
Standards Compliant Software Development�

Wolfgang Emmerich, Anthony Finkelstein

Interoperable Systems Research Centre

City University

London EC1V 0HB, UK

femmerich j acwfg@cs.city.ac.uk

Carlo Montangero

Dip. di Informatica

University of Pisa

56125 Pisa, Italy

monta@di.unipi.it

Richard Stevens

QSS Ltd.

Oxford Science Park

Oxford OX4 4GA, UK

100010.3303@compuserve.com

Abstract

Software engineering standards determine practices that `compliant' software processes shall

follow. Standards generally de�ne practices in terms of constraints that must hold for documents

or the information in these documents. The document types identi�ed by standards include not

only typical development products, such as user requirements, but also process-oriented documents,

such as progress reviews and management reports. The degree of standards compliance can be

established by checking these documents against the constraints. It is is neither practical nor

desirable to enforce compliance at all points in the development process, thus compliance must be

managed rather than imposed. In this paper we de�ne a model of standards and compliance. We

then outline a lightweight implementation of the model built on a generic document management

system. Finally, we discuss the broader implications of our work for process modelling and the

management of inconsistent information.

1 Compliance

In this section we outline the general problem of managing standards compliance in software develop-
ment and motivate the development of automated support for this activity.

There is intense interest in adopting standards in software development. This interest arises for a
number of reasons: standards have been a means of transferring `good practice' in software engineering;
standards have been demanded by clients or procurement agencies; the demands of SPI initiatives, ISO
9000 and SPICE certi�cations; product certi�cation requirements.

In each case once a standard has been adopted it is important to manage compliance with the standard.
By compliance we mean the extent to which software developers have acted in accordance with the
practices set down in the standard. More narrowly we can think of this as consistency between the
actual development process and the normative models embedded in the standard.

Existing, well established standards, such as ISO 12207 [ISO/IEC, 1995] and PSS05 [Mazza et al., 1994]
set down the properties that both the process and the product must possess at given points in the
development. Such standards are both large and complex, they are often incomplete and ambiguous.
Determining compliance, particularly as development progresses and the information can be used to
support correction, is thus a challenging task.

In our approach, described below, we take advantage of an important feature of the standards we have
examined. They tend to express the requirements of the standard in the form of `practices' which in
turn are usually expressed as constraints on the structure or content of documents.

�This work was funded through the Teaching Company Directorate through Scheme No. 1884 and performed while
Carlo Montangero was an EPSRC Visiting Fellow at City University funded through Grant No. GR/L54561

1



We adopt what might be termed a `tolerant' approach in which developers are free to organise for
themselves the way they reach the goals set by project management. They are provided with ways
to assess where they are with respect to their duties to conform to the practices. Policies set down
the points at which di�erent sorts of compliance should be established. Such policies can however be
overridden by an appropriately authorised developer who can postpone or even renounce compliance.

In our preliminary work on compliance we have focussed on requirements management. We have done
so because it is a document-intensive activity of critical importance in software development. More
importantly, because requirements processes cross organisational boundaries, common standards and
compliance play a particularly signi�cant role.

In section 2 we describe the model of standards and compliance which we have adopted and illustrate
this with a simple example. In section 3 we show how this model integrates with an industrial-strength
document management environment. Section 4 sets out some important pieces of related work. In
section 5 we outline a research agenda suggested by our initial work. We conclude with some general
observations on process modelling and the management of inconsistent information.

