# Supplementary Information 

1. Numbers of graduates from UK medical schools
2. Structural equation modelling
3. Graphs for individual medical schools by year that graduates took MRCP(UK) Part 1

Supplementary figures 1 to 10 and 11a to 11e.

1. Numbers of graduates from UK medical schools. The table below shows the number of graduates of UK medical schools who took MRCP(UK) Part 1 for the first time in the diets of $2003 / 2$ to $2005 / 3$. Since most UK graduates tend to take MRCP(UK) soon after the regulations allow, which is eighteen months after qualification, a typical graduate in June 2001 would be able to take the exam early in 2003. The first data column (a) shows the number of graduates from each school who provisionally registered with the GMC in 2001 to 2003 (i.e. broadly equivalent to the eight diets we have analysed), and the second column (b) the numbers taking MRCP(UK) for the first time in the 2003/2 to 2005/3 diets. Column $c$ shows $a$ expressed as a percentage of $b$, and column $d$ shows $c$ relative to the overall percentage (final row of column $c$ ).

|  | Number of graduates <br> provisionally registering <br> with GMC in 2001-2003 | Number taking <br> MRCP(UK) Pt 1 |  | Ratio |
| :--- | :---: | :---: | :---: | :---: |
|  | $(a)$ | $(b)$ | $(c)$ |  |
| Aberdeen | 146 | 499 | 29.3 | 0.969 |
| Belfast | 161 | 500 | 32.2 | 1.066 |
| Birmingham | 135 | 581 | 23.2 | 0.769 |
| Bristol | 130 | 429 | 30.3 | 1.003 |
| Cambridge | 133 | 330 | 40.3 | 1.334 |
| Dundee | 116 | 422 | 27.5 | 0.910 |
| Edinburgh | 233 | 610 | 38.2 | 1.264 |
| Glasgow | 220 | 713 | 30.9 | 1.021 |
| Leeds | 139 | 503 | 27.6 | 0.915 |
| Leicester | 112 | 471 | 23.8 | 0.787 |
| Liverpool | 146 | 543 | 26.9 | 0.890 |
| London | 1213 | 3852 | 31.5 | 1.042 |
| Manchester (inc St Andrews) | 258 | 937 | 27.5 | 0.912 |
| Newcastle-Upon-Tyne | 160 | 546 | 29.3 | 0.970 |
| Nottingham | 157 | 544 | 28.9 | 0.955 |
| Oxford | 121 | 306 | 39.5 | 1.309 |
| Sheffield | 171 | 612 | 27.9 | 0.925 |
| Southampton | 128 | 443 | 28.9 | 0.957 |
| UWCM | 161 | 533 | 30.2 | 1.000 |
| Total |  |  |  |  |
| U040 |  | $\mathbf{1 3 3 7 4}$ | $\mathbf{3 0 . 2}$ | $\mathbf{1}$ |

