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D. Alfè1,2, G. D. Price1 and M. J. Gillan2

1Research School of Geological and Geophysical Sciences
Birkbeck and University College London
Gower Street, London WC1E 6BT, UK

2Physics and Astronomy Department, University College London
Gower Street, London WC1E 6BT, UK

Ab initio techniques based on density functional theory in the projector-augmented-wave imple-
mentation are used to calculate the free energy and a range of other thermodynamic properties of
liquid iron at high pressures and temperatures relevant to the Earth’s core. The ab initio free en-
ergy is obtained by using thermodynamic integration to calculate the change of free energy on going
from a simple reference system to the ab initio system, with thermal averages computed by ab initio

molecular dynamics simulation. The reference system consists of the inverse-power pair-potential
model used in previous work. The liquid-state free energy is combined with the free energy of hexag-
onal close packed Fe calculated earlier using identical ab initio techniques to obtain the melting curve
and volume and entropy of melting. Comparisons of the calculated melting properties with experi-
mental measurement and with other recent ab initio predictions are presented. Experiment-theory
comparisons are also presented for the pressures at which the solid and liquid Hugoniot curves cross
the melting line, and the sound speed and Grüneisen parameter along the Hugoniot. Additional
comparisons are made with a commonly used equation of state for high-pressure/high-temperature
Fe based on experimental data.

I. INTRODUCTION

The last few years have seen important progress in calculating the thermodynamic properties of condensed matter
using ab initio techniques based on density-functional theory (DFT) [1–4]. There has been particular attention to
the thermodynamics of crystals, whose harmonic free energy can be obtained from phonon frequencies computed
by standard DFT methods [5–11]. The ab initio treatment of liquid-state thermodynamics is also important, and
thermodynamic integration has been shown to be an effective way of calculating the DFT free energy of liquids [1,3,4].
These developments have made it possible to treat phase equilibria, including melting properties, by completely ab

initio methods. We report here DFT free-energy calculations on high-pressure/high-temperature liquid iron, which
we combine with earlier results on the solid [11] to obtain the complete melting curve and the variation of the volume
and entropy of melting along the curve. We also present results for some key thermodynamic properties of the liquid,
which we compare with data from shock experiments and other sources. The general methods developed here may
be useful for other problems involving phase equilibria under extreme conditions. A brief report of this work was
presented earlier [12].

The properties of high-pressure/high-temperature Fe are of great scientific importance because the Earth’s core
consists mainly of Fe, with a minor fraction of light impurities [13–15]. The melting curve is particularly important,
since it provides one of the very few ways of estimating the temperature at the boundary between the liquid outer core
and the solid inner core [16]. Because of this, strenuous efforts have been made to measure the melting curve [17–23],
but the extreme pressures and temperatures required (p ∼ 330 GPa, T ∼ 6000 K) make the experiments very
demanding. Ab initio calculations therefore have a major role to play, and several independent attempts to obtain
the melting curve using different ab initio strategies have been reported recently [12,25,26]. The rather unsatisfactory
agreement between the predictions makes a full presentation of the technical methods all the more important.

The calculation of melting properties using ab initio free energies was pioneered by Sugino and Car [1] in their work
on the melting of Si at ambient pressure. Related methods were subsequently used by de Wijs et al. [3] to study the
melting of Al. In both cases, thermodynamic integration (see e.g. Ref. [27]) was used to obtain the ab initio free
energy from the free energy of a simple reference system, and we follow the same strategy here. The other recent
calculations [25,26] on the high-pressure melting of Fe employed ab initio methods in a different way. Free energies
were not calculated, but instead an empirical parameterised form of the total-energy function was fitted to DFT total
energies calculated for representative configurations of the solid and liquid. The empirical energy function was then
used in molecular dynamics simulations of very large systems containing coexisting solid and liquid.
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The detailed DFT techniques used in this work are identical to those used in our work on h.c.p. Fe [11]. In
particular, we use the generalised gradient approximation (GGA) for exchange-correlation energy, in the form known
as Perdew-Wang 1991 [28,29], which reproduces very accurately a wide range of experimental properties of solid
iron, as noted in more detail elsewhere [30–33]. We also use the projector-augmented-wave (PAW) implementation
of DFT [33–35], which is an all-electron technique similar to other standard implementations such as full-potential
augmented plane waves (FLAPW) [36], as well as being closely related to the ultrasoft pseudopotential method [37].
We have used the VASP code [38,39], which is exceptionally stable an efficient for metals, with the implementation
of an extrapolation of the charge density which increases the efficiency of molecular dynamics simulations by almost
a factor of two [40].

The calculation of melting properties demands very high precision for the free energies of the two phases, as
emphasised elsewhere [3,11]. The required precision is set by the value of the entropy of melting, and one finds that
in order to calculate the melting temperature to within 100 K the non-cancelling error in the free energies must be
reduced to ∼ 10 meV/atom. The use of identical electronic-structure methods in the two phases is clearly necessary;
but it is certainly not sufficient, since the detailed free-energy techniques differ in the two phases. In the solid, we
relied heavily on harmonic calculations, whereas the liquid-state calculations rely on relating the free energy to that
of a reference liquid. It is therefore essential to reduce the statistical-mechanical errors below the tolerance, and we
aim to demonstrate that this has been achieved.

In the next Section, we summarise the technical methods, and Sec. 3 then reports our results for the DFT free
energy of liquid Fe over a wide range of thermodynamic states. Sec. 4 presents our calculated melting properties,
which we compare with experimental results and the predictions of other ab initio calculations. Our free-energy
results have been used to compute a variety of other thermodynamic quantities for the liquid, and we compare these
in Secs. V and VI with direct shock measurements as well as published extrapolations of other experimental data. In
the final Section, we give further discussion and a summary of our conclusions.

