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Resource-efficient linear optical quantum computation

Daniel E. Browne∗ and Terry Rudolph
QOLS, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW, UK

We introduce a scheme for linear optics quantum computation, that makes no use of teleported
gates, and requires stable interferometry over only the coherence length of the photons. We achieve
a much greater degree of efficiency and a simpler implementation than previous proposals. We
follow the “cluster state” measurement based quantum computational approach, and show how
cluster states may be efficiently generated from pairs of maximally polarization entangled photons
using linear optical elements. We demonstrate the universality and usefulness of generic parity
measurements, as well as introducing the use of redundant encoding of qubits to enable utilization
of destructive measurements - both features of use in a more general context.

PACS numbers: 03.67.Lx,03.67.Mn,42.50.Dv

INTRODUCTION

Our understanding of the sufficient requirements for
quantum computation has been greatly enhanced by
Knill, Laflamme and Milburn’s [1] (KLM) discovery that
measurement induced nonlinearity suffices for efficient
quantum computation. Specifically they showed that lin-
ear optical elements (beam splitters, phase shifters etc)
combined with single photon sources and single photon
detectors can, in principle, be used for efficient quantum
computation. In practice, even given these resources, sig-
nificant obstacles stand in the way of making the KLM
scheme a feasible technology for quantum computation.
These include: (i) The sheer number of optical elements
required, (ii) a need for extremely good, and very large,
quantum memory (iii) a requirement of keeping what is
essentially a giant interferometer phase stable to within
a photon wavelength.

In this article we present a theoretical proposal for
quantum computation with photons and linear optics
which, in addition to a considerable number of other
advantages, either overcomes or greatly alleviates all
these key issues. We then demonstrate a core module of
this proposal experimentally. Our proposal moves com-
pletely away from the use of teleportation to boost non-
deterministic gate probabilities. Rather, we introduce
two “fusion” mechanisms, which allow for the construc-
tion of entangled photonic states, known as cluster states.
These states, introduced by Briegel and Raussendorf [2],
allow for universal quantum computation by performing
single qubit measurements [3]. Since arbitrary single-
qubit measurements are easy to perform on photonic
qubits, it follows that our construction enables efficient
quantum computation.

One key advantage of using cluster states is that the
quantum gates are implemented with unit probability,
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rather than the “asymptotically unit” probability of the
original KLM scheme. Other proposals to avoid this fea-
ture of the KLM scheme were presented by Yoran and
Reznik [4] and Nielsen [5]; the latter also made use of
cluster states. However both of these proposals make
use of the same fundamental teleportation primitives in-
troduced by KLM, and thus suffer similar problematic
features. In contrast, our proposal overcomes the issues
of non-deterministic gate operations by introducing the
use of what we call “redundant encoding” of qubits.

The primary resource we will make use of is two pho-
ton Bell states. These can be obtained in a purely via
linear optics and photo-detection with probability 3/16
from four single photons [6]. In fact, since any non-
trivial non-deterministic gate will create some entangle-
ment, which can then be purified if necessary [7], a wide
variety of options for creating this initial resource exist.
Alternatively, it is also quite feasible that non-linear op-
tical processes be used create the initial entanglement
[8]. Given the Bell states, we proceed to build up the
cluster states using only non-deterministic parity-check
measurements – which involve combining the photons on
a polarizing beam-splitter (PBS) followed immediately
by measurement on the output modes.

In addition to overall smaller resource requirements in
terms of number of single photons, linear optical elements
and measurements required (we estimate factors of sev-
eral orders of magnitude over Nielsen and many orders of
magnitude over KLM, since the entangled resource states
they require are generated via several or many low prob-
ability non-deterministic operations), our proposal has
several other advantages. First, if we are prepared to
accept a small (constant factor) overhead in resources, a
simple extension of our basic proposal also has the signif-
icant advantage that photon-number-discriminating de-
tectors are not required for its implementation.

