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A frustrated system is one whose symmetry precludes the possibility that every pairwise interaction
(“bond”) in the system can be satisfied at the same time. Such systems are common in all areas
of physical and biological science. In the most extreme cases they can have a disordered ground
state with “macroscopic” degeneracy, that is, one that comprises a huge number of equivalent states
of the same energy. Pauling’s description of the low temperature proton disorder in water ice was
perhaps the first recognition of this phenomenon, and remains the paradigm. In recent years a new
class of magnetic substance has been characterised, in which the disorder of the magnetic moments
at low temperatures is precisely analogous to the proton disorder in water ice. These substances,
known as spin ice materials, are perhaps the “cleanest” examples of such highly frustrated systems
yet discovered. They offer an unparalleled opportunity for the study of frustration in magnetic
systems at both an experimental and a theoretical level. This article describes the essential physics
of spin ice, as it is currently understood, and identifies new avenues for future research on related
materials and models.

Competing or frustrated interactions are a common
feature of condensed matter systems. Broadly speaking,
frustration arises when a system cannot, due to local geo-
metric constraints, minimize all the pairwise interactions
simultaneously ( [1]). In some cases, the frustration can
be so intense that it induces novel and complex phenom-
ena. Frustration is at the origin of the intricate structure
of molecular crystals, various phase transitions in liquid
crystals and the magnetic domain structures in ferromag-
netic films. It has also been argued to be involved in the
formation of the stripe-like structures observed in cuprate
high-temperature superconductors. The concept of frus-
tration is a broad one that extends beyond the field of
condensed matter physics. For example, the ability of
naturally occurring systems to “resolve” frustrated in-
teractions has been argued to have bearings on life itself,
exemplified by the folding of a protein to form in a single
and well prescribed structure with biological functional-
ity.

Historically, the first frustrated system identified was
crystalline ice, which has residual frozen-in disorder re-
maining down to extremely low temperature, a property
known as residual, or zero point entropy. In 1933, Gi-
auque and co-workers accurately measured this entropy (
[2,3]), enabling Pauling to offer his now famous expla-
nation in terms of the mismatch between the crystal
symmetry and the local bonding requirements of the wa-
ter molecule ( [4]). He predicted a special type of pro-
ton disorder that obeys the so-called “ice rules”. These
rules, previously proposed by Bernal and Fowler ( [5]),
require that two protons are near to and two are further
away from each oxide ion, such that the crystal structure
consists of hydrogen bonded water molecules, H2O(see
Fig.1). Pauling showed that the ice rules do not lead
to order in the proton arrangement but rather, the ice
ground state is “macroscopically degenerate”. That is

to say, the number of degenerate, or energetically equiv-
alent proton arrangements diverges exponentially with
the number N of water molecules. Pauling estimated the
degeneracy to be ∼ (3/2)N/2 where N is the number of
water molecules, typically ∼ 1024 in a macroscopic sam-
ple. This leads to a disordered ground state with a mea-
surable zero point entropy S0 related to the degeneracy:
S0 ∼ (R/2) ln(3/2), where R is the molar gas constant.
Pauling’s estimate of S0 is very close to the most accurate
modern estimate ( [6]) and consistent with experiment (
[2]). The disordered ice-rules proton arrangement in wa-
ter ice was eventually confirmed by neutron diffraction
experiments ( [7,8]).

Magnetic systems offer themselves as the ideal bench-
mark for generic concepts pertaining to collective phe-
nomena in nature. This is due in part to the availability
of a large variety of diverse magnetic materials that can
be chosen to approximate simple theoretical “toy mod-
els” of collective behaviour, and in part to their ease of
study by a battery of experimental techniques. Over the
last fifty years, experimentalists have characterised new
classes of frustrated magnetic behaviour and theoreti-
cians have been motivated by the broad conceptual ap-
plicability of magnetic models to investigate simple frus-
trated spin systems ( [9–11]). These include “energetic”
generalisations of the ice model that display a wealth
of interesting thermodynamic phenomena in close resem-
blance with those observed in real ice ( [12,13]). However,
while theoretical studies of ice-like phenomena in frus-
trated ice models have long flourished, very few, if any
real magnets could be found to display a close thermo-
dynamic resemblance to common ice. This remained for
sometime a disappointing situation where close contact
between theoretical studies on magnetic ice models and
real systems was lacking, a somewhat untenable predica-
ment in science where one is generally aiming at testing
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theoretical concepts against experiments, and vice versa.(a) (b) (c)
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FIG. 1. (A) Local proton arrangement in water ice, show-