II. TECHNIQUES

The key thermodynamic quantity calculated in this work is the ab initio Helmholtz free energy F , which, with the
statistical mechanics of the nuclei treated in the classical limit, is:

F = −kBT ln

{

1

N !Λ3N

∫

dR1 . . . dRN exp [−βUAI(R1, . . .RN ; Tel)]

}

, (1)

where Ri (i = 1, . . .N) are the positions of the N nuclei, Λ = h/(2πMkBT )1/2 is the thermal wavelength, with M
the nuclear mass and β = 1/kBT . The quantity UAI(R1, . . .RN ; Tel) is the DFT electronic free energy calculated
with the N nuclei fixed at positions R1, . . .RN . This is given, following the Mermin formulation of finite-temperature
DFT [41], by UAI = E − TS, where the DFT energy E is the usual sum of kinetic, electron-nucleus, Hartree
and exchange-correlation terms, and S is the electronic entropy, given by the independent-electron formula: S =
−kBTel

∑

i[fi ln fi + (1 − fi) ln(1 − fi)], with fi the thermal (Fermi-Dirac) occupation number of orbital i. In exact
DFT, the exchange correlation (free) energy Exc has an explicit dependence on Tel but we assume here that Eexc has
its zero-temperature form. It was shown in Ref. [11] that quantum corrections to the classical approximation to the
free energy are negligible in the high-temperature solid, and the same will be true a fortiori in the liquid.

Our earlier work [33] should be consulted for technical details of the PAW implementation of DFT that we use. We
note here that under Earth’s core conditions it is not accurate enough to neglect the response of the 3p electrons, and
in principle these should be explicitly included in the valence set along with the 3d and the 4s electrons. However, as
shown earlier [32,33], the computational effort of including 3p electrons explicitly can be avoided with almost no loss
of precision by mimicking the effect of the 3p electrons by an effective pair potential. The procedure for constructing
this pair potential was described in Ref. [33]. The pair potential used here is exactly the same as we used in our
thermodynamic calculations on the h.c.p. solid, so that a good cancellation of any residual errors is expected. To
avoid any possible doubt on this score, we have also done spot checks on the effect of including both 3s and 3p
electrons explicitly in the valence set, as reported in Sec. IV. The outermost core radius in our PAW calculations is
1.16 Å. At Earth’s core pressures, the atoms in both liquid and solid come closer than the diameter of the ionic cores,
which therefore overlap. We will show in Sec. IV that this too has only a very small effect on the free energies.

The present calculations, like those reported earlier on the h.c.p. solid, make use of ‘thermodynamic integration’ [27],
which is a completely general technique for determining the difference of free energies F1 − F0 of two systems whose
total-energy functions are U1 and U0. The basic idea is that F1−F0 represents the reversible work done on continuously
and isothermally switching the energy function from U0 to U1. To do this switching, a continuously variable energy
function Uλ is defined as:
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Uλ = (1 − λ)U0 + λU1 , (2)

so that the energy goes from U0 to U1 as λ goes from 0 to 1. In classical statistical mechanics, the work done in an
infinitesimal change dλ is:

dF = 〈dUλ/dλ〉λdλ = 〈U1 − U0〉λdλ , (3)

where 〈 · 〉λ represents the thermal average evaluated for the system governed by Uλ. It follows that:

F1 − F0 =

∫ 1

0

dλ 〈U1 − U0〉λ . (4)

We use this technique to calculate the ab initio free energy FAI of liquid Fe by identifying U1 as the ab initio total
energy function UAI(R1, . . .RN ) and U0 as the total energy Uref(R1, . . .RN ) of a simple model reference system,
whose free energy Fref can be calculated. Then FAI is given by:

FAI = Fref +

∫ 1

0

dλ 〈UAI − Uref〉λ . (5)

In practice, we calculate 〈UAI − Uref〉λ for a suitable set of λ values, and perform the integration numerically. The
average 〈UAI − Uref〉λ is evaluated at each λ using constant-temperature ab initio molecular dynamics, with the time
evolution generated by the total-energy function Uλ = (1 − λ)Uref + λUAI.

As explained in more detail elsewhere [11], the computational effort needed to perform the thermodynamic integra-
tion is greatly reduced if the fluctuations of the energy difference ∆U ≡ UAI − Uref are small, for two reasons. First,
the amount of sampling needed to calculated 〈∆U〉λ to a given precision is reduced; second, the variation of 〈∆U〉λ
as λ goes from 0 to 1 is reduced. In fact, if the fluctuations δ∆U ≡ ∆U − 〈∆U〉AI are small enough, one can neglect
this variation and approximate FAI ≃ Fref + 〈∆U〉AI, with the average taken in the ab-initio ensemble. If this is not
good enough, the next approximation is readily shown to be:

FAI ≃ Fref + 〈∆U〉AI +
1

2kBT
〈(δ∆U)2〉AI . (6)

Our task is therefore to search for a model Uref for which the fluctuations UAI − Uref are as small as possible.
The problem of mimicking the fluctuations of ab initio energy UAI in high-p/high-T liquid Fe using a reference

system was studied in detail in a recent paper [33]. We showed there that a Uref consisting of a sum of pair potentials:

Uref = Uth + Upair , (7)

in which

Upair =
1

2

∑

i6=j

φ(| Ri − Rj |) , (8)

can be arranged to mimic the fluctuations of UAI very precisely, if we choose φ(r) to be a repulsive inverse-power
potential φ(r) = B/rα, with suitable values of B and α. In this expression for Uref , we have included a term Uth which
depends on thermodynamic state, but does not depend on the positions Ri. We define this Uth so as to minimize the
mean square value of ∆U , which requires the following condition:

〈∆U〉AI ≡ 〈UAI − Upair − Uth〉AI = 0 . (9)

It might at first seem surprising that such a simple Uref can reproduce UAI accurately, since it does not explicitly
represent the metallic bonding due to partial filling of the 3d-band, which is absorbed into the term Uth. However,
the only requirement on Uref is that the fluctuations δ∆U should be small for the given liquid state, and we shall
demonstrate below that this is indeed achieved. We comment further on this question in Sec. VII.