2 Model

This section outlines the model of standards and compliance underlying our approach. Figure 1 shows
an entity-relationship diagram which summarises the principal elements. There are three parts to
the model: the �rst (top part of the �gure) shows the domain in which we want to intervene; the
other two parts show the support for compliance management. We separate user-driven support for
compliance, in which checks { mechanisms to assess the current state of compliance { are introduced
but the responsibility to exploit these mechanisms is left to the developers, from policy-driven support
in which policies govern the application of the checks and determine the actions in the face of potential
non-compliance.

rationalepractice

standard

property

check

policy

document

diagnostic

event

prescribes

entails

checks

triggers

justified by

shall hold

generates

monitors

assesses

occurs on

*

*

*

*

domain

user

policy

* *

Figure 1: Standards and Compliance Model

As discussed above, in order to express their requirements on the development process, software devel-
opment standards tend to prescribe a number of practices to be followed - in this section, word in this font

2



denote entities or relationships in Figure 1. Since standards do not aim to de�ne processes precisely,
they usually leave ample room for tailoring of the actual processes, within the constraints they lay
down. The distinction between mandatory and recommended practices, common to most standards, is
one way of supporting this tailoring. For our purposes the distinction is irrelevant: we want to handle
all the practices that the process owner demands compliance with.

PSS05, for example, lists almost 200 practices, counting only mandatory practices. A typical practice,
taken from PSS05 is the following:

UR04 - For incremental delivery, each user requirement shall include a measure of priority
so that the developer can decide the production schedule.

Aside from the identi�er - UR04 - it is easy to recognise two parts to the practice: a rationale - so that
the developer can decide the production schedule - and a compliance requirement - for incremental
delivery, each user requirement shall include a measure of priority.

Practices do not always have an explicit rationale, many standards tend to exclude rationale in favour of
conciseness. Obviously, however, practices get into standards only after they have been proven e�ective.
We think it important, for user guidance, that rationale is available to motivate compliance, though
users may choose not to view it.

A compliance requirement is an intrinsic part of any practice, and in many cases, as in UR04, it entails
that a given predicate on the product of the process shall hold at some point. We highlight the static
facet of a practice in the model, the property of interest, since this is the basis for de�ning checks. We
are less interested in modelling the dynamics of the process, the shall part. So, in our example, we have
the property:

For incremental delivery, each user requirement includes a measure of priority

We aim to provide support to the user to assess the current state of compliance with respect to this
property. Some careful reading of the standard allows us to discover that the property entailed by
UR04 shall hold for a speci�ed document, namely the User Requirement Document (URD). Generally,
properties of the state of the product are associated with one or more documents, so the shall hold

relation allows us to limit the domain of applicability of the checks.

It should be noted that not all the practices obviously de�ne compliance requirements on the product.
For instance, UR10 states:

UR10 - An output of the User Requirements phase shall be the URD.

This is, on the face of it, a constraint on the process. We believe that these constraints can be readily
expressed as constraints on the product, by considering with more care those management documents,
such as project plans and progress reports, that capture the essential features of the dynamics of the
process. These documents, which actually constitute a large proportion of the the documents produced
during software development, have up to now received little attention in research on software process
support. As an example, UR10 might entail the following property:

The Software Management Plan for the User Requirements phase includes a task or work-
package for the construction of URD.

A similar argument applies to the conditional clause in UR04 - for incremental delivery. This condition
on the state of the process, which relates to the overall strategy of the project in PSS05, can be
transformed into a condition on the product, in a straightforward manner: the general description of
the project, in the Software Management Plan, shall include a `project mode' attribute, which may
take as value, among others, `incremental delivery'. The property in UR04 then becomes:

3



If the project mode in the project general description of the Software Management Plan is
`incremental delivery', each user requirement shall include a measure of priority so that the
developer can decide the production schedule.

Before moving to the bottom part of Figure 1, to consider the mechanisms for user-driven support,
we recall that not all the relations in Figure 1 are one-to-one: a standard usually recommends many
practices, and some practices may entail several properties which in turn may refer to several documents.
Obviously, a document may be a�ected by more than one practice, and therefore required to satisfy
many properties.

The basic mechanism to support the user is the check, which has two goals: �rstly, to evaluate the
property it relates to in the current state, and, second, in the case that the property does not hold, to
generate some diagnostic information, to help the user assess the extent of compliance of the document(s)
of interest.