ing oxide ions (large white circles) and protons (hydrogen ions,
small black circles). Each oxide is tetrahedrally coordinated
with four other oxides, with two near covalently bonded pro-
tons, and two are further hydrogen bonded protons. The
low energy configurations obey the so-called “ice rules” ([5])
where each oxide has two “near” and two “far” protons. (B)
Same as in (A), but where now the position of the protons
are represented by displacement vectors (arrows) located at
the mid-points of the oxide-oxide lines of contact. The ice
rules in (A) translates into a “two in − two out” configura-
tion of the displacement vectors. (C) Pyrochlore lattice of
corner-sharing tetrahedra, as occupied by the magnetic rare
earth ions in the spin ice materials Ho2Ti2O7 and Dy2Ti2O7.
The magnetic Ising moments occupy the corners of the tetra-
hedra, as shown on the lower left “downward” tetrahedron
of the lattice (arrows). The spins here are the equivalents
of the proton displacement vectors in (B). Each spin axis is
along the local 〈111〉 quantization axis, which goes from one
site to the middle of the opposing triangular face (as shown
by the disks) and meets with the three other 〈111〉 axes in
the middle of the tetrahedron. In the spin ice materials the
“two in − two-out” condition arises from the combined effect
of magnetic coupling and anisotropy. For clarity, other spins
on the lattice are denoted by black and white circles, where
white represents a spin pointing into a downward tetrahe-
dron while black is the opposite. The entire lattice is shown
in an ice-rules state (two black and two white sites for every
tetrahedron). The hexagon (thick gray line) relates to the
discussion in section III. It shows the smallest possible loop
move involving multiple spins, and corresponds to reversing
all colors (spins) on the loop to produce a new ice-rules state.
These extended type of excitations or processes are the ones
that allow the system to explore the quasi-degenerate ice rule
manifold at low temperature. Common water ice at atmo-
spheric pressure, ice Ih, possess a hexagonal structure while
here, the magnetic lattice has cubic symmetry. Strictly speak-
ing, the Ising pyrochlore problem is equivalent to cubic ice,
and not the hexagonal phase. Yet, this does not modify the
“ice-rule” analogy (or mapping) or the connection between
the statistical mechanics of the local proton coordination in
water ice and the low temperature spin structure of the spin
ice materials.

Anderson had noticed in 1956 the formal analogy that
exists between the statistical mechanics of cation order-
ing on the cubic B-site lattice in “inverse” spinel mate-
rials and the statistical mechanics of antiferromagneti-

cally coupled two-state Ising magnetic moments on the
same lattice (referred to here as the pyrochlore lattice,
Fig.1C) ( [14]). Both systems were shown to map ex-
actly onto Pauling’s model of proton disorder in ice. The
realization of Anderson’s model in an antiferromagnetic
material would require spins to point along or antipar-
allel to a global z axis direction. However, there is no
reason to prefer the z over the x or the y direction in a
lattice with global cubic symmetry, and this renders the
global antiferromagnetic Ising model unrealistic with no
direct relationship to any real magnetic material. The
experimental situation changed in 1997 when it was no-
ticed by Harris et al. ( [15]) that a model of ferromag-
netism on the pyrochlore lattice would exactly map onto
the ice model so long as each Ising-like magnetic moment
was constrained to point along the axis joining the cen-
ters of the two tetrahedra to which it belongs (Fig. 1C).
This was a surprising observation, because naively one
would not expect frustration in a ferromagnet. However,
the ferromagnetic model is compatible with cubic sym-
metry and was observed to be approximated by the ap-
parently ferromagnetic pyrochlore material Ho2Ti2O7 (
[15]). This constituted the first simple physical realiza-
tion of a real three dimensional magnetic analogue of
common ice, and the name “spin ice” was coined to em-
phasize this analogy.