The free energy of the reference system can be expressed as:

Fref = Uth + Fpair , (10)

where Fpair is the free energy associated with Upair. An important advantage of our chosen form of Uref is that Fpair

depends non-trivially only on a single thermodynamic variable, rather than depending separately on temperature
T and atomic number density n. Let F x

pair ≡ Fpair − Fpg be the excess free energy of the reference system, i.e.
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the difference between Fpair and the free energy Fpg of the perfect gas at the given T and n. Then the quantity
fx
pair ≡ F x

pair/NkBT depends only on the dimensionless thermodynamic parameter ζ defined as:

ζ = Bnα/3/kBT . (11)

This simplifies the representation of Fref , since we can write:

Fref = Uth + Fpg + NkBTfx
pair(ζ) . (12)

We also expect the representation of Uth to be simple. Note first that since Uth is defined so that 〈∆U〉AI = 0, then
from Eqn (9) we must have:

Uth = 〈UAI − Upair〉AI . (13)

Now if the fluctuations of UAI − Upair are indeed small, then the value of 〈UAI − Upair〉AI should be very close to the
value of UAI − Upair evaluated at zero temperature with all atoms on the sites of the perfect h.c.p. lattice having the
same density as the liquid. Denoting by U0

AI and U0
pair the values of the zero-temperature ab initio and pair-potential

energies for the perfect lattice, and defining U0
th ≡ U0

AI − U0
pair, we can then write:

Uth = U0
th + δUth , (14)

where δUth will be a small quantity depending weakly on volume and temperature. The accurate computation and
representation of U0

AI were discussed in Ref. [11], and the accurate computation of U0
pair is clearly trivial, so that the

treatment of U0
th is straightforward. The small difference δUth ≡ 〈UAI − Upair〉AI − U0

th is evaluated from the AIMD
simulations described in Sec. III C.

We conclude this Section by summarising our route to the calculation of the ab initio free energy FAI of the liquid.
We employ Eqn (6), ignoring the higher-order fluctuation terms. Recalling that 〈∆U〉AI = 0, and combining Eqns (12)
and (14), we have:

FAI ≃ Fref + 〈(δ∆U)2〉AI/2kBT

= U0
th + δUth + Fpg + NkBTfx

pair(ζ) + 〈(δ∆U)2〉AI/2kBT . (15)

We now turn to the calculation of the reduced free energy fx
pair(ζ) of the reference system and the small quantities

δUth and 〈(δ∆U)2〉AI. We shall also give evidence that with our chosen reference model the higher-order fluctuation
terms omitted from Eqn (15) are indeed negligible.

III. FREE ENERGY OF THE LIQUID

A. Inverse-power reference system

The PAW calculations used to validate the inverse-power reference system are those reported in Ref. [33]. They
consist of a set of AIMD simulations performed at 16 thermodynamic states covering the temperature range 3000 −
8000 K and the pressure range 60− 390 GPa. All the simulations were performed on a 67-atom system using Γ-point
sampling, with a time step of 1 fs. We stress that such a small system with such limited sampling cannot be expected
to yield very precise results for thermodynamic quantities, and our only purpose here is to demonstrate the adequacy
of the reference system. At each thermodynamic state, the system was equilibrated using the reference system itself,
and AIMD data were then accumulated for a time span of 5 ps.

We showed in Ref. [33] that the inverse-power model, with parameters α = 5.86 and B chosen so that for r = 2 Å the
potential φ(r) is 1.95 eV, reproduces very closely the ab initio liquid for the state T = 4300 K, ρ = 10700 kg m−3. We
have studied the strength of the δ∆U fluctuations for all 16 thermodynamic states, using exactly the same reference
model for all states, and we report in Table I the normalized strength of these fluctuations, which we characterize

by the quantity σ ≡
[

〈(δ∆U)2〉AI/N
]1/2

. Two points should be noted: First, σ is small, since its typical value of
100 meV is markedly smaller than the typical thermal energies kBT (258 meV at the lowest temperature of 3000 K).
Once σ is as small as this, little is gained by further improvement of the reference system. Second, σ does not vary
strongly with thermodynamic state, so that the reference system specified by the values of α and B given above can
be used for all the thermodynamic states of interest here.
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B. Free energy of reference system

In order to cover the range of thermodynamic states of liquid Fe that interests us, we need accurate values of the
excess free energy of the reference system for ζ values going from 2.5 to 5.0. There have been many studies of the
thermodynamic properties of inverse-power systems, including one on the free energy of the liquid 1/r6 system [42],
but since these do not provide what we need we have made our own calculations of fx

ref(ζ) for the 1/r5.86 case. Our
strategy is to start with standard literature values for the excess free energy of the Lennard-Jones (LJ) liquid (we use
the results reported in Ref. [43]), and to use thermodynamic integration to go from the LJ system to the inverse-power
system, so that U0 and U1 in Eqns (2–3) represent the LJ and inverse-power total energies respectively. In doing
this, our target was to keep technical errors small enough so that the final free energy Fref is correct to better than
5 meV/atom.

We note the following technical points. The calculations were done at a standard volume per atom, usually taken to
be 8.67 Å3, with the temperature chosen to give the required value of ζ. Ewald techniques were used to avoid cutting
off the inverse-power potential at any distance – we regarded this as essential, since a cut-off would compromise the
scaling properties of the reference system. The classical molecular dynamics simulations used to compute 〈U1 −U0〉λ
were done using the constant-temperature technique, with each atom taken to have a mass of 55.86 a.u., and the
time-step set equal to 1 fs. For each thermodynamic state, we are free to choose any convenient values for the LJ
parameters ǫ and σ. Our criterion for choosing these is that the fluctuations of U1 − U0 should be kept reasonably
small, but with the proviso that the initial LJ system must be in the liquid state. In many cases, we have checked
for consistency by using different ǫ and σ values. Since we require fx

ref(ζ) in the thermodynamic limit of infinite
system size, we have made careful checks on size effects. Tests on systems containing up to 499 atoms show that size
errors in fx

ref(ζ) are less than 1 meV/atom, and this is small enough to ensure that Fref has a precision of better than
5 meV. Most of this error arises from the error in the literature values of the LJ free energy. As a further check on
our techniques, we have done calculations on the 1/r6 system at selected thermodynamic states, and compared with
the free energy results of Laird and Haymet [42].

We have checked our procedures by repeating most of the calculations using the perfect gas as reference system, so
as to be free from possible errors in the free energy of the LJ system. For these calculations we used a different form
for Uλ, namely

Uλ = (1 − λ2)U0 + λ2U1 , (16)

where U1 is the total energy of the inverse power system and U0 = 0 is that of the perfect gas. Using this functional
form Eq. (4) becomes

F1 − F0 =

∫ 1

0

dλ 2λ〈U1 − U0〉λ . (17)

The advantage of using this different functional form for Uλ is that the value of the integrand does not need to be
computed for λ = 0, where the dynamics of the system is that of the perfect gas. In this case, since there are no
forces in the system, there is nothing to prevent the atoms from overlapping, and the potential energy U1 diverges.
Not computing the integrand at λ = 0 only partially solves this problem, since for small values of λ the forces on the
atoms are small, the atoms can come close together, and the potential energy U1 fluctuates violently. However, we
found that by performing long enough simulations, typically 1 ns, we could calculate the integral with an accuracy
of ca. 1 meV/atom. These calculations with the perfect-gas reference system give excess free energies of the inverse
power system that are systematically 5 meV/atom lower than those obtained using the LJ reference system. Our
belief is that the discrepancy arises from a small systematic error in the free energies given in Ref. [43].