Moreover, there is no requirement for elaborate inter-
ferometers containing multiple beam splitters in series,
which greatly reduces the complexity of mode-matching
issues in an experimental implementation. More dramat-
ically, it also removes the requirement of maintaining the
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phase stability of an extremely large and complex in-
terferometer. The non-deterministic gates introduced by
KLM, which are also the basis of [4] and [5], rely on Mach-
Zehnder-type interference, which is sensitive to path-
length phase instabilities on the order of the photon’s
wavelength, i.e. around a micrometer for infra-red light.
In contrast, the interference we make use of is of the sim-
ple Hong-Ou-Mandel “coincidence” form, and thus only
requires stability over the coherence length of the pho-
tons, a much larger distance. Recent down-conversion
experiments [9] have obtained coherence lengths on the
order of 10−4 m and in quantum dot experiments [10] co-
herence lengths several orders of magnitude greater than
this have been reported. Thus the basic component of
our scheme is at least three orders of magnitude less sen-
sitive to phase instability than previous proposals.

Let us review the salient features of cluster state com-
putation [3] phrased in terms of photonic qubits. Special
entangled states, known as cluster states [2] are gener-
ated by applying a controlled-phase shift (CZ gate) be-
tween nearest neighbors in a square lattice of qubits ini-
tially in the superposition of horizontal and vertical po-
larization state |H〉 + |V 〉 (all states are unnormalized).
The next-neighbor entanglement can be paraphrased as
a “bond” between the qubits and thus the layout of the
bonds which define the state can be represented graph-
ically, as, for example, in Fig. 1. Once the cluster state
is generated, a quantum logic network is implemented
by measuring the qubits individually in a particular pat-
tern of measurement eigenbases and in a particular order.
Given a cluster state of sufficient size, any quantum cir-
cuit can be implemented, and the states are thus an en-
tanglement resource for universal quantum computation.
Applying Pauli unitary operators to any subset of qubits
in the cluster state creates a different but computation-
ally equivalent cluster state, as when the measurements
for the computation are implemented the extra Pauli’s
are taken into account in the measurement pattern [3].
We thus consider all cluster states which are related by
operations in the Pauli group as equivalent; they are rep-
resented by the same layout of nearest-neighbor bonds.

The square lattice cluster state of Raussendorf and
Briegel’s original scheme is extremely powerful, allowing
the simulation of unitaries directly without decomposing
them into a network of some set of gates. However, if one
wishes to minimize the number of inter-qubit bonds in
the cluster, a different approach is more appropriate. To
simulate a quantum network made up of arbitrary rota-
tions and controlled-phase gates, the cluster state layout
in Fig. 1 (suggested by Nielsen in [5], although his scheme
cannot actually realise its most compact form) is suffi-
cient, and requires far fewer inter-qubit bonds. In this
paper we will concentrate on generating cluster states
with this more compact layout.

First we first describe a “qubit fusion” operation which
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FIG. 1: The measurement pattern (a) simulates the quantum
network (c). Each circle represents a qubit in the cluster and
each line represents a “bond” - i.e. a CPHASE having been
applied between the two connected qubits. The observable
cos(θ)σx +sin(θ)σy is measured on each qubit, with the angle
θ given each time by the symbols inside the circle. The sign
of the measurement angle in all but the first column depend
upon the outcome of measurements to the left of the qubit.
Larger circuits can be simulated by larger cluster states with
extensions of this pattern. Such layouts can be generated by
tiling repeated 3-bond units of the “L-shape” shown (b).

is very important for our proposal. This parity-check
[7, 11] operation is implemented by mixing the two modes
on a polarizing beam splitter (PBS), rotating one of the
output modes by 45◦ before measuring it with a polariza-
tion discriminating photon counter (see Fig. 2(a)). Since
we introduce a second fusion operation later, we refer to
this as Type-I fusion. (Type-I fusion has some paral-
lels with the valence-bond solid interpretation of cluster
states [12].)