Experiments on spin ice have mirrored, using mod-
ern sophistication, those originally conducted on water
ice. However, the spin ice materials lend themselves
more readily to experiment than does water ice and more
closely approximate tractable theoretical models. This
has led to much recent interest devoted to the problem
of zero point entropy and to the study of the broad con-
sequences of geometric frustration. We review the recent
experimental and theoretical developments in the study
of spin ice materials, and discuss what are possible new
and exciting avenues of research in this problem.

I. DISCOVERY OF SPIN ICE

In a flux grown crystal of Ho2Ti2O7 ( [16]) (Fig. 2)
the octahedral habit reflects the cubic symmetry of the
pyrochlore structure while the amber colour and strong
reflectivity are indicative of a band gap near the vis-
ible/ultraviolet boundary (3.2 eV). In Ho2Ti2O7, the
Ho3+ ions occupy a pyrochlore lattice of corner-linked
tetrahedra (illustrated in Fig. 1C). Magnetism arises
from the Ho3+ ions, Ti4+ being non-magnetic. Ho3+ has
a particularly large magnetic moment of approximately
10µB that persists to the lowest temperatures and makes
the crystals sufficiently paramagnetic to stick to a per-
manent magnet even at room temperature (Fig. 2). The
large, temperature independent, moment is ensured by
the local crystallographic environment of Ho3+ in the py-
rochlore stucture ( [17–21]). Each tetrahedron of Ho3+
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ions has an oxide ion at its centre, so two of these ox-
ide ions lie close to each Ho3+ along the 〈111〉 crystallo-
graphic axis that connects the centre of the tetrahedron
to its vertex. The anisotropic crystallographic environ-
ment changes the quantum ground state of Ho3+ such
that its magnetic moment vector has its maximum pos-
sible magnitude and lies parallel to the local 〈111〉 axis.
In the language of quantum mechanics the 5I8 free ion
state is split by the local trigonal crystal field such that
the ground state is an almost pure |J, MJ〉 = |8,±8〉 dou-
blet with 〈111〉 quantization axis. The first excited state
lies several hundreds of Kelvin above the ground state as
revealed by inelastic neutron scattering measurements (
[21]). At temperatures of the order of ten Kelvin or be-
low, the excited states are not accessed thermally. The
Ho3+ moments therefore behave as almost pure two-state
spins that approximate classical Ising spins pointing “in”
or “out” of the elementary tetrahedra (Fig. 1). Direct
evidence of the single ion anisotropy comes from bulk
magnetization ( [18,19,22]), where saturation is observed
at roughly half the expected value, owing to the fact
that applied fields of several Tesla are too weak to turn
the Ho3+ significantly away from their local quantisation
axes.

SINGLE CRYSTAL ofHo2Ti2O7 STUCKEDto a MAGNET
FIG. 2. Flux-grown octahedral crystal of Ho2Ti2O7 stuck

to a NdFeB permanent magnet at room temperature. The
strong paramagnetism reflects the large magnetic moment of
Ho3+.

Experimental investigation of the spin correlations in
Ho2Ti2O7 began in 1996 ( [15]). Prior to this, suscep-
tibility measurements ( [24]) had revealed a peak in the
susceptibility of Ho2Ti2O7 at ∼ 1 K, suggestive of an-
tiferromagnetic interactions. The first muon spin relax-
ation (µSR) and neutron scattering experiments seemed
to confirm this frustrated antiferromagnetic scenario with
no evidence of long range order down to ∼ 50 mK (
[15,23]). However, a pyrochlore antiferromagnet, with
essentially infinite local 〈111〉 Ising anisotropy, should
develop a long range ordered state at a critical temper-
ature of order of the Curie-Weiss temperature, ∼ 1 K,
( [25,26]). Consequently, the failure of Ho2Ti2O7 to dis-
play a transition down to ∼ 50 mK was found to be rather
paradoxical. However, new susceptibility studies soon
suggested a rather different picture. The large moment of
Ho3+ was found to produce a strong demagnetizing field
that caused the experimental Curie-Weiss temperature
(measured by the intercept of the inverse susceptibility

versus temperature curve) to be either ferromagnetic or
antiferromagnetic depending on crystal shape. Careful
correction for this shape-dependent effect indicated that
θCW = 1.9±0.1 K, an intrinsically ferromagnetic value. It
therefore seemed that Ho2Ti2O7 should be described, at
least to a first approximation, as a 〈111〉 Ising ferromag-
net. But this description at first seemed contrary to the
observed absence of long range order − it was “obvious”
that a ferromagnet should order at low temperature!