After all these tests, calculations of fx
ref(ζ) were done at a regularly spaced set of ζ values at intervals of 0.25, and

we found that the results could be fitted to the required precision by the following 3rd-degree polynomial:

fx
ref(ζ) =

3
∑

i=0

ciζ
i . (18)

The values of the coefficients are: c0 = 1.981, c1 = 5.097, c2 = 0.1626, c3 = 0.009733.

C. From reference to full ab initio

To achieve our target precision of 10 meV/atom in the ab initio free energy FAI of the liquid, two sources of error
must be studied: system size effects and electronic k-point sampling. An important point to note is that these errors
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only affect the small terms δUth and 〈(δ∆U)2〉AI/2kBT in Eqn (15), since fx
ref(ζ) refers already to the infinite system,

and k-point errors in U0
th are negligible. We also study the validity of neglecting the higher-order fluctuation terms

in Eqn (15).
We focus first on the quantity δUth in Eqn (15). To study size errors in this quantity, we calculated the thermal

average 〈UAI−Upair〉AI for a range of system sizes. These test calculations were done on systems of up to 241 atoms at

V = 8.67 Å3/atom and T = 4300 K using Γ-point sampling. The preparation and equilibration of these systems were
done using the inverse-power reference system. Since the latter so closely mimics the ab initio system for the 67-atom
cell, it should provide a well equilibrated starting point for ab initio simulation of larger systems. The duration of all
the ab initio simulations after equilibration was 1 ps. The results of these tests are summarised in Table II, where
we report the value of δUth per atom, i.e. the quantity δUth/N ≡ [〈UAI − Upair〉AI − U0

th]/N (see Sec. II). Since
U0

th/N is independent of the system size, the variation of the reported quantity arises solely from size dependence of
〈UAI −Upair〉AI/N . We see that with ∼ 125 atoms δUth/N is converged to better than 5 meV/atom, and that already
with 67 atoms the size error is of the order of 10 meV/atom.

We tested for k-point errors in δUth by performing calculations using both four and 32 Monkhorst-Pack [44] sampling
points. Since explicit AIMD calculations with so many k-points would be extremely expensive, we use the following
procedure. From an existing Γ-point simulation we take a set of typically 10 atomic configurations separated by 0.1 ps.
The ab initio total energies of these configurations calculated with the different k-point samplings are then compared.
For sampling with four k-points, we did calculations on systems of up to 241 atoms, but the heavier calculations
with 32 k-points were done only on the 67-atom system. The results of these tests for the thermodynamic state
V = 8.67 Å3/atom and T = 4300 K are also reported in table II, where we see that for the smallest system containing
67 atoms the difference with respect to a calculation with the Γ-point only is ∼ 9 meV/atom, but as the number of
atoms in the cell is increased above ∼ 125 the difference becomes negligible. The result for the calculation with 32
k-points is identical to the one with four k-points and is not reported in the table. We also found that fluctuations of
the energy differences between the calculations done with the Γ-point only and those with 4 k-points are extremely
small.

Similar, but less extensive, tests of system-size and k-point errors have also been performed at the state V =
6.97 Å3/atom, T = 6000 K, and we find that the variation of these errors with system size is numerically almost
the same as before. The indication is therefore that δUth can be obtained to a precision of ca. 5 meV/atom from
simulations on systems of 125 atoms or more. Unfortunately, it is not practicable yet to do all our AIMD simulations
with this system size, and in practice we have computed δUth from Γ-point simulations on the 67-atom system, and
corrected the results by adding 10 meV/atom, which from the present evidence appears to the almost constant error
in the Γ-point 67-atom results.

As expected, the numerical values of δUth are small, and depend weakly on temperature and pressure across the
range of thermodynamic states of interest. We find that they can be represented to within ∼ 3 meV/atom by a sum
of third-degree polynomials in V and T :

δUth/N =

3
∑

i=0

(

aiV
i + biT

i
)

, (19)

with the following fitting parameters (units of eV, Å and K): a0 = 0.649; a1 = −4.33 × 10−2; a2 = −4.19 × 10−3;
a3 = 6.48 × 10−5; b0 = 0.296; b1 = −6.51× 10−5; b2 = 7.46 × 10−9; b3 = −2.07 × 10−13.

To test the validity of neglecting the higher-order fluctuation terms omitted from Eqn (15), we have performed
full thermodynamic integration for four different thermodynamic states, the first three with V = 8.67 Å3/atom and
T = 4300, 6000 and 8000 K and the fourth with V = 6.97 Å3/atom and T = 8000 K, using the five equally spaced
λ values 0, 0.25, 0.5, 0.75 and 1.0. These calculations were done using Γ-point sampling on the system of 67 atoms.
We have seen that this system size is not big enough to yield the required precision for FAI, but it should certainly
be enough to test the adequacy of the second-order formula. In Table III we report a comparison between the results
obtained from the integral using the five λ values and those from the second order formula, and we see that they
are practically indistinguishable. The Table also indicates that the term 〈(δ∆U)2〉AI /2kBT is rather insensitive to
thermodynamic state and can be approximated to the required precision by setting it equal to 10 meV/atom. We
have used this constant value in evaluating the ab initio free energy by Eqn (15).

IV. MELTING PROPERTIES

From our parameterized formulas for the ab initio Helmholtz free energies F (V, T ) of the h.c.p. solid (Ref. [11])
and the liquid (present work), we immediately obtain the Gibbs free energies G(p, T ) ≡ F (V, T ) + pV , and for each
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pressure the melting temperature Tm is determined as the T at which the latter free energies are equal for the solid
and liquid. The resulting melting curve is reported in Fig. 1 for pressures from 50 to 350 GPa. On the same plot,
we show the ab initio melting curve reported very recently by Laio et al. [25]. We also compare with experimental
melting curves or points obtained by shock experiments or by static-compression using the diamond anvil cell (DAC).
DAC determinations of the melting curve of Fe and other transition metals have been performed by several research
groups [17–20]. The early results of Williams et al. [21] lie considerably above those of other groups, and are now
generally discounted. This still leaves a range of ca. 400 K in the experimental Tm at 100 GPa. Even allowing for
this uncertainty, we acknowledge that our melting curve lies appreciably above the surviving DAC curves, with our
Tm being above that of Shen et al. [19] by ca. 400 K at 100 GPa. We return to this discrepancy below.