2. Structural equation modelling. Structural equation modelling used LISREL.

Selected output from the program, including the commands and the correlation matrix, is shown below. The saturated model allowed all variables to the left of a variable to have a causal influence on it (via the BETA matrix), with the exception that the four measures of medicine teaching (MEDINT MEDDIF MEDUSE MEDTIME) related to one another through the PSI matrix which was saturated for those relationships. The saturated model was fitted initially, and least significant paths removed sequentially until $\mathrm{t}>2$ for all paths remaining.

```
DA NI=11 NO=19 ma=km
km fu
\begin{tabular}{rrrrrrrrrrr}
\(*\) \\
1.000 & .177 & .518 & .160 & .225 & -.017 & .552 & .850 & .779 & .773 & .704 \\
.177 & 1.000 & .119 & .019 & .055 & .176 & -.022 & .423 & .205 & .196 & .223 \\
.518 & .119 & 1.000 & .115 & -.192 & .240 & .470 & .478 & .588 & .568 & .483 \\
.160 & .019 & .115 & 1.000 & -.157 & .364 & -.111 & .074 & .128 & .143 & .153 \\
.225 & .055 & -.192 & -.157 & 1.000 & -.739 & -.118 & .141 & .223 & .234 & .219 \\
-.017 & .176 & .240 & .364 & -.739 & 1.000 & .009 & .085 & .023 & .009 & -.049 \\
.552 & -.022 & .470 & -.111 & -.118 & .009 & 1.000 & .545 & .510 & .522 & .500 \\
.850 & .423 & .478 & .074 & .141 & .085 & .545 & 1.000 & .613 & .575 & .478 \\
.779 & .205 & .588 & .128 & .223 & .023 & .510 & .613 & 1.000 & .992 & .905 \\
.773 & .196 & .568 & .143 & .234 & .009 & .522 & .575 & .992 & 1.000 & .945 \\
.704 & .223 & .483 & .153 & .219 & -.049 & .500 & .478 & .905 & .945 & 1.000
\end{tabular}
la
qual medapp medint meddif meduse medtime medfy Ptake Part1 Part2 PACES
se
qual medapp medint meddif meduse medtime medfy Ptake Part1 PACES/
mo ny=10 te=di,fr be=sd ps=sy,fr
pa be
0
0
```



```
0
0
0
10
11
1
0
pa ps
1
0 1
0 1
0 1 1
0
0
0
0}000000000
0
0}00000000000000
OU me=ml MI RS EF MR SS SC nd=3 it=1000
```

```
Number of Input Variables 11
Number of Y - Variables 10
Number of X - Variables 0
Number of ETA - Variables 10
Number of KSI - Variables 0
Number of Observations 19
```

LISREL Estimates (Maximum Likelihood)

BETA

|  | qual | medapp | medint | meddif | meduse | medtime |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| qual | - - | - - | - - | - - | - - | - - |
| medapp | - - | - - | - - | - - | - - | - - |
| medint | 0.593 | - - | - - | - - | - - | - - |
|  | (0.187) |  |  |  |  |  |
|  | 3.170 |  |  |  |  |  |
| meddif | - - | - - | - | - |  | - - |
| meduse | - - | - - | - - | - - | - - | - - |
| medtime | - - | - - | - - | - - | - - | - - |
| medfy | 0.552 | - - | - - | - - | - - | - - |
|  | (0.197) |  |  |  |  |  |
|  | 2.809 |  |  |  |  |  |
| Ptake | 0.800 | 0.281 |  |  | - | - - |
|  | (0.106) | (0.106) |  |  |  |  |
|  | 7.576 | 2.664 |  |  |  |  |
| Part1 | 0.779 |  |  | - - | - - |  |
|  | (0.148) |  |  |  |  |  |
|  | 5.271 |  |  |  |  |  |
| PACES | - - | - - | - - | - | - - | - |
| BETA |  |  |  |  |  |  |
|  | medfy | Ptake | Part1 | PACES |  |  |
| qual | - - | - - | - - | - - |  |  |
| medapp | - - | - - | - - | - - |  |  |
| medint | - - | - - | - - | - - |  |  |
| meddif | - - | - - | - - | - - |  |  |
| meduse | - - | - - | - - | - - |  |  |
| medtime | - - | - - | - - | - - |  |  |
| medfy | - - | - - | - - | - - |  |  |
| Ptake | - - | - - | - - | - - |  |  |
| Part1 | - - | - - | - - | - - |  |  |
| PACES | - - |  | 0.905 | - - |  |  |
|  |  |  | (0.100) |  |  |  |
|  |  |  | 9.026 |  |  |  |
| PSI |  |  |  |  |  |  |
|  | qual | medapp | medint | meddif | meduse | medtime |
| qual | 1.000 |  |  |  |  |  |
|  | (0.333) |  |  |  |  |  |
|  | 3.000 |  |  |  |  |  |
| medapp | - - | 1.000 |  |  |  |  |
|  |  | (0.333) |  |  |  |  |
|  |  | 3.000 |  |  |  |  |
| medint | - - | - - | 0.737 |  |  |  |
|  |  |  | (0.246) |  |  |  |
|  |  |  | 3.000 |  |  |  |
| meddif | - - | - - | 0.020 | 1.000 |  |  |
|  |  |  | (0.202) | (0.333) |  |  |
|  |  |  | 0.099 | 3.000 |  |  |
| meduse | - - | - - | -0.325 | -0.157 | 1.000 |  |
|  |  |  | (0.216) | (0.239) | (0.333) |  |
|  |  |  | -1.504 | -0.658 | 3.000 |  |
| medtime | - - | - - | 0.250 | 0.364 | -0.739 | 1.000 |
|  |  |  | (0.211) | (0.251) | (0.293) | (0.333) |
|  |  |  | 1.186 | 1.451 | -2.521 | 3.000 |
| medfy | - |  |  |  | - |  |
| Ptake | - - | - - |  |  |  |  |
| Part1 | - - | - |  | - | - - |  |
| PACES | - - | - | - - | - - | - - | - - |

