, inter-document consistencies and multi-user support has to
be added manually by de�ning the respective methods.

Fig. 2 depicts an O2 schema for parameter lists in PASCAL. Instance vari-
ables and method heads are depicted within solid boxes. Arrows denote inheri-
tance.

3.2 Transaction Management

When users start a CASE tool, they start a session (as part of a long-durating
transaction), that lasts until they quit the tool. Such a session can not be per-
formed within one conventional database transaction (with ACID properties) for
three reasons: Firstly, other users would not be able to use intermediate results
produced within the session. Secondly, concurrency control con
icts would cause
that other users would not be able to access those parts of their documents which
have incoming or outgoing non-syntactic edges to the documents edited in the
session. Finally, there is a likely chance to loose signi�cant human e�ort in case
of hard- or software failures.

Instead, we split a session into a number of short conventional transactions
with ACID properties each of which executes the computations caused by a
short user interaction. For example, changing a name of a type would be such an
interaction which modi�es the lexem attribute and all attributes of objects that
represent identi�ers that use the type. This strategy achieves that �rstly, other
users immediately see the e�ect of an interaction after transaction commit. Sec-
ondly, concurrency control con
icts become fairly rare, because they occur only
if two sessions access the same nodes within two concurrent short transactions.
Finally, there is no danger of loosing signi�cant e�ort.

To implement the requirement of distributed access of users to documents,
we can not execute tools on the machine on which the projects' database is
stored. We would overload the server, since tools opposed to standard appli-
cations perform signi�cant computation in order to create textual or graphical
representations of the ASG, to compute context-sensitive menus and to display
them on the screen. Instead we can exploit the client/server architecture o�ered
by most OODBMSs in order to achieve process distribution.

3.3 Performance Capabilities

OODBMSs can only be used, if they achieve reasonable performance. To inves-
tigate this, we de�ned a software engineering application speci�c benchmark in

order to evaluate the performance of OODBMSs. The Opus-Benchmark [6] ac-
cesses and modi�es an ASG composed of several hundred document subgraphs
with a high number of non-syntactic edges in between them. The benchmark
simulates template based editing operations such as insertion, modi�cation and
deletion of increments as well as analysis operations which require massive traver-
sals through the graph. The application of this benchmark to a few systems in
particular an archetypical OODBMS like GemStone justi�es the statement that
those systems perform reasonably well with respect to software engineering ap-
plications. The description of the GemStone implementation as well as a detailed
discussion of the results is out of the scope of this paper. Instead we only sketch
the main results and refer to [5] for a detailed discussion.

With respect to space, storing ASGs in GemStone for instance is excellent.
It required only about 2.5 times the space than storing a textual representation
in a �le system.

With respect to time, the response-time of tools increases with the number
of transactions executed per time unit. In single-user case (i.e. no concurrent
transactions at all) we observed that template-based editing operations perform
in less than 100 milliseconds2. Unparsing medium-sized documents (up to 500
nodes) takes less than 500 milliseconds. Committing an optimistic transaction
requires about 500 milliseconds. If incremental unparsing is chosen (i.e. only
those parts of the textual document representations are redisplayed which have
changed), interactions can be executed in about half a second and users are not
going to recognise them as delays.
In multi-user case, we observed that response times become unacceptably worse,
if more than four users work intensively (i.e. without signi�cant thinking periods
between successive interactions) on the same project-wide ASG.

4 Necessary Extensions of object-oriented DBMSs

4.1 Transaction Management

A major reason for the bad performance in multi-user mode is that the database
spends unnecessary e�ort on achieving isolation of transactions. This is illus-
trated now.

One major paradigm in software engineering is information hiding. This
means that users designing and implementing a large software system divide
it into small modules with well de�ned small interfaces. As an example consider
class de�nitions in C++ shown to other users while method implementations
are hidden. Conceptually, those parts that represent hidden documents or frag-
ments thereof do not have any non-syntactic edges to nodes of other documents.
Usually, only one user modi�es a document at a time. Therefore concurrency
control con
icts can only be caused by transactions which access nodes along
such non-syntactic edges (in order to check or preserve inter-document consis-
tency).

2 The times have been captured on a Sun SparcStation II with a medium-sized local
SCSI disk.

Hence, in many transactions, there is no need for the DBMS to perform
concurrency control. Tools can tell the DBMS at transaction start whether or
not concurrency control is required. Note, that it is inappropriate to de�ne this
on session level, as both transactions with and without concurrency control may
have to be executed.

Less time is needed if concurrency control is abandoned, because locking of
objects or maintenance of con
ict sets with con
ict detection at commit-time
need not be done. Note, that other transaction properties such as atomicity and
durability must still be supported.