For example, the check for UR04 might produce the diagnosis `not relevant' where the property trivially
holds (because the current project is not incremental delivery), or the list of the requirements for which
priority is unde�ned, and the percentage of non-compliant requirements. This information would allow
the user to assess the importance and the di�culty of making the URD compliant. At the same time,
the percentage of compliance of this and other similar properties, gives the manager a measure of the
status of the project.

Even the best motivated user may fail to apply all the checks that are needed before some performing
some sensitive action, such as baselining. Also, given the scale and complexity of the practices they
may be uncertain of the best points to establish compliance. To ensure that no unintended breach
of compliance occurs, we introduce policies, that trigger checks whenever some events occur on some
documents. An event is essentially an attempt to perform an action on a document. We have identi�ed
three modes for policies:

� the error mode, in which failure of the check prevents the action from being performed, in which
case the problem can be �xed using the diagnosis as support;

� the warning mode, that provides the user with the diagnosis but allows the user to perform the
action and knowingly become non-compliant;

� the guideline mode that simply warns the user that it is advisable to perform a check but allows
the user to perform the action.

The most useful mode, given our tolerant approach, is the warning mode. The others open the door to
more varied conformance management: for example, besides providing strict compliance enforcement,
the error mode might be useful when the �x is so simple that there is no point in letting the breach
occur, and the guideline mode allows the introduction of discretionary practices and delivers �ne grain
guidance.

We close this section with some requirements on the language(s) for expressing the checks, that is prop-
erties and diagnostics, and the policies. It is important to understand that expressing the compliance
requirements with the properties, the measures of discrepancy with the diagnostics, and introducing
policies, is the responsibility of the compliance manager or process engineer. All the other people who
are parties to the process, developers, managers and QA engineers, need not see this description. They
may however be presented with some parts of it, notably properties, so there is a strong requirement for
simplicity. To allow the compliance manager to construct or adapt the practices e�ciently, the language
should be as declarative as possible, strongly typed, and easily compiled into the extension language of
the underlining support. The potential for success in achieving this goal lies in the restricted nature of
the domain we are tackling; we are dealing with documents with a simple hierarchical structure, and
with a limited number of meaningful events.

4



3 Support Environment

Standards, such as PSS05 and ISO 12207, are large and complex. Checks as to the compliance of actual
processes with the prescribed practices are di�cult to perform manually. A support environment is
needed that checks compliance and delivers appropriate diagnoses.

Rather than developing an environment from scratch we are using and extending an existing system. We
have chosen DOORS (Dynamic Object Oriented Requirements System), a generic document manage-
ment system. DOORS is widely used in industry to manage requirements and management documents
that are produced during system engineering processes. The choice of DOORS derives partly from the
fact that requirements engineering is the domain of most interest to us. Also the DOORS extension
facilities support the construction of a lightweight standards compliance layer without having to rebuild
many of the underlying document storage and query mechanisms. Most signi�cantly DOORS has a
large user base with an expressed interest in problems of compliance { we hope to build something that
will actually be used!

DOORS documents are hierarchically composed from objects. Objects are used to store information
needed for sections, subsections, down to individual paragraphs and titles. Every object in a DOORS
document has the same attributes. Users can attach attributes to objects by de�ning a name and a type
during editing sessions and then create and/or display values of these attributes. For the implementation
of compliance checks, we would be able to use attributes already available for objects or, if necessary,
attach new attributes to document objects in order to enable users to provide information requested by
the standard. We would, for instance, attach an attribute for storing a value indicating the importance
of a requirement in order to implement UR04. DOORS also supports the concepts of links that can be
used to relate one object to another and stored in a separate object. Links are used, for instance, to
capture requirements traceability information.