PSI


## Goodness of Fit Statistics

## Degrees of Freedom $=33$

Minimum Fit Function Chi-Square $=28.377(\mathrm{P}=0.697)$
Normal Theory Weighted Least Squares Chi-Square $=22.447$ ( $\mathrm{P}=0.917$ )
Estimated Non-centrality Parameter (NCP) $=0.0$
90 Percent Confidence Interval for $\mathrm{NCP}=(0.0$; 2.463)
Minimum Fit Function Value $=1.577$
Population Discrepancy Function Value (FO) = 0.0
90 Percent Confidence Interval for $\mathrm{FO}=(0.0$; 0.137)
Root Mean Square Error of Approximation (RMSEA) $=0.0$
90 Percent Confidence Interval for RMSEA $=(0.0 ; 0.0644)$
P-Value for Test of Close Fit (RMSEA $<0.05$ ) $=0.939$
Expected Cross-Validation Index (ECVI) $=4.278$
90 Percent Confidence Interval for ECVI $=(4.278$; 4.415)
ECVI for Saturated Model $=6.111$
ECVI for Independence Model $=8.206$
Chi-Square for Independence Model with 45 Degrees of Freedom $=127.703$ Independence $\mathrm{AIC}=147.703$

Model AIC = 66.447
Saturated AIC $=110.000$
Independence CAIC $=167.147$
Model CAIC $=109.224$
Saturated CAIC $=216.944$
Normed Fit Index (NFI) $=0.778$
Non-Normed Fit Index (NNFI) $=1.076$
Parsimony Normed Fit Index (PNFI) $=0.570$
Comparative Fit Index $(C F I)=1.000$
Incremental Fit Index (IFI) = 1.049
Relative Fit Index $($ RFI $)=0.697$

$$
\text { Critical } \mathrm{N}(\mathrm{CN})=35.745
$$

Root Mean Square Residual (RMR) $=0.104$ Standardized RMR = 0.104
Goodness of Fit Index (GFI) $=0.800$
Adjusted Goodness of Fit Index (AGFI) $=0.667$
Parsimony Goodness of Fit Index (PGFI) $=0.480$

## 3. Graphs for individual medical schools by year that graduates took MRCP(UK) Part 1.

Figure 4 (main text) gives an impression of the stability and change in the performance of medical schools for those taking the examination for the first time over the period 1989 to 2005 (i.e. who typically graduated between 1987 and 2003, and therefore typically would have entered medical school between about 1983 and 1997). However it is useful also to plot graphs, year by year, for individual medical schools. A complication in so doing is shown in Supplementary figure 10 , which plots the mean score of all UK graduates at their first attempt by year, the score, as previously, being plotted relative to the pass mark for each diet. It is clear that although mean performance was stable over the period 1989 to about 1998, performance then began to rise, for reasons which are not entirely clear. The result is that while a majority of UK candidates would fail the exam at their first attempt in 1989, a small majority is now passing the exam at the first attempt. Whatever the reasons for that change, it makes it somewhat complicated to visualise the relative performance of candidates from individual schools, when they are plotted in the same way, since the trend of Supplementary Figure 10 has to be taken into account. As a result, for the graphs of performance of individual medical schools shown in Supplementary Figure 11, we have subtracted the overall mean scores for each year shown in Supplementary Figure 10, so that all changes should be interpreted as the performance of candidates at a particular medical school relative to the performance of all UK candidates.