Shock measurements should in principle be able to fix a point on the high-pressure melting curve at the thermody-
namic state where melting first occurs on the Hugoniot. However, temperature is notoriously difficult to measure in
shock experiments. The temperatures obtained by Yoo et al. [22] using pyrometric techniques are generally regarded
as being too high by at least 1000 K. This has been confirmed by our recent ab initio calculations [11] of Hugoniot
temperature for h.c.p. Fe. We therefore disregard their data point on the melting curve. In the shock measurements
of Brown and McQueen [23] and Nguyen and Holmes [24], no attempt was made to measure temperature, which was
estimated using models for the specific heat and Grüneisen parameter; the approximate validity of these models is
supported by our ab initio calculations [11] on h.c.p. Fe. However, the identification of the Hugoniot melting point
has been hampered by the possible existence of a solid-solid transition. In their measurements of sound velocity on
the Hugoniot, Brown and McQueen [23] believed that they had observed a solid-solid transition as well as a separate
melting transition. The new shock results of Nguyen and Holmes [24] using improved techniques indicate that there
is no solid-solid transition, and we place greater weight on their Hugoniot melting point. We plot in Fig. 1 the point
reported by Brown and McQueen [23] as lying on the melting curve, though for the reasons just explained, we are
cautious about accepting it. We also plot the point obtained from the measurements of Nguyen and Holmes [24]. The
pressure of 221 GPa is taken directly from their measurement of the onset of melting, while the temperature at this
point is taken from our calculation of the Hugoniot temperature of the h.c.p. solid at this pressure, as reported in
Ref. [11] (see also following section).

We now consider possible sources of error in our DFT calculations. First, we recall that even with the best available
GGA for exchange-correlation energy the low-temperature p(V ) relation for h.c.p. Fe is not in perfect agreement with
experiment. This has been shown by a number of independent calculations using all-electron techniques [30,31] as well
as pseudopotential [32] and PAW [33,35] techniques, all of which agree closely with each other. Roughly speaking, the
pressure is underpredicted by ca. 10 GPa at near-ambient pressures and by ca. 8 GPa in the region of 300 GPa. The
pressure error can be thought of as arising from an error in the Helmholtz free energy, so that the true free energy
Ftrue can be written as Ftrue = FGGA + δF , where FGGA is our calculated free energy and δF is the correction. If we
take the pressure error δp ≡ −(∂δF/∂V )T to be linear in the volume, then δF can be represented as δF = b1V +b2V

2,
where b1 and b2 are adjustable parameters determined by least-squares fitting to the experimental pressure. If we
now neglect the temperature dependence of δF , and simply add δF (V ) to the calculated free energies of solid and
liquid, this gives a way of gauging our likely errors. We find that this free-energy correction leads to a lowering of the
melting curve by ca. 350 K in the region of 50 GPa and by ca. 70 K in the region of 300 GPa.

The second error source we consider is the PAW implementation, and specifically our choice of the division into
core and valence states, and the PAW core radii. As mentioned earlier, at Earth’s core pressures the 3p electrons,
and to a lesser extent the 3s electrons, must be treated as valence states. Moreover, the choice of the maximum
PAW core radius may also affect the calculations, because under such high pressures and temperatures the atoms
come so close that the cores overlap. These errors may affect the melting curve if they fail to cancel between the
liquid and the solid. To check both these possible problems, we have performed trial PAW calculations with the much
smaller core radius of 0.85 Å and with both 3s and 3p states in the valence set; with this choice of core radius the
overlap of the cores in the liquid and the high temperature solid is almost negligible. We have then used Eq. (6)
to calculate the free energy difference between the systems described with the two PAW approximations, repeating
the calculations for both the liquid and the solid. To do that we have drawn two sets of 30 statistically independent
configurations from two long simulations performed with the original PAW approximation on the solid and the liquid
at V = 7.18 Å3/atom and T = 6700 K. As expected, we find a significant shift in the total electronic (free) energies.
This shift is almost constant, thus validating the use of Eq. (6), but the important result is that it is almost the same
for the liquid and the solid, the two numbers being F l

hard −F l
soft = −0.210 eV/atom F s

hard −F s
soft = −0.204 eV/atom.

Here, F l
hard is the free energy calculated with small core and 3s and 3p states in valence, and F l

soft the free energy
with large core and the 3s and 3p frozen in the core, plus the effective pair-potential; the superscripts s and l indicate
the solid and the liquid respectively. The effect is small, and stabilises the liquid by 6 meV/atom, which has the effect
of shifting the melting curve down by ∼ 60 K.

As we show in Fig. 1, if we include both these corrections they bring our low-temperature melting curve into
quite respectable agreement with the DAC measurements of Shen et al., while leaving the agreement with the shock
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points of Nguyen and Holmes essentially unaffected. There is still a considerable discrepancy with the DAC curve of
Boehler [17] and the ab initio results of Laio et al. [25]

We now turn to the changes of volume and entropy on melting. Our calculated volume of melting (volume of liquid
minus volume of coexisting h.c.p. solid at each pressure expressed as a percentage of the volume of the solid at that
point) is plotted as a function of pressure in Fig. 2. We also show the melting volume predicted by the ab initio
calculations of Laio et al. [25] at the pressure 330 GPa, and it is encouraging to note that their value of 1.6 % is quite
close to ours. The free-energy correction discussed above makes only a small difference to the calculated volume of
melting: at 50 GPa the correction makes the volume of melting increase from 5.0 to 5.8 %, while at 300 GPa it is
affected by less than 0.1 %. The most striking feature of our results is the steep decrease of ∆V by a factor of about
three in the range from 50 to 200 GPa, and its approximate constancy after that.