As often in science, the paradox was resolved as soon
as the “obvious” was abandoned in the face of exper-
imental evidence. Calculation showed that the ground
state of a tetrahedron of ferromagnetically coupled 〈111〉
Ising spins is the “two in − two out” state illustrated
in Fig 1. It was then recalled that Anderson had shown
the pyrochlore lattice to be the medial lattice (lattice
formed by the mid points of the bonds) of the diamond-
like oxide lattice of cubic ice ( [14]). Hence, the “two in
− two out” condition is analogous to the ice rules and
the ground state of the nearest neighbour ferromagnetic
model is, like that of ice, macroscopically degenerate (
[15,25]). The absence of long range order in Ho2Ti2O7

could then be explained at a qualitative level and the
“spin ice” model, the 〈111〉 Ising ferromagnet, was chris-
tened. This simple model was found to be consistent
with the field-induced ordering patterns observed by neu-
tron scattering ( [15]). On the basis of similar suscep-
tibility properties, Dy2Ti2O7 and Yb2Ti2O7 were also
suggested to be spin ice materials ( [27]). So far, only
Ho2Ti2O7 ( [15,28]), Dy2Ti2O7 ( [29,30]), and more re-
cently Ho2Sn2O7 ( [31]), have been positively confirmed.

The magnetization and elastic neutron scattering mea-
surements described above provided the initial com-
pelling arguments for the spin ice phenomenology associ-
ated with Ho2Ti2O7 ( [15]). However, specific heat mea-
surements by Ramirez et al. ( [29,32]) on Dy2Ti2O7 have
given a more direct experimental evidence of the macro-
scopic degeneracy associated with the spin ice rules. The
top panel of Fig. 3 shows the temperature dependence
of the magnetic specific heat, C(T ), for a powdered sam-
ple of Dy2Ti2O7 ( [29]). The data show no sign of a
phase transition as would be indicated by a sharp fea-
ture in C(T ). Instead, one observes a broad maximum
at a temperature Tpeak ∼ 1.2 K, which is of the order of
the energy scale of the magnetic interactions in that ma-
terial, as measured by the Curie-Weiss temperature, ∼ 1
K. The specific heat has the appearance of a Schottky
anomaly, the characteristic curve for a system with two
energy levels. At the low temperature side of the Schot-
tky peak, C(T ) falls rapidly towards zero, indicating an
almost complete freezing of the magnetic moments.

Ramirez et al. determined the ground state entropy
using a method analogous to that applied by Giauque
and co-workers to water ice. In general one can only
measure a change in entropy between two temperatures.
Giauque et al. computed the entropy change of water be-
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tween liquid helium temperatures and the gas phase by
integrating the specific heat ( [2]) and then comparing
this value with the absolute entropy calculated for the
gas phase using spectroscopic measurements of the en-
ergy levels of the water molecule. The difference gave the
residual entropy, later calculated by Pauling ( [4]). The
approach of Ramirez et al. was to integrate the magnetic
specific heat between T1 = 300 mK in the frozen regime
and T2 = 10 K in the paramagnetic regime, where the
expected entropy should be R ln(2) for a two state sys-
tem. The magnetic entropy change, ∆S, was determined
by integrating C(T )/T between these two temperatures:

∆S1,2 =

∫ T2

T1

C(T )

T
dT . (1)

The lower panel of Fig.3 shows that the magnetic entropy
recovered is approximately 3.9 Jmol−1K−1, a number
that falls considerably short of the value Rln(2) ≈ 5.76
Jmol−1K−1. The difference, 1.86 Jmol−1K−1 is quite
close to Pauling’s estimate for the entropy associated
with the extensive degeneracy of ice: (R/2) ln(3/2) =
1.68 Jmol−1K−1, consistent with the existence of an ice-
rule obeying spin ice state in Dy2Ti2O7.