4.2 Version Management

Versioning of documents implies versioning of the corresponding subgraphs. As a
prerequisite to have the database management system maintaining versions and
revisions of subgraphs, the scheme de�nition language must o�er means to de�ne
the notion of subgraphs. This can either be done at scheme generation time or at
run-time. In the �rst case composite instance variables which lead to component
objects are distinguished from non-composite instance variables which refer to
objects [11]. We would then declare each instance variable which implements
a syntactic edge as composite instance variable while non-syntactic edges are
implemented as non-composite instance variables. In the second case, objects
are added to a container that implements the composite object. Note, that in
both cases the requirement that in a composite object, a dependent object is a
component of only one composite object holds, because syntactic edges de�ne a
spanning-tree in the subgraph. We have then managed to implement document
representing subgraphs as composite objects. The �rst solution sketched must be
supported by the scheme de�nition language (as in the ORION system) whereas
the second solution can be added as a general class for composite objects without
modifying the OODBMS.

The operations which must be provided for versioning composite objects [12]
must o�er transparent versioning (i.e. to establish a current version), derivation
of new versions, merging of alternate versions or retrieval of a particular version.

4.3 Scheme Evolution

In order to achieve changes of the syntax of documents, their static semantics and
changes of inter-document consistency constraints during an ongoing software
production process, the database must be able to perform incremental scheme
updates. As an example consider the de�nition of a new reviewing strategy for
module interfaces, which requires that documents are now annotated by the
reviewers' name and have an additional relationship to a new document type
"review report\.

Implementing changes of documents' structure, requires to add, rename or
delete classes, to change the inheritance relation between classes, to add instance
variables, to change their names and types, and to delete instance variables, and
�nally to create, change and delete methods. To cope with the above mentioned

example, we have to add new classes which de�ne the structure of the review
report and to add new instance variables for storing reviewers names and the
relationship to the review report to the class which represents module interfaces.

In order to preserve the integrity of existing documents the objects of the
database must migrate to the new scheme. In the above example, module in-
terface de�nitions must neither be deleted, nor manually be transformed to the
new scheme.

The scheme evolution facilities available in current databases, however, do not
fully cover those requirements. In GemStone for instance, objects are not a�ected
by a scheme update, i.e. an object can only be accessed with the scheme that
was established when the object was created. In O2, objects must be manually
transformed to conform to the new scheme.

5 Related Work

A major piece of work in CASE tool construction during the last ten years fo-
cussed on tool generators (e.g. [15, 1] which are similar to compiler-compilers in
compiler construction. Those approaches do not consider to use a database sys-
tem at all. All information produced during a working session with such a tool is
just dumped into a �le after the end of a session. Those approaches provide no
multi-user support. In addition, inter-document consistency is also a problem,
because the generators only work for a particular language and corresponding
single documents and not for the de�nition and manipulation of document de-
pendencies, i.e. project-wide abstract syntax graphs.

A few research projects in environment construction have built their own
dedicated database systems like GRAS [13]. Those approaches, however, focus on
an adequate persistent graph representation of the abstract syntax graphs. Thus,
they enable a quick manipulation of arbitrary large graphs by smart caching
techniques. They do not adequately support multi-user access. As a �rst step
towards more sophisticated support, GRAS has been recently extended to deal
with version management.

Some of the available commercial CASE tools or environments respectively
use relational databases. They end up with the well-known performance problem
of relational technology when being used for storing highly complex objects as
abstract syntax graphs [14].

More recent research work has focussed on building dedicated software en-
gineering database systems like PCTE/OMS [9] or DAMOKLES [4]. Unfortu-
nately, these systems are only strong in e�ciently supporting coarse-grained
dependencies between documents. They do not adequately support the e�cient
manipulation of such �ne-grained information.

In general, none of the mentioned systems o�ers a fully object-oriented data
de�nition and manipulation language and thus lack the adequate modelling
power for describing these complex structured software engineering data.

6 Implemented Systems and Further Work

We started using object-oriented DBMSs in an experimental evaluation of their
performance. In [3] we describe a simple OMS benchmark we implemented on top
of several structurally object-oriented databases (such as PCTE/OMS, Damok-
les, GRAS and Cadlab/OMS) as well as on GemStone and VBASE. It turned
out that GemStone performed very well with small grained objects. Based on the
results of that benchmark, we implemented the Opus benchmark [6] for those
systems that performed well with �ne-grained objects. According to the results
we obtained, we selected GemStone for our further developments. We then ported
the commercially available OPUS environment which supports design and im-
plementation phase fromGRAS to GemStone [10]. Thus, we were able to change
OPUS from a single-user system to a multi-user system which is called Groupie.
Using this environment, we also experienced the limits concerning transaction
throughput mentioned in section 3.3. Furthermore, we implemented a genera-
tor which automatically derives a set of C++ classes that de�ne the common
properties of increments from a grammar written in a normalised BNF [2]. The
C++ classes are generated in the way sketched in Section 3.1. These classes are
then registered by GemStone's C++ Interface to become a part of the scheme
de�nition.