DOORS has a Dynamic eXtension Language (DXL) that can be used to automate tasks. DXL is an
interpreted language. It includes imperative and rule-based language concepts. DXL functions can be
attached to user interface components, such as pull-down menus. Functions are used to create template
documents, whose structure and attributes correspond to those prescribed by certain standards. We
intend to use functions to implement compliance checks. For the implementation of these checks, control
ow primitives, such as iterations, attribute accesses and traversal across links are available.

DXL also provides the concept of triggers. Triggers are associations between events and actions. Trig-
gers can be used to react to the occurrence of the event (post triggers), or to guard the event possibly
in order to prevent it (pre triggers). DXL triggers seem to be an appropriate and exible mechanism
for the implementation of di�erent compliance policies.

In order to implement compliance policies, both DXL functions and triggers will be used. Policies in
which users initiate checks are implemented as functions that are included in the DOORS command
and menu structure. Policies that require the execution of checks in a way unsolicited by users are
implemented as triggers. A trigger is de�ned for events, such as closing a document or baselining the
document and the function associated with the trigger would then be executed as soon as the event
occurs. Some policies require a check before the event occurs. In these cases pre triggers can be used
conveniently as an implementation. Post triggers may be used to introduce some `forward chaining',
that is to propagate the consequences of an event. The utility of this well known mechanism in our
setting has yet to be assessed.

Many standards de�ne document type structures and demand certain sections to be part of the docu-
ment contents. Although inclusion of contents can be supported by functions that generate document
templates in DOORS, users have the freedom to modify the template structure, hence violating the
compliance to the standard. Likewise, in an interpreted and dynamically typed setting, users could
detach attributes from objects and render any compliance checks meaningless. We would, therefore,
need to include a number of meta checks into the compliance layer. These meta checks would ensure
that attributes are available before they are accessed in compliance checks and that documents comply
to the structure prescribed by standards.

5



4 Related Work

Our work draws on a number of intertwined strands of research. The problem of compliance as we
have treated it is closely related to inconsistency management in speci�cation. Key contributions in
this area are [Finkelstein et al., 1994], [Easterbrook et al., 1994] and [Finkelstein et al., 1996]. The use
of process modelling techniques to control the application of consistency checks have been explored
in [Finkelstein et al., 1994] and [Leonhardt et al., 1995]. The problem of process divergence has been
analysed by [Cugola et al., 1995] and [Cugola et al., 1996]. Our approach to representing policies is
strongly inuenced by work on Oikos [Montangero and Semini, 1996] and by interesting work on policy
modelling in distributed systems management [Lupu and Sloman, 1997]. Other relevant work includes
policy driven event monitoring [Fickas and Feather, 1995].

5 Research Agenda

Our immediate research agenda is de�ned by the preceding discussion. We must make good on our
statements of intent. There are, however, some broader issues which remain to be tackled.

In addition to the practices considered above, standards incorporate high-level goals. The ques-
tion of how we can establish that the practices correctly implement these high-level goals is one
which needs an answer. Some preliminary work on such correctness problems has been developed
in [Montangero and Semini, 1996].

Given a large project and a complex set of standards it is important for the compliance manager to
be able to get a rapid, high-level view of the position with respect to compliance. Such a high level
view might support planning and allocation of resources, identifying `hot spots', and so on. Visualising
compliance opens some potentially interesting research issues.

We would hope that the ideas on which our work is based can be fed back into the standards process
itself and might assist in the formulation of new systems engineering standards, for example we are
working on [ISO/IEC, 1997].

We are party to the shared research aim of building a better formal understanding of inconsistency,
a contribution to this is [Spanoudakis and Finkelstein, 1997]. In particular we would hope that such
work would yield a better understanding of diagnosis and opportunities to share tools and techniques.

6 Conclusions

There is a long tradition of research on software process technology, where the goal is to support
software development through process-centred software engineering environments (PSEEs). However,
most process modelling approaches tend to produce environments which are far too constraining, and
which engineers experience as too prescriptive. The tendency to enforce compliance in an eager manner
may be one of the reasons why PSEEs have experienced di�culties in being to put to practical use. It
is widely accepted that software development requires more exibility than business processes, where
workow tools have been instead largely accepted. Our work attempts to provide this exibility,
introducing lightweight mechanisms that support compliance management, rather than enforcement.