FIG. 3. (A) Specific heat and (B) entropy data for
Dy2Ti2O7 ([29]) compared with Monte Carlo simulation re-
sults for the dipolar spin ice model ([34]), with Jnn = −1.24
K, Dnn = 2.35 K and system size L = 4.

II. DIPOLAR SPIN ICE

As mentioned above, the magnetic cations Ho3+ and
Dy3+ in Ho2Ti2O7 and Dy2Ti2O7 carry a very large mag-
netic moment, µ, of approximately 10µB. Furthermore,
these moments are exceedingly well characterized by al-
most perfect effective classical Ising spins constrained to

point along the local 〈111〉 directions below a temper-
ature of order of 200 K for Ho2Ti2O7 and 300 K for
Dy2Ti2O7. This is born out from direct experimental evi-
dence (see Fig.2), magnetization measurements, inelastic
neutron measurements and ab-initio theoretical calcula-
tions ( [17–21]). Large magnetic moments are reasonably
common among rare-earth materials, and this gives rise
to a sizeable magnetic dipole energy. With a cubic unit
cell dimension a ≈ 10.1Å, an estimate of the dipolar en-
ergy scale for two 〈111〉 Ising moments, Dnn, gives:

Dnn =
5

3
(
µ0

4π
)

µ2

r3
nn

≈ +2.4 K , (2)

where rnn = (a/4)
√

(2) is the nearest-neighbor distance.
As discussed below, the 5/3 factor originates from the
orientation of the Ising quantization axes relative to the
vector direction connecting nearest neighbor magnetic
moments. The experimentally determined Curie-Weiss
temperature, θCW, extrapolated from temperatures be-
low T ∼ 100 K is θCW ∼+1.9 K for Ho2Ti2O7 ( [15])
and +0.5 K for Dy2Ti2O7 ( [29]), respectively. These
two values show that θCW is of the same order of mag-
nitude as the nearest neighbor dipolar energy scale Dnn.
Furthermore, it is well known that rare-earth ions tend
to possess very small exchange energies. Consequently,
as originally pointed out by Siddharthan et al. ( [33]),
magnetic dipole-dipole interactions dominate exchange
in both Ho2Ti2O7 and Dy2Ti2O7, the opposite situation
to transition metal compounds where the dipolar forces
are typically a very weak perturbation on exchange inter-
actions. We refer to spin ice materials where magnetic
dipolar interactions are the leading energy interactions
as “dipolar spin ice” materials.

In order to consider the combined role of exchange and
dipole-dipole interactions, it is useful to define an effec-
tive nearest neighbor energy scale, Jeff , for 〈111〉 Ising
spins:

Jeff ≡ Jnn + Dnn , (3)

where Jnn is the nearest neighbor exchange energy be-
tween 〈111〉 Ising moments. This simple description pre-
dicts that a 〈111〉 Ising system could display spin ice
properties, even for antiferromagnetic nearest neighbor
exchange, Jnn < 0, so long as Jeff = Jnn + Dnn > 0. Fits
to experimental data give Jnn ∼ −0.52 K for Ho2Ti2O7

( [28]) and Jnn ∼ −1.24 K for Dy2Ti2O7 ( [34]). Thus,
Jeff is positive (using Dnn = 2.35K), hence ferromagnetic
and frustrated, for both Ho2Ti2O7 (Jeff ∼ 1.8 K) and
Dy2Ti2O7 (Jeff ∼ 1.1 K). It would therefore appear nat-
ural to ascribe the spin ice behavior in both Ho2Ti2O7

and Dy2Ti2O7 to the positive Jeff value as in the sim-
ple model of Bramwell and Harris ( [25]). However, the
situation is much more complex than it appears.