The effect of this operation depends upon the out-
come of the measurement. Let us assume that the in-
put state had at most one photon in each spatial mode.
In this case, when one and only one photon is detected
(which occurs with probability 50% for the cluster state
inputs we need to consider), the state is transformed
by the Kraus operators (|H〉〈HH | − |V 〉〈V V |)/

√
2 or

(|H〉〈HH | + |V 〉〈V V |)/
√

2 depending on whether a hor-
izontally or vertically polarized photon is detected. The
aptness of the name “fusion” becomes apparent when
one considers the effect this has when applied to two
qubits in separate cluster states. Since the CZ operation
is diagonal in the computational basis {|H〉, |V 〉}, the
“fused” qubit inherits all the cluster state bonds of the
two qubits which were fused (see Fig. 3, cf. [12]). If the
Type-I fusion is applied to the end-qubits of linear (i.e.
one-dimensional) clusters of lengths n and m, successful
outcomes generate a linear cluster of length (n + m − 1)
(Fig. 3(a)). Note that the two successful outcomes gen-
erate equivalent cluster states.

The Type-I fusion operation is considered to have
failed when either zero or two photons of either polar-
ization are detected. The failure outcomes are described
by Kraus operators |0〉〈V H | and (|2V 〉− |2H〉)〈HV |/

√
2,
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FIG. 2: The two “qubit fusion” non-deterministic gates: (a)
Type-I consists of a mixing the two spatial modes on a polar-
izing beam splitter (PBS), which reflects vertically polarized
light only, and measuring one of the output modes with a
polarization discriminating photon counter after a 45◦ polar-
ization rotation; b) Type-II is obtained from Type-I by adding
both 45◦ rotations to each input mode and measuring the out-
put modes in the rotated basis. The 4 polarization rotators
and PBS could be replaced by a PBS rotated at 45◦.

and have the effect of measuring both input qubits in the
σz eigenbasis (the computational basis). Measuring a
cluster state qubit in the computational basis leaves the
remaining qubits in a cluster state of the same layout
as before the measurement, but now with all the bonds
connected to the measured qubit severed (see Fig. 4(a)).

Starting from a supply of polarization Bell states
(which are equivalent to a 2-qubit cluster state |HH〉 +
|V H〉 + |HV 〉 − |V V 〉), the Type-I fusion operation al-
lows us to efficiently generate arbitrarily long linear clus-
ter states. In the simplest case, a single successful Type-I
fusion combines two Bell pairs into a 3-qubit cluster state,
(which is also a GHZ state). Since, on average, one must
attempt this whole procedure twice before the desired
three-qubit cluster is generated, the expected number of
Bell states used to generate the 3-qubit cluster state is
4. We shall use the “expected number of Bell states con-
sumed” as a measure of the resources required to generate
cluster states of a given size.

A simple strategy to generate a long linear cluster is
to first generate an intermediate supply of 3-qubit clus-
ter states, and then attempt to fuse these one by one to
a larger linear cluster. Each time, with probability 1/2,
the cluster grows in length by 2 qubits, or, equally likely,
loses a qubit. A failed attempt creates a Bell pair from
the 3-qubit cluster, which can be reused in the generation
of further 3-qubit clusters. Thus, on average, the cluster
grows by 1/2 a qubit in length for each attempt, and the
resources needed scale as (2 × 4 − 1) = 7 Bell pairs per
qubit in the linear cluster. (The subtracted amount rep-
resents the 2-qubit clusters which can be reused). A more
efficient method is to first generate 5-qubit clusters by
combining 3-qubit clusters. Since failures leave 2-qubit
clusters which can be reused, the mean resources required
to create a 5-qubit cluster are 14 Bell pairs. To utilize
these in creating arbitrary length clusters one may do

a)

b)

FIG. 3: Two examples of how clusters states can be joined
together by “fusing” qubits from each. a) Fusing the end-
qubits of two linear clusters of length n and m creates a cluster
of length (n+m−1). b) The mid qubits of two linear clusters
are fused to create a two-dimensional cluster with a cross-like
layout. In this way non-trivial cluster layouts can be created.

the following: One attempts to add the 5-qubit cluster,
if the fusion fails one then tries to attach the 4-qubit clus-
ter which is generated, if it fails again a 3-qubit cluster is
created which can be reused to generate further 5-qubit
clusters. Taking this recycling into account, the mean
resources needed with this method are 6.5 Bell pairs per
qubit added to the linear cluster. We do not know the
optimal procedure for generating the linear clusters by
Type-I fusion.