Our predicted entropy of melting ∆Sm (entropy per atom of liquid minus entropy per atom of coexisting solid) is
plotted as a function of pressure in Fig. 3, where we also show the ab initio value of Laio et al. [25] at 330 GPa. The
agreement of our value (1.05 kB) with theirs (0.86 kB) is reasonably close. The entropy of melting also decreases with
increasing p, but more moderately than ∆V/V , the decrease between 50 and 200 GPa being only 30 %. We note
the relevance to the slope of the melting curve, given by the Clausius-Clapeyron relation: dTm/dp = ∆V/∆S. (This
relation is satisfied identically by our results, since they are all derived from free energies.) The strong decrease of
dTm/dp between 50 and 200 GPa and its approximate constancy thereafter is mainly due to the variation of ∆V/V .

V. HUGONIOT PROPERTIES

Since shock experiments are the only direct way of obtaining thermodynamic information for high-p/high-T liquid
Fe, it is important to test our predictions against the available shock data. The data that emerge most directly from
shock experiments consist of a relation between the pressure pH and the molar volume VH on the so-called Hugoniot
line, which is the set of thermodynamic states given by the Rankine-Hugoniot formula [45]:

1

2
pH(V0 − VH) = EH − E0 , (20)

where EH is the molar internal energy behind the shock front, and E0 and V0 are the molar internal energy and
volume in the zero-pressure state ahead of the front. The pressure-volume and temperature-pressure relations on the
Hugoniot are straightforwardly obtained from our ab initio calculations: for a given VH, one seeks the temperature
TH at which the Rankine-Hugoniot relation is satisfied, and from this one obtains pH (and, if required, EH). In
experiments on Fe, V0 and E0 refer to the zero-pressure b.c.c. crystal. We obtain E0 directly from GGA calculations
that we performed on the ferromagnetic b.c.c. crystal, as described earlier [11], but we use the experimental value
of V0. The slight shift produced by using instead the theoretical value of V0 was noted earlier [11]. Melting in shock
experiments is usually detected by monitoring the sound velocity [22,23], which shows marked discontinuities of slope
along the Hugoniot. In a simple melting transition, there are discontinuities at two characteristic pressures ps and
pl, which are the points where the solid and liquid Hugoniots meet the melting curve. Below ps, the material behind
the shock front is entirely solid, while above pl it is entirely liquid; between ps and pl, the material is a two-phase
mixture.

We present in Fig. 4 our calculated TH(pH) Hugoniot curve for the liquid, together with our curve for the solid
reported earlier [11] and our ab initio melting curve. Without the free energy correction δF of Sec. IV, we find
ps = 229 and pl = 285 GPa. The very recent shock data of Nguyen and Holmes [24] give values of 221 and 260 GPa
respectively, so that our ps value is very close to theirs, and our pl value is also not very different.

If the correction δF is included in calculating the melting curve, then for consistency it must be included also in
the solid and liquid Hugoniots. It is straightforward to obtain the corrected pH and EH as a function of VH for the
two phases. But in the Rankine-Hugoniot equation we also need E0 for the b.c.c. crystal, and this will be subject to
a correction similar to δF , but of unknown size. To supply the missing information, we add to the ab initio energy
of b.c.c. Fe a correction term δFbcc, which we represent as c1 + c2V . The constants c1 and c2 are fixed by requiring
that the equilibrium volume of the b.c.c. crystal and the low-temperature transition pressure between the b.c.c. and
h.c.p. phases be correctly given. The resulting ‘corrected’ TH(pH) Hugoniots of the solid and liquid are reported in
Fig. 4. The shifts in the curves are of about the same size as those discussed earlier [11] for the solid when we replaced
the calculated b.c.c. volume V0 in the Rankine-Hugoniot equation by its experimental value, and are an indication
of the inherent uncertainty due to DFT errors. The corrected values ps = 243, pl = 298 GPa are now in somewhat
poorer agreement with the experimental values. This is a rather sensitive test of DFT errors, since the shallow angle
at which the Hugoniot curves cross the melting line amplifies the effect of the errors.

We now turn to our liquid-state results for pH(VH) compared with the shock data of Brown and McQueen [23]
(Fig. 5), including for completeness our results for the solid reported earlier [11]. We report results both with and

8



without the free energy correction δF , using the experimental b.c.c. volume V0 in the Rankine-Hugoniot equation in
both cases. We mark on the Figure the volumes above which the shocked material is entirely solid and below which
it is entirely liquid. Above the upper volume, we report our calculated h.c.p. Hugoniots, and below the lower volume
the liquid Hugoniots. In the interval between them, we linearly mix the two. We note that the δF correction makes
little difference to the liquid Hugoniot, which lies above the experimental values by ca. 3 %.

Shock experiments on Fe have given values for the adiabatic sound speed vS = (KS/ρ)1/2 of the liquid, with KS the
adiabatic bulk modulus and ρ the mass density. Fig. 6 shows our ab initio values for vS of the liquid as a function of
pressure on the Hugoniot, both with and without the δF correction, compared with the shock data of Refs. [23]. Up
to the pressure of ∼ 260 GPa, the experimental points refer to the solid or the two-phase region, so it is in the liquid
region above this pressure that the comparison is significant. In that region, our agreement with the experimental
data is close, the discrepancies being ∼ 2 and < 1 % for our uncorrected and corrected vS values respectively.

We conclude this Section by reporting results for the Grüneisen parameter γ on the liquid Hugoniot. This parameter
is defined as γ ≡ V (∂p/∂E)V = αKT Vm/Cv, with α the volume expansion coefficient, KT the isothermal bulk
modulus, Cv the constant-volume molar specific heat, and Vm the molar volume. Assumptions or estimates of its
values have played a key role in constructing parameterised equations of state for Fe. Our calculated γ on the liquid
Hugoniot is almost exactly constant, varying in the narrow range from 1.51 to 1.52 as p goes from 280 to 340 GPa.

VI. THERMODYNAMICS OF THE LIQUID

Although directly measured data on high-p/high-T liquid Fe all come from shock experiments, attempts have been
made to combine these data with measurements at lower p and T using parameterised models for quantities such as
KS , γ and Cv to estimate thermodynamic properties away from the Hugoniot curve [46]. These attempts have been
crucial in trying to understand how the properties of the Earth’s liquid core deviate from those of pure liquid Fe. We
present here a brief comparison with these experimentally based extrapolations for the two quantities that determine
the seismic properties of the outer core: the density ρ and the adiabatic bulk modulus KS .