Dipole-dipole interactions are “complicated”; (i) they
are strongly anisotropic since they couple the spin, S

ẑi

i ,

4



and space, rij , directions, and (ii) they are also very long
range (∝ r−3

ij ). For example, the second nearest neigh-

bor distance is
√

3 times larger than the nearest neighbor
distance, and one then has a second nearest neighbor
energy scale, Dnnn ∼ 0.2Dnn. This implies an impor-
tant perturbation compared to Jeff = Jnn + Dnn < Dnn,
especially in the context of antiferromagnetic (negative)
Jnn. Specifically, for Dy2Ti2O7, the second nearest neigh-
bor energy scale is about 40% of the effective nearest
neighbor energy scale, Jeff − a large proportion! One
might therefore expect that the dipolar interactions be-
yond nearest neighbor would cause the different ice-rule
states to have different energies, hence possibly breaking
the degeneracy of the spin ice manifold. This would re-
sult in long range Néel order with a critical temperature
TN ∼ O(Dnn). Thus, there arises a puzzling and fasci-
nating problem posed by the dipolar spin ice materials,
that we summarise in two questions:

• Are the experimental observations of spin ice be-
havior consistent with dominant long range dipolar
interactions?

• If so, then why do long range dipolar interactions
fail to destroy spin ice behavior ?

The minimal model one needs to consider to investigate
these questions includes nearest neighbor exchange and
long range magnetic dipole interactions:

H = −J
∑

〈ij〉

S
ẑi

i · Sẑj

j

+ Dr3
nn

∑

i>j

S
ẑi

i · Sẑj

j

|rij |3
−

3(Sẑi

i · rij)(S
ẑj

j · rij)

|rij |5
. (4)

The first term is the near neighbor exchange interaction,
and the second term is the dipolar coupling between the
〈111〉) Ising magnetic moments. For the open pyrochlore
lattice structure, we expect further neighbor exchange
coupling to be very small ( [35]), so it can be neglected
to a good approximation. Here the spin vector S

ẑi

i la-

bels the Ising moment of magnitude |Sẑi

i | = 1 at lat-
tice site i and oriented along the local Ising 〈111〉 axis
ẑi. The distance |rij | is measured in units of the near-
est neighbor distance, rnn. J represents the exchange
energy and D = (µ0/4π)µ2/r3

nn. Because of the local
Ising axes, the effective nearest neighbor energy scales
are Jnn ≡ J/3 and, as mentioned above, Dnn ≡ 5D/3,
since ẑi · ẑj = −1/3 and (ẑi · rij)(rij · ẑj) = −2/3. If
Dnn = 0 one obtains the spin ice model originally pro-
posed by Harris et al ( [15,25]), henceforth referred to as
the “near neighbour spin ice model”.

Siddharthan et al. ( [33]) first addressed the role of
dipole-dipole interactions in Ising pyrochlore materials,
both Dy2Ti2O7 ( [29]) and Ho2Ti2O7 ( [33,36]). They

considered Eq. 4 above, but restricted the dipolar lat-
tice sum up to the first five nearest neighbors ( [33]), or
ten and twelve nearest neighbors ( [36]). With the val-
ues they used for Jnn and Dnn the conclusion that they
reached was that a spin ice state could exist for their
model of Dy2Ti2O7 but not for their model of Ho2Ti2O7,
where a partially ordered state was predicted. It was sug-
gested that a transition to this partially ordered state was
consistent with a sharp rise in the experimental specific
heat of Ho2Ti2O7 observed below ∼ 1 K. The reported
specific heat rise has more recently been shown to be con-
sistent with the freezing of the nuclear spins of 165Ho, as
discussed below. However, the results of Ref. ( [33]) did
appear to give a negative answer to the first of the above
questions: the dipolar model, it seemed, was inconsistent
with the experimental data that supported a disordered
spin ice ground state for Ho2Ti2O7 ( [15]).