One-dimensional clusters are not, however, sufficient
for universal quantum computation, as their geometry
doesn’t permit the implementation of 2-qubit gates. We
thus need to create two-dimensional clusters, which can
also be done by fusion, as depicted in Fig. 3(b). More pre-
cisely, we envisage fusing together qubits in linear clus-
ters, as is illustrated in Fig. 5, which shows how the lay-
out from Fig. 1 can be achieved.

Type-I fusion operation is not appropriate for carrying
out these fusions, since its failure outcome is a measure-
ment in the computational (σz) basis, which would split
the linear clusters in two (Fig. 4(a)). Another approach
to fusion is clearly necessary. In this alternate approach
we introduce the use of redundant encoding. A single
qubit in the cluster may be represented by multiple pho-
tons, such that a generic cluster state |φ0〉|0〉 + |φ1〉|1〉
could be encoded |φ0〉|H〉⊗n + |φ1〉|V 〉⊗n, where we have
singled out from the rest of the cluster the particular
qubit which is redundantly encoded with n photons.
Note that a σx measurement (projection onto |H〉± |V 〉)
on one of the redundant photons does not destroy the
cluster state, it removes one photon from the redundant
encoding and perhaps adds an inconsequential phase.

A σx measurement also has an interesting effect when
performed on a qubit in a linear cluster; it does not split
the cluster, rather it combines the adjacent qubits into a
single redundantly encoded (by two photons) qubit, re-
taining the bonds attached to each, as shown in Fig. 4(b).

To utilize these features of σx measurements, we make
use of the gate depicted in Fig. 2(b). When it succeeds,
with probability 1/2, (as heralded by the detection of
a photon in each output mode) this gate is a destruc-
tive projective measurement onto maximally entangled
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FIG. 4: Certain measurements on a cluster qubit will leave the
remaining qubits in a new cluster state with a different layout:
a) A σz eigenbasis measurement removes the qubit from the
cluster and breaks all bonds between that qubit and the rest of
the cluster. b) A σx measurement on a linear cluster removes
the measured qubit and causes the neighboring qubits to be
joined such that they now represent a single logical qubit with
logical basis |00〉, |11〉. c) A σy measurement removes the
qubit from the linear cluster but links the neighboring qubits.
These gain an extra π/2 rotation around the z-axis which is
accounted for when they are measured.

states, i.e. the Kraus operators are (〈HH | + 〈V V |)/
√

2,
(〈HV | + 〈V H |)/

√
2. The failure outcome (signaled by

detecting no photons in one of the modes) effectively
performs a projective measurement of σx on each of the
photons. Note that the Type-II fusion does not require
the discrimination between different photon numbers.

We see therefore, that if this gate is applied to a single
photon of each of a pair of logical qubits in the redun-
dant n-photon encoding, it will lead to the desired fusion.
If it fails then one photon is removed from each qubit’s
redundant encoding, and the gate could be reattempted,
as long as sufficient photons remained in each qubits re-
dundant encoding.

It turns out that this gate works even when one of
the logical qubits is represented by two photons, and the
second by just a single photon, since these operators take
the state (|φ0〉|HH〉+ |φ1〉|V V 〉)⊗ (|ξ0〉|H〉+ |ξ1〉|V 〉) to
|φ0〉|H〉|ξ0〉 + |φ1〉|V 〉|ξ1〉 and |φ0〉|H〉|ξ1〉 + |φ1〉|V 〉|ξ0〉
respectively, which are both the desired “fused” cluster
states. We call this a Type-II fusion. The effect of the
failure outcome of the Type-II fusion is to perform a σx

measurement on each photon. This has the consequence
of converting the redundantly encoded 2-photon logical
qubit into a 1-photon logical qubit on the one cluster,
while creating a new redundantly encoded 2-photon qubit
on the lower linear cluster (see Fig. 6). Thus the fusion
attempt can be immediately re-attempted. The mean
number of times that the fusion must be attempted is
simply

∑∞

n=1(1/2)nn = 2.
Cluster states with the layout illustrated in Fig. 1 can

be generated by combining the two processes outlined
above, i.e. first generating of linear clusters by Type-I
fusion, and then fusing their qubits by Type-II fusion to
form the desired 2-dimensional cluster.