Since the outer core is in a state of turbulent convection, the variation of its thermodynamic properties with depth
is expected to follow an adiabat. We therefore present our comparisons on adiabats specified by their temperature
TICB at p = 330 GPa, which is the pressure at the inner-core/outer-core boundary (ICB) [47]. We choose the two
temperatures TICB = 5000 and 7000 K, because the results of Sec. IV indicate that the melting temperature at the
ICB pressure lies between these limits. Our comparisons (Tables IV and V) show that the uncorrected ab initio
density is very close (within a few tenths of a percent) to the extrapolated experimental data at p = 150 GPa, and
in slightly poorer agreement (within ∼ 1.5 %) at p = 350 GPa. As expected, the free-energy correction lowers the
predicted density, resulting in larger discrepancies with experiment of 1.5 % and 2.5 % at p = 150 and 350 GPa
respectively. Our uncorrected ab initio KS values also agree more closely with the experimental data, being typically
within 2 %, while the corrected predictions disagree with the data by up to 8 %. However, given the closer agreement
between ab initio and experiment on the Hugoniot (Sec. V), it is possible that some of the disagreements may be due
to deficiencies in the experimental extrapolation.

VII. DISCUSSION AND CONCLUSIONS

In assessing the reliability of our results, we consider three sources of error: first, the uncontrolled DFT errors
inherent in the GGA for exchange and correlation energy; second, the controllable errors in the detailed electronic-
structure implementation of GGA, and specifically in the use of PAW to calculate the total ab initio (free) energy
UAI(R1, . . .RN ; Tel) for each set of atomic positions R1, . . .RN ; third, the statistical-mechanical errors, including
system-size effects. We have endeavoured to reduce errors of the third kind below 10 meV/atom for the liquid. In
our earlier free-energy calculations on the h.c.p. solid [11], the corresponding error was estimated as ∼ 15 meV/atom.
Taking these errors together, and recalling that the resulting error in melting temperature Tm is roughly the combined
free-energy error divided by Boltzmann’s constant, we find an expected Tm error of ca. ±300 K. We have also attempted
to control errors of the second kind by changing the division between core and valence states and by reducing the core
radius. These tests suggest that the associated error in Tm is probably no more than ca. ±100 K. The inherent DFT
errors are more difficult to quantify, but we have demonstrated that the known discrepancies in the low-temperature
p(V ) relation for h.c.p. Fe almost certainly lead to an overestimate of Tm by ca. 350 K at 50 GPa and ca. 70 K at
300 GPa, and we have corrected for this. We have also seen the significant shifts in the Hugoniot curves resulting
from DFT errors. We believe the remaining uncertainty in Tm from this source could be as much as 300 K.
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Our attempts to correct for DFT errors give a melting curve which is in quite good agreement with the recent
measurements of Shen et al. [19], and with estimates based on shock data [23]; the methods used to estimate tem-
perature in the shock experiments are also supported by our ab initio results for Grüneisen parameter γ and specific
heat Cv [11]. Our melting curve is still above the experimental data of Boehler [17] by ∼ 800 K in the pressure region
up to ca. 100 GPa. We cannot rule out the possibility that some of this discrepancy is due to our DFT errors. Our
substantial disagreement with the ab initio melting curve of Laio et al. [25] must be due to other reasons. We are
currently working with authors of Ref. [25] to discover the cause of the disagreement, and we hope to report on this
in the future.

A key part of our strategy for eliminating system-size errors in the calculated free energies is the use of an empirical
reference model which accurately reproduces the fluctuations of total energy. At first sight, the use of a reference
model based on a purely repulsive pair potential might seem surprising, since it does not explicitly include a description
of metallic bonding. An empirical reference model (there called an ‘optimised potential model’) is also used in the
work of Laio et al. [25], though they use it in a different way from us. Their optimised potential model is a form of
the ‘embedded atom model’ (EAM) [48–50], which explicitly includes metallic bonding. As described in our earlier
work [11], we have investigated the consequences of using the EAM as a reference model. We showed there that for
present purposes fluctuations of the bonding energy are negligible, and that under these circumstances the EAM is
almost exactly equivalent to a model based on repulsive pair potentials. We also showed that there is no numerical
advantage in using the EAM as reference model for the calculation of free energies. The use of different reference
models per se therefore appears to have nothing to do with the current disagreement between ab initio melting curves.

The agreement of our ab initio results with the limited data from shock experiments on the liquid is reasonably
satisfactory. In particular, our predicted Hugoniot relation pH(VH) is almost as good as we found earlier for the solid.
The adiabatic sound velocity of the liquid is also predicted to within 1− 3 %, the discrepancy depending on whether
or not we attempt to correct for DFT errors. The good agreement for the Grüneisen parameter γ is also encouraging.
Our results for the h.c.p. solid [11] indicated that γ varies little with pressure or temperature for 100 < p < 300 GPa
and 4000 < T < 6000 K, and has a value of ca. 1.5. Our present results indicate that the same is true of the liquid.

The ab initio free-energy techniques outlined here could clearly be adapted to a wide range of other problems, so
that melting curves could be calculated for many materials, including those of geological interest, like silicates. We
have recently completed ab initio calculations of the melting curve of aluminium up to pressures of 150 GPa, which
are in excellent agreement with static-compression and shock data, as will be reported elsewhere [51].

In conclusion, we have shown how ab initio free-energy calculations based on thermodynamic integration can be
used to obtain the melting curve and the volume and entropy of melting of a material over a wide pressure range.
We have emphasised that the key requirement on the reference system used in thermodynamic integration is that it
faithfully mimics the fluctuations of ab initio energy in thermal equilibrium. Our ab initio melting curve of Fe over
the pressure range 50− 350 GPa agrees fairly well with experimental data obtained from both static-compression and
shock techniques, but significant discrepancies remain to be resolved. Our ab initio predictions for quantities obtained
directly from shock experiments, including the Grüneisen parameter of the liquid, agree closely with the measured
data in most cases.
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[4] D. Alfè, G. A. de Wijs, G. Kresse and M. J. Gillan, Int. J. Quant. Chem., 77, 871 (2000).
[5] B. B. Karki, R. M. Wentzcovitch, S. de Gironcoli, S. Baroni, Phys. Rev. B, 62, 14750 (2000).
[6] A. I. Lichtenstein, R. O. Jones, S. de Gironcoli, S. Baroni, Phys. Rev. B 62, 11487 (2000).
[7] J. J. Xie, S. P. Chen, J. S. Tse, S. de Gironcoli, S. Baroni, Phys. Rev. B, 60, 9444 (1999).
[8] J. J. Xie, S. de Gironcoli, S. Baroni, M. Scheffler, Phys. Rev. B, 59, 965 (1999).
[9] M. Lazzeri, S. de Gironcoli, Phys. Rev. Lett., 81, 2096 (1998).