On the other hand, direct dipolar lattice sums are no-
toriously tricky to handle, and truncation of dipolar in-
teractions at some arbitrarily chosen fixed finite distance
often gives rise to spurious results. One approach that
has been successfully used to obtain reliable quantita-
tive results for real dipolar materials ( [37]) is the Ewald
summation method ( [38]). This method is conceptually
akin to the well known Madelung approach used to calcu-
late electrostatic Coulomb energies in ionic crystals. The
Ewald summation method generates an absolutely con-
vergent effective dipole-dipole interaction between two
spins i and j. This is done by periodically replicating
a specified volume, and summing convergently the in-
teractions between i and j and all the periodically re-
peated images of j. Once an effective dipole-dipole inter-
action between spins i and j within the simulation cell
has been derived via the Ewald summation technique,
one can perform Monte Carlo simulations using the stan-
dard Metropolis algorithm. This technique was applied
to the dipolar spin ice model by den Hertog and Gingras (
[34]), who found, contrary to the results of refs.( [33,36]),
no sign of full or partial ordering for all Jeff/Dnn ≥ 0.09.
The system was characterized as having spin-ice behav-
ior by determining the entropy, via numerical integration
of C(T )/T . For Jeff/Dnn ≥ 0.09 the recovered mag-
netic entropy was found to be within a few per cent of
Pauling’s value R[ln(2) − (1/2) ln(3/2)] ( [34]). It was
shown in Ref. ( [34]) that the only free parameter in the
theory is Jnn, which can be determined by comparing
the experimental and theoretical specific heat tempera-
ture peak Tpeak referred to above. This procedure gives
Jnn = −1.24 K for Dy2Ti2O7 ( [34]) and Jnn = −0.52 K
for Ho2Ti2O7 ( [28]). Figure 3 shows the very good agree-
ment obtained from Monte Carlo simulations results, us-
ing Ewald summation methods ( [34]), with the exper-
imental results for Dy2Ti2O7 ( [29]). These numerical
results give a definite answer to at least the first of the
two questions posed above: dominant long ranged dipo-
lar interactions are indeed consistent with the spin ice
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behaviour observed in the dipolar spin ice materials (
[39]). We find it remarkable that long range dipolar cou-
pling can, through some effective self-screening, restore
the ice-rules degeneracy to such a striking degree ( [40]).
Consequently, we feel that the second question − the
“why?” − has not yet been answered in any simple and
definite way.

In order to further test the proposal that the forma-
tion of the spin ice state in real materials is due to long
range dipole-dipole interactions, one needs to compare
the spin-spin correlations in real systems with that pre-
dicted by the dipolar spin ice model. Recently, elastic
neutron scattering experiments on a flux grown single
crystal of Ho2Ti2O7 have found excellent agreement with
the predictions of the dipolar spin ice model, and estab-
lish unambiguously the spin ice nature of the zero field
spin correlations in that material ( [28]). These results
also show that the dipolar interactions beyond nearest
neighbour do slightly favour some of the spin ice states
over others although they do not significantly affect the
ground state entropy.

Figure 4 shows the elastic neutron scattering pattern
of Ho2Ti2O7 at T ∼ 50 mK and compares it with the-
oretical predictions for the near neighbour and dipolar
spin ice models. The pattern for near neighbour spin ice
successfully reproduces the main features of the experi-
mental pattern, but there are important differences, both
qualitative and quantitative, notably in the extension of
the 0, 0, 0 intense region along [hhh] and the relative in-
tensities of the regions around 0, 0, 3 and 3/2, 3/2, 3/2.
Also, the experimental data shows much broader regions
of scattering along the diagonal directions. The dipo-
lar model successfully accounts for these discrepencies.
In particular, it predicts the four intense regions around
0, 0, 0, the relative intensities of the regions around 0, 0, 3
and 3/2, 3/2, 3/2 and the spread of the broad features
along the diagonal. The neutron scattering data can in
fact be accurately and quantitatively accounted for by
the dipolar model with no free parameter once Jnn has
been determined by the height of the specific heat peak (
[28]). Qualitatively similar scattering has been observed
in water ice and described by an ice-rules configuration
of protons ( [8]).

FIG. 4. (A) Experimental neutron scattering pattern of
Ho2Ti2O7 in the (hhl) plane of reciprocal space at T ∼ 50 mK
([28]). Dark blue shows the lowest intensity level, red-brown
the highest. Temperature dependent measurements have
shown that the sharp diffraction spots in the experimental
pattern are nuclear Bragg peaks with no magnetic component.
(B) Calculated neutron scattering for the nearest neighbor
spin ice model at T = 0.15J . (C) Calculated neutron scatter-
ing for the dipolar spin ice model at T = 0.6 K. This can be
compared with the experimental scattering because the latter
is temperature-independent in this range. The areas defined
by the solid lines denote the experimental data region of (A).
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To complete the description of the static properties of
Ho2Ti2O7 it was shown in Ref. ( [28]) that the specific
heat could be very accurately described by the sum of
the dipolar spin ice contribution, with Dnn = 2.35 K,
Jnn = −0.52 K, and a nuclear spin contribution with
level splitting ∼ 0.3 K, the large value typical of a Ho3+

salt. Analysis of the hyperfine contribution followed the
early work of Blöte et al. ( [17]), who observed that the
specific heat of isostructural Ho2GaSbO7 can be accu-
rately fitted by the sum of two Schottky contributions,
one arising from the nuclear and one from the electronic
spins. It is interesting to note that these authors had
also commented on some evidence for a residual entropy
in Dy2Ti2O7, later attributed by Ramirez et al. to spin
ice behaviour ( [29]).