Correlations across years. An important question concerns the stability of the ordering of medical schools across years. A correlation matrix was therefore generated showing the correlation of the mean score in each year with the mean score in each other year (see below). The stability across an interval of N years was then calculated as the mean of the correlations separated by that number of years (for which there were 16 correlations separated by 1 year, 15 separated by 2 years, through to 1 correlation separated by 16 years).

|  | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1989 | 1 | 0.713 | 0.551 | 0.509 | 0.588 | 0.450 | 0.559 | 0.708 | 0.719 | 0.548 | 0.547 | 0.524 | 0.477 | 0.613 | 0.434 | 0.520 | 0.582 |
| 1990 | 0.713 | 1 | 0.767 | 0.669 | 0.797 | 0.667 | 0.741 | 0.857 | 0.764 | 0.870 | 0.831 | 0.818 | 0.717 | 0.772 | 0.678 | 0.508 | 0.749 |
| 1991 | 0.551 | 0.767 | 1 | 0.723 | 0.691 | 0.657 | 0.799 | 0.745 | 0.602 | 0.752 | 0.740 | 0.627 | 0.610 | 0.505 | 0.572 | 0.390 | 0.659 |
| 1992 | 0.509 | 0.669 | 0.723 | 1 | 0.777 | 0.804 | 0.767 | 0.607 | 0.559 | 0.679 | 0.677 | 0.663 | 0.612 | 0.625 | 0.622 | 0.666 | 0.645 |
| 1993 | 0.588 | 0.797 | 0.691 | 0.777 | 1 | 0.602 | 0.667 | 0.704 | 0.524 | 0.634 | 0.582 | 0.730 | 0.489 | 0.744 | 0.648 | 0.508 | 0.571 |
| 1994 | 0.450 | 0.667 | 0.657 | 0.804 | 0.602 | 1 | 0.840 | 0.681 | 0.635 | 0.641 | 0.772 | 0.745 | 0.721 | 0.641 | 0.674 | 0.681 | 0.736 |
| 1995 | 0.559 | 0.741 | 0.799 | 0.767 | 0.667 | 0.840 | 1 | 0.786 | 0.714 | 0.763 | 0.794 | 0.828 | 0.789 | 0.711 | 0.804 | 0.714 | 0.759 |
| 1996 | 0.708 | 0.857 | 0.745 | 0.607 | 0.70 | 0.68 | 0.78 | 1 | 0.851 | 0.731 | 0.746 | 0.789 | 0.756 | 0.777 | 0.753 | 0.629 | 0.781 |
| 1997 | 0.719 | 0.764 | 0.602 | 0.559 | 0.52 | 0.63 | 0.71 | 0.851 | 1 | 0.776 | 0.822 | 0.760 | 0.840 | 0.775 | 0.693 | 0.696 | 0.840 |
| 1998 | 0.548 | 0.870 | 0.752 | 0.679 | 0.634 | 0.64 | 0.76 | 0.731 | 0.776 | 1 | 0.936 | 0.783 | 0.825 | 0.780 | 0.652 | 0.614 | 0.835 |
| 1999 | 0.547 | 0.831 | 0.740 | 0.677 | 0.582 | 0.772 | 0.794 | 0.746 | 0.822 | 0.936 | 1 | 0.766 | 0.828 | 0.764 | 0.650 | 0.612 | 0.883 |
| 2000 | 0.524 | 0.818 | 0.627 | 0.663 | 0.730 | 0.745 | 0.828 | 0.789 | 0.760 | 0.783 | 0.766 | 1 | 0.882 | 0.863 | 0.820 | 0.675 | 0.743 |
| 2001 | 0.477 | 0.717 | 0.610 | 0.612 | 0.489 | 0.721 | 0.789 | 0.756 | 0.840 | 0.825 | 0.828 | 0.882 | 1 | 0.797 | 0.789 | 0.753 | 0.803 |
| 2002 | 0.613 | 0.772 | 0.505 | 0.625 | 0.74 | 0.641 | 0.711 | 0.777 | 0.775 | 0.780 | 0.764 | 0.863 | 0.797 | 1 | 0.783 | 0.797 | 0.848 |
| 2003 | 0.434 | 0.678 | 0.572 | 0.622 | 0.648 | 0.674 | 0.804 | 0.753 | 0.693 | 0.652 | 0.650 | 0.820 | 0.789 | 0.783 | 1 | 0.773 | 0.782 |
| 2004 | 0.520 | 0.508 | 0.390 | 0.666 | 0.508 | 0.681 | 0.714 | 0.629 | 0.696 | 0.614 | 0.612 | 0.675 | 0.753 | 0.797 | 0.773 | 1 | 0.792 |
| 2005 | 0.582 | 0.749 | 0.659 | 0.645 | 0.571 | 0.736 | 0.759 | 0.781 | 0.840 | 0.835 | 0.883 | 0.743 | 0.803 | 0.848 | 0.782 | 0.792 | 1 |

