
\The World and the Machine"

A Critical Perspective on

Process Technology�

Wolfgang Emmerich, Anthony Finkelstein

Interoperable Systems Research Centre

City University

London EC1V 0HB, UK

femmerich j acwfg@cs.city.ac.uk

Carlo Montangero

Dip. di Informatica

University of Pisa

56125 Pisa, Italy

monta@di.unipi.it

Abstract

This short paper sets out a critical perspective process technology. It uses an analytical frame-

work drawn from the work of Jackson as a means of identifying some important concerns and looks

at the way research in the broad area of process technology might respond to these concerns. The

paper is deliberately open and discursive.

1 Introduction

In the quest for a new research agenda for process technology, we apply the vision of software de-
velopment, Michael Jackson set out in his ICSE-17 keynote talk [Jackson, 1995] on \The World and
the Machine", to software process technology. Jackson identi�ed the need for software engineers to
balance the concern between the world, in which the machine they build serves a useful purpose, and
the machine itself.

In process technology, machines are process support systems (PSSs). Examples of these are process-
centred software engineering environments, work
ow management systems or business process re-
engineering systems. These machines are supposed to serve a useful purpose in processes, such as
software production processes, work
ow processes or business processes. These processes are the world
in which PSSs operate. PSS designers are the equivalent of Jackson's engineers, who build machines.

Though we have applied our analysis to software process technology we would argue that similar exer-
cises could usefully be undertaken for the other research domains to gather under the process technology
umbrella and further that this might lead to a better understanding of the commonalities/diversities
among the converging disciplines.

In the next section, we discuss the relationship between the world and the machine, in the case of
software process technology. In doing so we take a fresh view of the core intuition underlying Lee
Osterweil's seminal paper \Software Processes are Software Too" [Osterweil, 1987]. In Section 3, we
review Jackson's four kinds of \denial" and �nd evidence for these denials in the development of software
process technology. We then discuss the application of Jackson's \principles of description", which leads
us to conclude that the current concerns in software process technology research are biased towards the
\machine". We identify items in the \world" to be put on a research agenda in order to restore the
balance.

�This work was performed while Carlo Montangero was an EPSRC Visiting Fellow at City University funded through
Grant No. GR/L54561

1



2 Relationship between the World and the Machine

In his paper Jackson identi�es four di�erent facets of the relationship between the world and the
machine, all of which apply directly to process technology. The modelling facet is concerned with the
embodiment within the machine of a model of some aspect of the world. The interface facet is concerned
with the shared phenomena through which the machine and the world interact. The engineering facet
is concerned with the control the machine exerts on the world. Finally, both world and machine can be
very complex, the problem facet is concerned with the relationships between the structure of the world
and the machine. We now discuss the implications of adopting this division as an analytical framework
for software process technology.

Modelling: Applied to software process technology, this suggests that the execution of processes
in the real world should be separated from the representation of those processes within the PSS.
Only recently have some process modelling approaches made this separation, most notably in LATIN
[Cugola et al., 1995] and the Process Discovery approach proposed by [Cook and Wolf, 1995].

Interface: Sharing of phenomena in process technology occurs at the interface between the pro-
cess performed in the world and the PSS. Shared phenomena can either be events that happen in
the world and that should be known by the PSS, or they are the result of PSS reasoning that should
be known by the world. Research on software process technology, in particular on PSEE architec-
tures, has had a tendency to consider software engineering tools to be in the world, rather than in
the machine. Hence research has identi�ed shared phenomena passed between tools and process en-
gines [Valetto and Kaiser, 1995, Emmerich et al., 1996] rather than shared phenomena between the
performers and the environment. A notable exception is discussed in [Cugola et al., 1996].

Engineering: Jackson's framework allows us to distinguish between requirements, which identify the
characteristics of processes in the world, process-centred environments, which implement the required
support, and speci�cations, which identify the shared phenomena between the requirements and the
programs. This critical distinction is rarely made in research on software process technology. The
majority of techniques and languages have been developed for the purpose of writing enactable software
process programs. There has been a lot of attention paid to generic requirements for process technology
for process technology, such as process evolution, and a few software process speci�cation schemes, such
as [Montangero and Semini, 1996], but we are not aware of any attacks on the issue of project-speci�c
software process requirements.