Previous work which attempts to introduce exible guidance for example [Leonhardt et al., 1995], while
delivering the basic �ne-grain mechanisms, still lack adequate means of expressing global.

process requirements. We think that by focusing on standards, we are providing �rm ground for
bridging the gap. This is by no means a silver bullet. However, we anticipate signi�cant bene�ts by
providing many simple, highly syntactic compliance checks and providing mechanisms for managing
their application.

6



References

[Cugola et al., 1995] Cugola, G., Di Nitto, E., Ghezzi, C., and Mantione, M. (1995). How To Deal With
Deviations During Process Model Enactment. In Proc. 17th Int. Conf. on Software Engineering,
Seattle, pages 265{273. IEEE Computer Society Press.

[Cugola et al., 1996] Cugola, G. P., Di Nitto, E., Fuggetta, A., and Ghezzi, C. (1996). A Framework
for Formalizing Inconsistencies in Human-Centred Systems. TOSEM, 5(3).

[Easterbrook et al., 1994] Easterbrook, S., Finkelstein, A., Kramer, J., and Nuseibeh, B. (1994). Coor-
dinating Distributed ViewPoints: The Anatomy of a Consistency Check. Int. Journal of Concurrent
Engineering: Research & Applications, 2(3):209{222.

[Fickas and Feather, 1995] Fickas, S. and Feather, M. (1995). Requirements Monitoring in Dynamic
Environments. In Proc. of the 2nd IEEE Int. Symposium on Requirements Engineering, York, pages
140{147. IEEE Computer Society Press.

[Finkelstein et al., 1994] Finkelstein, A., Gabbay, D., Hunter, H., Kramer, J., and Nuseibeh, B. (1994).
Inconsistency Handling in Multi-Perspective Speci�cations. IEEE Transactions on Software Engi-
neering, 20(8):569{578.

[Finkelstein et al., 1996] Finkelstein, A., Spanoudakis, G., and Till, D. (1996). Managing Interference.
In Vidal, L., Finkelstein, A., Spanoudakis, G., and Wolf, A. L., editors, Joint Proc. of the SIGSOFT
'96 Workshops, pages 172{174. ACM Press.

[ISO/IEC, 1995] ISO/IEC (1995). International Standard, Information Technology Software Life Cycle
Process. 12207.

[ISO/IEC, 1997] ISO/IEC (1997). Draft Systems Engineering Standard. 15288. To appear.

[Leonhardt et al., 1995] Leonhardt, U., Finkelstein, A., Kramer, J., and Nuseibeh, B. (1995). Decen-
tralised Process Enactment in a Multi-Perspective Development Environment. In Proc. of the 17th

Int. Conf. on Software Engineering, pages 255{264. IEEE Computer Society Press.

[Lupu and Sloman, 1997] Lupu, E. and Sloman, M. (1997). Conict Analysis for Management Policies.
In 5th IFIP/IEEE International Symposium on Integrated Network Management IM'97. Chapman
& Hall Publishers. To appear.

[Mazza et al., 1994] Mazza, C., Fairclough, J., Melton, B., De Pablo, D., Sche�er, A., and Stevens, R.
(1994). Software Engineering Standards. Prentice Hall.

[Montangero and Semini, 1996] Montangero, C. and Semini, L. (1996). Applying Re�nement Calculi
to Software Process Modelling. In Proc. of the 4th Int. Conf. on the Software Process, Brighton, UK,
pages 63{74. IEEE Computer Society Press.

[Spanoudakis and Finkelstein, 1997] Spanoudakis, G. and Finkelstein, A. (1997). Overlaps among Re-
quirements Speci�cations. Submitted to this workshop.

7