The mean correlations lagged from one to sixteen years were $0.785,0.744,0.739,0.704$,
$0.689,0.707,0.734,0.710,0.691,0.669,0.601,0.611,0.581,0.533,0.634$, and 0.581 .

Supplementary Figures (see following pages for figures).
a. Supplementary figure 1: Part 1 mark in relation to time in years since qualifying.
b. Supplementary figure 2: Part 2 mark in relation to time in years since qualifying.
c. Supplementary figure 3: PACES mark in relation to time in years since qualifying.
d. Supplementary figure 4: Part 2 mark in relation to Part 1 mark.
e. Supplementary figure 5: PACES mark in relation to Part 2 mark.
f. Supplementary figure 6: PACES mark in relation to Part 1 mark.
g. Supplementary figure 7: The fitted multivariate, multilevel model.
h. Supplementary figure 8: Correlations/covariances at the candidate and medical school levels.
i. Supplementary figure 9: Relationship between effects at the medical school level at Part 1, Part 2 and PACES.

Supplementary figure 1: Part 1 mark in relation to time in years since qualifying


Note: A few points outside of the range of the axes have been omitted for clarity

Supplementary figure 2: Part 2 mark in relation to time in years since qualifying


Note: A few points outside of the range of the axes have been omitted for clarity

Supplementary figure 3: PACES mark in relation to time in years since qualifying


Note: A few points outside of the range of the axes have been omitted for clarity

Supplementary figure 4: Part 2 mark in relation to Part 1mark


Supplementary figure 5: PACES mark in relation to Part 2mark


Supplementary figure 6: PACES mark in relation to Part 1mark


Supplementary figure 7: The fitted multivariate, multilevel model.

$$
\begin{aligned}
& \operatorname{resp}_{1 j k} \sim \mathrm{~N}(X B, \Omega) \\
& \operatorname{resp}_{2 j k} \sim \mathrm{~N}(X B, \Omega) \\
& \operatorname{resp}_{3 j k} \sim \mathrm{~N}(X B, \Omega) \\
& \text { resp }_{1 j k}=\beta_{0 j k} \text { cons.part } 1_{i j k}+-0.756(0.264) \text { sex.part1 } 1_{i j k}+0.944(0.339) \text { white_1.part } 1_{i j k}+ \\
& -1.035(0.303) \text { white_9.part } 1_{i j k}+-0.558(0.127) \mathrm{Pt} 1 \text { yrqual.part } 1_{i j k} \\
& \beta_{0 j k}=2.726(0.866)+v_{0 k}+u_{0 j k} \\
& \text { resp }_{2 j k}=\beta_{1 j k} \text { cons.part } 2_{i j k}+-0.690(0.210) \text { sex.part } 2_{i j k}+0.681(0.266) \text { white_1.part } 2_{i j k}+ \\
& -0.262(0.245) \text { white_9.part } 2_{i j k}+0.043(0.005) \mathrm{Pt} 2 \text { delay } p a r t 2_{i j k}+-0.579(0.085) \mathrm{Pt} 2 \mathrm{yrqual} \text { part } 2_{i j k} \\
& \beta_{1 j k}=5.843(0.595)+v_{1 k}+u_{1 j k} \\
& \text { resp }_{3 j k}=\beta_{2 j k} \text { cons.paces } \text { ink }+1.115(0.193) \text { sex. paces }_{i j k}+1.027(0.237) \text { white_1 }^{2} \text { paces }_{i j k}+ \\
& -0.229(0.230) \text { white_9.paces }_{i j k}+0.011(0.010) \text { PACESdelay paces }_{i j k}+ \\
& -0.389(0.087) \mathrm{PACESyrqual} \text { paces }{ }_{i j k} \\
& \beta_{2 j k}=1.025(0.581)+v_{2 k}+u_{2 i k} \\
& {\left[\begin{array}{l}
v_{0 k} \\
v_{1 k} \\
v_{2 k}
\end{array}\right] \sim \mathrm{N}\left(0, \Omega_{v}\right): \Omega_{v}=\left[\begin{array}{lll}
8.345(2.850) & & \\
4.533(1.576) & 2.557(0.916) & \\
2.148(0.849) & 1.272(0.491) & 0.787(0.327)
\end{array}\right]} \\
& {\left[\begin{array}{l}
u_{0 j k} \\
u_{1 j k} \\
u_{2 j k}
\end{array}\right] \sim \mathrm{N}\left(0, \Omega_{u}\right): \Omega_{u}=\left[\begin{array}{lll}
75.402(1.648) & & \\
39.129(1.113) & 43.916(1.025) & \\
12.027(1.121) & 9.565(0.747) & 27.234(0.718)
\end{array}\right]}
\end{aligned}
$$