Problem: The structuring of processes is very complex because the processes incorporate quite a
number of di�erent, orthogonal aspects. Examples of these aspects are con�guration management,
process management and process change. It has been recognised for a long time in software process
research that any attempt to describe these in a hierarchical and homogeneous way is bound to fail
and that multi-paradigm process descriptions are needed [Deiters et al., 1989]. Though this is known
and understood it has received little attention. Some interesting directions are suggested by work
on standards, such as ISO-12207 [ISO/IEC, 1995], that are organised around a number of aspects or
viewpoints. These aspects refer to di�erent overlapping subsets of the phenomena of the world, which
are perceived as meaningful and manageable views of the problem.

3 Four Kinds of Denial

Denial has to do with how we evade the responsibility that, according to Jackson, software engineers
have undertaken, to deal with the part of the world that furnishes the context for the machines we design,
and how we justify this evasion. The only legitimate denial of the need to analyse the world is denial by
prior knowledge, which is applicable when the requirements are well-understood and standardised, as
in cases of well established engineering practice, automobile engineering, and so on. On the illegitimate
side, we have denial by hacking, where the world is disregarded, because of the fascination of the
machine. There is a long tradition here, that leads us to o�er our customer representations of the
machine in place of the description and analysis of their problems and needs. Denial by abstraction,

2



occurs when the world is disregarded, because of the fascination of the abstract mathematical nature of
computations. According to Jackson, this occurs mainly in education, where it is implicitly taught that
software development problems can be captured in few words, and that all the di�culty is in devising a
solution. Finally, denial by vagueness occurs when descriptions of the machine are o�ered, but with the
vague implication that they are descriptions of the world. We now discuss the extent to which denial
in these forms manifests itself in software process technology.

Prior Knowledge: Software process technology provides support for software engineering. One
might argue, that we have a fast track to understand software process as we are software engineers
ourselves. In addition, there are standard process de�nitions, such as ISO-12207 [ISO/IEC, 1995], IEEE
1074 [IEEE, 1995] and PSS-05 [Mazza et al., 1994], that are widely applied. It might be concluded
that the requirements associated with software process technology do not have to be made explicit. It
must, however, be questioned whether these perceptions are really valid. If, for instance, the software
process community had achieved prior knowledge, i.e. a common understanding of concepts, de�nitions
and requirements, the de�nition of the glossary in [Derniame et al., 1998] would not have been as
di�cult as it proved to be. Moreover, software development processes in academia, although they
might deliver impressive prototypes, are considerably di�erent from software production in industry
and these di�erences are poorly understood. How many academic PSEEs, for instance, have been
constructed by applying standard processes?

Hacking: Rather than trying to understand the world of software processes, software process tech-
nology research have focussed on the features of languages and their interpreters. We ourselves have
come to the temptation of o�ering customers our modelling schemes in place of listening to their
needs [Emmerich et al., 1996]. The development of Harel's Statecharts are a good counter-example.
They have been developed starting from an appreciation of the users' needs and practices and have
then be extended to a fully formal speci�cation language. For software process technology this may
mean taking a fresh look at the process representations that are used in the actual project management.
Some suggestions are given in [Emmerich et al., 1997].

Abstraction: Software process technology may seem almost immune from this kind of denial, al-
though the ISPWx series of exercises shows some signs of it: the answers to the original ISPW6 problems
have mostly been used to demonstrate how the machine was speci�ed, not how the problem was at-
tacked, the collected answers have been almost forgotten, and many `simpli�ed' versions of the problem
series are only used to demonstrate new features of the machine descriptions. Other cases in which
denial by abstraction shows up are [Montangero and Semini, 1996, Cugola et al., 1996]. Both take into
account the real world, but at such a high level of abstraction that their utility must be questioned;
the former by falling into the trap of using too simple a case study, the latter by introducing a model
of the real world which is to admit any speci�c link with process technology.