[10] P. Pavone, S. de Gironcoli, S. Baroni, Phys. Rev. B, 57, 10421 (1998).
[11] D. Alfè, G. D. Price, M. J. Gillan, Phys. Rev. B, 64, 045123 (2001).
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[34] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[35] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[36] S. H. Wei and H. Krakauer, Phys. Rev. Lett., 55, 1200 (1985).
[37] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
[38] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[39] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
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ρ (kg m−3)

T (K) 9540 10700 11010 12130 13300

3000 0.097
(60)

4300 0.085
(132)

5000 0.089
(140)

6000 0.104 0.096 0.089 0.103 0.125
(90) (151) (170) (251) (360)

7000 0.093 0.098 0.109 0.131
(161) (181) (264) (375)

8000 0.092 0.099 0.104 0.124
(172) (191) (275) (390)

TABLE I. Normalised fluctuation strength σ (see text) characterising the accuracy with which the inverse-power reference
model mimics the energy fluctuations of ab initio liquid Fe. Values of σ (eV units) are given for a set of AIMD simulations at
different densities ρ and temperatures T . Pressure at each thermodynamic state (GPa units) is given in parenthesis.

(δUth(N) − δUth(241))/N (eV) (δUth(4k) − δUth(Γ))/N (eV) σ (eV)

67 -0.009 ± 0.002 0.009 ±0.003 0.085
89 -0.012 ± 0.001 0.007 ±0.002 0.073
107 -0.010 ± 0.001 0.006 ±0.002 0.083
127 0.004 ± 0.001 0.000 ±0.002 0.086
157 0.001 ± 0.001 0.001 ±0.002 0.069
199 0.001 ± 0.001 0.082
241 0.000 ± 0.001 0.001 ±0.002 0.101

TABLE II. Dependence on number of atoms N in the simulation cell of size errors and k-point sampling errors in the quantity
δUth entering the ab initio free energy of liquid Fe (see Eqn (15)). Second column reports δUth/N (eV units) with a constant
offset chosen so that the reported value for the largest system size is zero. Third column reports difference of δUth/N between
simulations using four k-points and Γ-point sampling. Fourth column reports normalised fluctuation strength σ (see text) for
different system sizes.

T (K) N−1
∫

1

0
dλ 〈∆U〉λ (eV) 〈(δ∆U)2〉AI/2NkBT (eV)

4300 0.012 0.012
6000 0.010 0.009
8000 0.006 (0.010) 0.006 (0.010)

TABLE III. Difference FAI − Fref between free energies of ab initio and reference systems calculated in two ways: by full
thermodynamic integration (column 2) as in Eqn (4), and by the second-order fluctuation approximation (column 3) as in
Eqn (6). Free energy differences are given per atom in eV units for three temperatures at the density ρ = 10700 kg m−3. Values
in parenthesis refer to the density ρ = 13300 kg m−3.
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ρ (kg m−3)
This work Experiments

P (GPa) T = 5000 K T = 7000 K T = 5000 K T = 7000 K

150 11075 (10930) 10806 (10659) 11110 10800
200 11738 (11625) 11477 (11350) 11870 11560
250 12323 (12220) 12059 (11950) 12440 12180
300 12844 (12756) 12575 (12481) 13000 12800
350 13315 (13232) 13043 (12970) 13550 13290

TABLE IV. Comparison of ab initio and experimental density ρ of liquid Fe on two adiabats, with adiabats specified by the
temperature T at the pressure p = 300 GPa. Ab initio ρ values are given both without and with (in parenthesis) free-energy
correction δF (see text).

KS (GPa)
This work Experiments

P (GPa) T = 5000 K T = 7000 K T = 5000 K T = 7000 K

150 708 (662) 656 (613) 695 668
200 878 (838) 820 (781) 877 849
250 1050 (1010) 981 (944) 1058 1016
300 1220 (1180) 1140 (1103) 1232 1193
350 1384 (1350) 1296 (1264) 1400 1355

TABLE V. Comparison of ab initio and experimental adiabatic bulk modulus KS of liquid Fe on two adiabats, with adiabats
specified by the temperature T at the pressure p = 330 GPa. Ab initio KS values are given both without and with (in
parenthesis) free-energy correction δF (see text).
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FIG. 1. Comparison of melting curve of Fe from present calculations with previous experimental and ab initio results: heavy
solid and dashed curves: present work without and with free-energy correction (see text); chain curve: ab initio results of
Ref. [25]; dots, light dashes and squares: DAC measurements of Refs. [21], [17] and [19]; triangles, diamond and solid square:
shock experiments of Refs. [22], [23] and [24]. Error bars are those quoted in original references.
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FIG. 2. Ab initio fractional volume change on melting of Fe as a function of pressure. Solid and dashed curves: present
work, without and with free-energy correction (see text); black dot: Ref. [25].
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FIG. 3. Ab initio entropy change on melting per atom (units of Boltzmann’s constant kB). Solid and dashed curves: present
work, without and with free-energy correction (see text); black dot: Ref. [25].
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FIG. 4. Relation between ab initio melting curve and ab initio Hugoniot temperature-pressure curves. Heavy continuous
and dashed curves: melting curves calculated without and with free-energy correction (see text); light continuous and chain
curves: Hugoniot of solid without and with free-energy correction; light dashed and dotted curves: Hugoniot of liquid without
and with free-energy correction.
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FIG. 5. Ab initio Hugoniot pressure-volume curve compared with experimental results of Ref. [23]. Solid and dashed curves:
ab initio results without and with free-energy correction (see text); squares: experimental results. Vertical dotted lines indicate
volumes at which melting starts and finishes according to present (uncorrected) ab initio results. To the right of rightmost
vertical dotted line, curves represent solid Hugoniot from Ref. [11]; to the left of leftmost vertical line, curves represent present
liquid Hugoniot.
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FIG. 6. Longitudinal speed of sound on the Hugoniot. Circles: experimental values from Ref. [23]; continuous and dashed
curves: present ab initio values without and with free-energy correction (see text).

16