Supplementary figure 8: Correlations/covariances at the candidate and medical school levels.

| 9 | cons.partt | cons.part2 | cons.paces |
| :---: | :---: | :---: | :---: |
| cons.part1 | 75.402 |  |  |
|  | (1.648) |  |  |
|  | Corr: 1.000 |  |  |
| cons.part2 | 39.129 | 43.916 |  |
|  | (1.113) | (1.025) |  |
|  | Corr: 0.680 | Corr: 1.000 |  |
| cons.paces | 12.027 | 9.565 | 27.234 |
|  | (1.121) | (0.747) | (0.718) |
|  | Corr: 0.265 | Corr: 0.277 | Corr: 1.000 |
| 9 | cons.partt | cons.part2 | cons.paces |
| cons.part1 | 8.345 |  |  |
|  | (2.850) |  |  |
|  | Corr: 1.000 |  |  |
| cons.part2 | 4.533 | 2.557 |  |
|  | (1.576) | (0.916) |  |
|  | Corr: 0.981 | Corr: 1.000 |  |
| cons.paces | 2.148 | 1.272 | 0.787 |
|  | (0.849) | (0.491) | (0.327) |
|  | Corr: 0.838 | Corr: 0.897 | Corr: 1.000 |

Supplementary figure 9: Relationship between effects at the medical school level at Part 1, Part 2 and PACES.


Supplementary figure 10: Mean score of all UK graduates taking MRCP(UK) between 1989 and 2005. Score indicates marks relative to the pass mark for the particular exam (shown as the horizontal line). Points are shown $\pm 1$ SE.


Supplementary figures 11a-11e: Mean MRCP(UK) score of graduates of individual medical schools 1989 and 2005. Note that scores have been standardised for overall changes in performance (see Supplementary Figure 10), and hence show differences from the overall average for all UK graduates (shown as the horizontal line at zerO). Points are shown $\pm 1$ SE.
a) Aberdeen, Belfast, Birmingham and Bristol
b) Cambridge, Dundee, Edinburgh, and Glasgow
c) Leeds, Leicester, London and Liverpool
d) Manchester, Newcastle, Nottingham and Oxford
e) Sheffield, Southampton and Wales

## Supplementary figure 11a:



## Supplementary figure 11b:

Cambridge


Edinburgh


## Dundee



Glasgow


Supplementary figure 11c:

Leeds


Year MRCP(UK) Part 1 taken
London


Leicester


Year MRCP(UK) Part 1 taken
Liverpool


Supplementary figure 11d:

Manchester


Nottingham


Newcastle


Year MRCP(UK) Part 1 taken
Oxford


Supplementary figure 11e:

Sheffield


Year MRCP(UK) Part 1 taken
Wales


Southampton