Vagueness: This form of denial occurs in process technology as the few applications tend to make
great play of those parts of the software process that were automated in a process program, while
they neglected the (probably more signi�cant) subprocesses that were not amenable to automation. In
the example reported in [Emmerich et al., 1996] it was claimed that a C++ class library management
process was captured, modelled and improved. In the light of Jackson's observations it must be admitted
that this is a form of vagueness as, in the end, only the automated part of the process was modelled.

4 Principles for Descriptions

Further hints for a research agenda for process technology can be obtained by looking at the descriptive
principles gathered by Jackson. From an analysis of Von Neumann's theory of games, Jackson identi�es
the need to clarify the concepts and issues relevant to a system by establishing the vocabulary and
identifying the phenomena of interest using informal but rigorous rules to recognise them in the world.
The principle of reductionism suggests starting with those phenomena for which we can give the most
exact and reliable recognition rule. Shanley's principle is the direct negation of separation of concerns.
It is best exempli�ed by an application to rocketry engineering where the fuel pressure inside the tank

3



is used to improve the rigidity of the external rocket skin. In essence, Shanley's principle demands the
parallel structuring of views of and problems in the world. Finally, Montaigne's principle requires that
we clearly distinguish between the indicative and the optative mood of descriptions, i.e between what
we assert to be true, and what we desire to be true. Below we brie
y examine what these principles
mean for descriptions of processes and their implications for the process research agenda.

von Neumann's Principle and the Reductionism Principle: These basic principles suggest a
rather natural modelling strategy. However, they have not received the attention of the process research
community that they deserve. Attempts have been made to de�ne the concepts and the terminology
used for software process [Lonchamp, 1993] and to clarify the distinction between the world and the
machine [Dowson and Fernstr�om, 1994]. These do not yet approach the the analytic recognition rules
demanded by Jackson.

Shanley's Principle: An example of this parallel structuring is the structure of software develop-
ment standards discussed above. These try to capture the world of software development in di�erent
views, which share people and documents. The problem how these views and their interactions are
captured in a more precise way that fully exploits Shanley's principle has yet to be tackled. In Jack-
son's terms, we are looking for a global model that relates to the parts it is composed of, just like
a colour picture relates to the Cyan, Magenta, Yellow and Black colour separations. The extent to
which approaches like ViewPoints [Nuseibeh et al., 1994] are appropriate for this purpose has yet to be
assessed. Such approaches also seem to be a prerequisite for the e�ective application of the framework
in [Cugola et al., 1996] to full blown standard processes.

Montaigne's Principle: It is easy to �nd examples in the area of software process technology where
the distinction between indicative and optative have been slurred. The same concern, for instance
con�guration management, can be treated both optatively when analysing repository structures and
indicatively when treating project management support. This is not in itself a problem but can lead
to di�culties if not made explicit.

5 Recommendations

Our recommendation is, that we as a community perform a serious analysis of the balance of world
versus machine concerns in software process technologies, and that the same exercise is performed for
related technologies such as work
ow and computer supported cooperative work. If, as we expect, the
results show that the imbalance is always towards the machine, a major item in the agenda should be to
restore the correct balance everywhere, before attempting to merge the technologies. In any event, the
exercise should provide a good characterisation of the new discipline. For instance, knowledge might
be collected about the di�erences between di�erent kinds of human-centred systems, such as work
ow
management systems, which are controlling the 
ow of many instances of rather simple documents,
and those, like process-centred environments, which are mainly concerned with the design of a few
issues of a very complex body of documents. Such a clari�cation may then deliver an assessment of the
feasibility of merging work
ow and software process technology.

References

[Cook and Wolf, 1995] Cook, J. E. and Wolf, A. L. (1995). Automating Process Discovery through
Event-Data Analysis. In Proc. of the 17th Int. Conf. on Software Engineering, Seattle, Washington,
pages 73{92. ACM Press.

[Cugola et al., 1995] Cugola, G., Di Nitto, E., Ghezzi, C., and Mantione, M. (1995). How To Deal
With Deviations During Process Model Enactment. In Proc. of the 17th Int. Conf. on Software
Engineering, Seattle, Washington, pages 265{273. ACM Press.

4



[Cugola et al., 1996] Cugola, G. P., Di Nitto, E., Fuggetta, A., and Ghezzi, C. (1996). A Framework for
Formalizing Inconsistencies in Human-Centred Systems. ACM Transactions on Software Engineering
and Methodology, 5(3).