We can quantify the resources required to build the
cluster by recognizing that the layout of Fig. 1 can be bro-
ken down into the L-shaped units illustrated in Fig. 1(b).
Thus, the resources to construct such a L-shape gives
an appropriate way of quantifying the resources required

FIG. 5: If qubits from a linear cluster are fused according to
the above pattern, a cluster state with the desired layout is
generated.

per two-qubit gate in the logical network. The L-shape
can be constructed from two linear clusters via a single
(successful) Type-II fusion. A method of generating the
L-shape is illustrated in Fig. 6. On average, two Type-
II fusion attempts are required and 8 qubits bonds from
the linear clusters involved are used up. Note that unlike
in [5], there is no back-propagation of errors here into
the already generated cluster, meaning that the cluster
qubits can be measured as soon as the next adjacent L-
shape has been completed. Since constructing the linear
clusters requires on average no more than 6.5 Bell pairs
for each qubit in the cluster, construction of the L-shape
requires on average no more than 52 Bell pairs. This
is a great improvement compared with other linear op-
tics based quantum computation schemes of which the
authors are aware [1, 4, 5].

For instance, the most efficient scheme so far is
Nielsen’s approach in [5]. Remember that each attempt
of the implementation of a KLM CZn2/(n+1)2 gate re-
quires a 4n-photon entangled state for its implementa-
tion. Nielsen calculates that 24 successful CZ4/9 gates
are required per implemented two-qubit logical gate.
Considering the number of times that a gate with suc-
cess probability (4/9) must be repeated, we see that in
Nielsen’s scheme 24 × 9

4 = 54 8-photon entangled states
are consumed per two-qubit gate. These 8-photon en-
tangled states must be generated via a very complicated
non-deterministic procedure involving multiple beam-
splitters and non-deterministic gates (see [13]). In our
simpler scheme, the resources per logical 2-qubit gate in
our network are the same as the resources used to add a
“L-shape” to the cluster, on average 52 Bell pairs.

We have made minimal use of the redundant encoding
introduced for Type-II fusion. In fact, by using a redun-
dant encoding for all qubits in a cluster it is possible to
use only the parity gate of Fig. 2(b) for all gate opera-
tions. This has the considerable advantage that the gate
can be implemented without photon number discriminat-
ing detectors, and naturally detects photon absorption
errors. Since, in this case, two photons would be mea-
sured in each fusion, Bell states would not be a sufficient
initial resource, one would have to use three-photon clus-
ter states instead, which increases the resource require-
ments by a constant factor. The nature of such a redun-
dant encoding also allows for a single qubit to simulta-
neously be involved in bonding operations with multiple
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FIG. 6: Here we illustrate the construction of the “L-shape”:
a) A σx-measurement causes the neighboring qubits to be
joined into a single logical qubit in the redundant encoding.
b) Type II-fusion is now attempted between this logical qubit
and a qubit in the lower cluster. The fusion succeeds with
probability 1/2. c1) If the fusion succeeds, a single further σy

measurement creates the desired L-shape (see Fig. 4c). c2) If
it fails, a redundantly encoded qubit is created on the lower
cluster. The qubits are now in a pattern similar to step b, so
with the addition of two further qubits another Type-II fusion
can be attempted. These steps are repeated until a successful
fusion is accomplished. On average, creating the L-shape uses
up 8 bonds from the linear clusters involved.

(possibly widely separated) other qubits. Incidentally,
CZ gates (as opposed to fusion operations) between re-
dundantly encoded qubits can be directly implemented
via the gate of Fig. 2(b), with an extra 45◦ rotation on
one input mode.

We have introduced a scheme for linear optical quan-
tum computation which has significantly lower resource
requirements than previous proposals, and would be far
less demanding in terms of phase stability. Although we
have phrased our results in terms of photon polarization,
parity measurements are a natural 2-qubit measurement
in bosonic systems. In fact, there has been much interest
in the general question of when measurements can re-
place (all or part) of the processes of the standard circuit
model. Our results can be interpreted as contributing to
this effort by providing the first proof that parity mea-
surements (even non-deterministic ones), combined with

single qubit transformations/measurements, are univer-
sal for quantum computing.
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