We have just started implementing a generator which takes conceptual spec-
i�cations of the syntax, static semantics, inter-document consistency and multi-
user support and generates a database scheme. This work is a part of our activity
in the ESPRIT-III project GOODSTEP (General Object-Oriented Database for
SofTware Engineering Processes). In this project, O2 will be enhanced in a way
that it overcomes the de�ciencies identi�ed in section 4.

Acknowledgements

We are grateful to all members of the GoodStep consortium for intensive dis-
cussion about OODBMSs in CASE environments. In particular, we appreci-
ated the discussions with Prof. C. Ghezzi and Prof. A. Fugetta about basic
transaction mechanisms required from an OODBMS. Initial ideas regarding ver-
sioning evolved during discussions with Dr. J. Madec, Prof. J. Welsh and Prof.
C. Delobel. Dr. S. Even, Ms. S. Sachweh, Prof. R. Zicari and Dr. R. de By pro-
vided us with deep insights in the topics of scheme updates and type safety.

We enjoyed working with a number of students working on this subject.
F. Buddrus did a great job when implementing the �rst scheme generator. When
implementing Groupie, M. Kampmann showed what is feasible and discovered
the limits in the use of current OODBMSs.

References

1. P. Borras, D. Cl�ement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and
V. Pascual. CENTAUR: the system. ACM SIGSOFT Software Engineering Notes,
13(5):14{24, 1988. Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, Boston, Mass.

2. F. Buddrus. Generierung von syntaxgesteuerten Werkzeugen auf der Basis eines
objektorientierten Datenbanksystems. Master's thesis, University of Dortmund,
Dept. of Computer Science, June 1992.

3. S. Dewal, W. Emmerich, and K. Lichtinghagen. A Decision Support Method for
the Selection of OMSs. In Proc. of the 2nd Int. Conf. on Systems Integration,

Morristown, N.J., pages 32{40. IEEE Computer Society Press, 1992.
4. K. R. Dittrich, W. Gotthard, and P. C. Lockemann. Damokles { a database sys-

tem for software engineering environments. In R. Conradi, T. M. Didriksen, and
D. H. Wanvik, editors, Proc. of an Int. Workshop on Advanced Programming En-

vironments, volume 244 of Lecture Notes in Computer Science, pages 353{371.
Springer, 1986.

5. W. Emmerich and M. Kampmann. The Merlin OMS Benchmark { De�nition,
Implementations and Results. Technical Report 65, University of Dortmund, Dept.
of Computer Science, Chair for Software Technology, 1992.

6. W. Emmerich and W. Sch�afer. Dedicated Object Management Benchmarks for
Software Engineering Applications. In R. Welland, editor, Proc. of the Software

Engineering Environments '93, Reading, UK, 1993. To appear.
7. W. Emmerich, W. Sch�afer, and J. Welsh. Databases for Software Engineering En-

vironments | The Goal has not yet been attained. In I. Sommerville, editor, Proc.
of the 4th European Software Engineering Conference, Garmisch-Partenkirchen,

Germany, Lecture Notes in Computer Science. Springer, 1993. To appear.
8. G. Engels, C. Lewerentz, M. Nagl, W. Sch�afer, and A. Sch�urr. Building Integrated

Software Development Environments | Part 1: Tool Speci�cation. ACM Trans-

actions on Software Engineering and Methodology, 1(2):135{167, 1992.
9. F. Gallo, R. Minot, and I. Thomas. The object management system of PCTE as a

software engineering database management system. ACM SIGPLAN NOTICES,
22(1):12{15, 1987.

10. M. Kampmann. Werkzeuge zur Unterst�utzung gruppenorientierter Arbeit beim
Softwareentwurf. Master's thesis, University of Dortmund, Dept. of Computer
Science, January 1993.

11. W. Kim, N. Ballou, H.-T. Chou, J. F. Garza, and D. Woelk. Features of the
ORION Object-Oriented Database. In W. Kim and F. H. Lochovsky, editors,
Object-Oriented Concepts, Databases and Applications, pages 251{282. Addison-
Wesley, 1989.

12. P. Kroha. Objects and Databases. McGraw-Hill, 1993. To appear.
13. C. Lewerentz and A. Sch�urr. GRAS, a management system for graph-like doc-

uments. In Proc. of the 3rd Int. Conf. on Data and Knowledge Bases. Morgan
Kaufmann, 1988.

14. M. A. Linton. Implementing Relational Views of Programs. ACM SIGSOFT

Software Engineering Notes, 9(3):132{140, 1984. Proc. of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software Devel-
opment Environments, Pittsburgh, Penn.

15. T. W. Reps and T. Teitelbaum. The Synthesizer Generator { a system for con-

structing language based editors. Springer, 1988.

This article was processed using the LaTEX macro package with LLNCS style