[Deiters et al., 1989] Deiters, W., Gruhn, V., and Sch�afer, W. (1989). Process Programming: A struc-
tured Multi-Paradigm Approach Could be Achieved. In Proc. of the 5th Int. Software Process Work-
shop, pages 54{57. IEEE Computer Society Press.

[Derniame et al., 1998] Derniame, J. C., Warboys, B., and Kaba, A., editors (1998). Software Process:
Principles, Methodology, Technology. To appear.

[Dowson and Fernstr�om, 1994] Dowson, M. and Fernstr�om, C. (1994). Towards Requirements for En-
actment Mechanisms. In Warboys, B., editor, Proc. of the 3rd European Workshop on Software
Process Technology, Villard-des-Lans, volume 772 of Lecture Notes in Computer Science. Springer.

[Emmerich et al., 1996] Emmerich, W., Bandinelli, S., Lavazza, L., and Arlow, J. (1996). Fine grained
Process Modelling: An Experiment at British Airways. In Proc. of the 4th Int. Conf. on the Software
Process, Brighton, United Kingdom, pages 2{12. IEEE Computer Society Press.

[Emmerich et al., 1997] Emmerich, W., Finkelstein, A., Montangero, C., and Stevens, R. (1997). Stan-
dards Compliant Software Development. In Proc. of the ICSE Workshop on Living with Inconsis-
tency, Boston. To appear.

[IEEE, 1995] IEEE (1995). IEEE Standard for Developing Software Life Cycle Processes (1074-1995).
IEEE Computer Society Press.

[ISO/IEC, 1995] ISO/IEC (1995). International Standard, Information Technology Software Life Cycle
Process. 12207.

[Jackson, 1995] Jackson, M. (1995). The World and the Machine. In Proc. of the 17th Int. Conf. on
Software Engineering, Seattle, Washington, pages 283{292. ACM Press.

[Lehman, 1996] Lehman, M. M. (1996). Laws of Software Evolution Revisited. In Montangero, C.,
editor, Proc. of the 5th European Workshop on Software Process Technology, Nancy, France, volume
1149 of Lecture Notes in Computer Science, pages 108{124. Springer.

[Lonchamp, 1993] Lonchamp, J. (1993). A structured conceptual and terminological framework for
software process engineering. In Proc. of the 2nd Int. Conf. on the Software Process, Berlin, Germany,
pages 41{53. IEEE Computer Society Press.

[Mazza et al., 1994] Mazza, C., Fairclough, J., Melton, B., De Pablo, D., Sche�er, A., and Stevens, R.
(1994). Software Engineering Standards. Prentice Hall.

[Montangero and Semini, 1996] Montangero, C. and Semini, L. (1996). Applying Re�nement Calculi
to Software Process Modelling. In Proc. of the 4th Int. Conf. on the Software Process, Brighton, UK,
pages 63{74. IEEE Computer Society Press.

[Nuseibeh et al., 1994] Nuseibeh, B., Kramer, J., and Finkelstein, A. (1994). A Framework for Express-
ing the Relationships Between Multiple Views in Requirements Speci�cation. IEEE Transactions on
Software Engineering, 20(10):760{773.

[Osterweil, 1987] Osterweil, L. J. (1987). Software Processes are Software Too. In Proc. of the 9th Int.
Conf. on Software Engineering, Monterey, Cal., pages 2{13. IEEE Computer Society Press.

[Valetto and Kaiser, 1995] Valetto, G. and Kaiser, G. (1995). Enveloping "Persistent" Tools for a
Process-Centred Environment. In Sch�afer, W., editor, Proc. of the 4th European Workshop on
Software Process Technology, Nordwijkerhout, The Netherlands, volume 913 of Lecture Notes in
Computer Science, pages 200{204. Springer.

[Votta and Porter, 1995] Votta, L. G. and Porter, A. (1995). Experimental Software Engineering: A
report on the state of the art. In Proc. of the 17th Int. Conf. on Software Engineering, Seattle,
Washington, pages 277{279. ACM Press.

5