The above results show that dipole-dipole interactions
can cause spin ice behavior, and that the simple spin
Hamiltonian defined in Eq. 4 can provide a quantitative
description of experimental results on real materials. In
the next section we discuss how, if dynamics can be pre-
served in simulations, that dipole-dipole interactions do
stabilize a long range Néel order at a critical tempera-
ture Tc ≪ Dnn, hence partially addressing the second
question above.

III. OPEN ISSUES AND AVENUES FOR

FUTURE RESEARCH

Among open issues in the physics of dipolar spin ice
materials are the question of the “true ground state”, the
magnetic field dependent behaviour, the effect of diamag-
netic dilution, the nature of the spin dynamics, and the
properties of spin ice related materials.

The question of a “true ground state” has long in-
trigued researchers on water ice, and the same ques-
tion applies to spin ice. A common interpretation of the
“third law” of thermodynamics is that the true ground
state of a real system must be ordered, without entropy.
If the system is ergodic, that is, it can explore all its
possible arrangements, then presumably it should settle
into its absolutely minimum energy ground state, which
we refer to as its “true” ground state. This is not ob-
served, either in water ice or in the spin ice materials.
However, the experimental zero point entropy does not
necessarily mean that the system does explore its spin ice
manifold on the time scale of the experiment. Rather, it
suggests that the system, with a finite correlation length,
is self-averaging, so the thermodynamic average over one
state is equivalent to the canonical average over an en-
semble of states ( [41]). If the system is “stuck” in a
disordered state then, as discussed in the last section,
the following question arises: would the long range part
of dipolar interaction stabilise a “true ground state” of
lower energy than all the others spin ice states if it was
not dynamically inhibited from forming as the system is

cooled through the temperature T ∼ Jeff at which the
ice-rule manifold develops? Recent theoretical work on
the dipolar spin ice model has answered the above ques-
tion in the affirmative: the low-energy frozen state that
forms does indeed depend on the dynamics introduced (
[42]). Numerical simulation of the dipolar spin ice model
using single spin flip gives a disordered ground state as
observed in experiment ( [15,30,31]), but the introduction
of “loop moves”, that is, correlated flipping of extended
groups of spins (Fig. 1C), gives rise to a first order tran-
sition to an ordered state. The transition is predicted
to be independent of Jnn, with Tc ≈ 0.077Dnn ∼ 0.18 K
for both Ho2Ti2O7 and Dy2Ti2O7 ( [42]). The ordered
state is illustrated in Fig. 5. It corresponds to a tetrahe-
dral “two in − two out” basis of spins, inverted by two
out of the three face centering translations in the unit
cell. Interestingly, a structure of related symmetry (the
“Q = X” phase) has been observed in Ho2Ti2O7 after
the application of a field, as discussed below. An intrigu-
ing possibility is that the predicted ordered state might
be accessible by a suitable field and temperature cycle in
the spin ice regime. The theoretical ordered state identi-
fied in ( [42]) is compatible with the critical (soft) mode
identified in a mean-field theory treatment of the dipolar
spin ice model ( [31,40]). It would appear possible that
it is the true ground state of the real materials, as the
Ewald method of ( [34,42]) gives the correct quantitative
description of experiment in regard to the paramagnetic
disordered spin ice state. However, refs. ( [33,36]) argue
that it is the truncation method, rather than the Ewald
method, that gives the true ground state of the dipo-
lar model, suggesting that the mathematical problem of
determining the true ground state is not yet resolved (
[39]).
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FIG. 5. The predicted long range ordered state of dipolar

spin ice. Projected down the z axis (A), the four tetrahedra
making up the cubic unit cell appear as dark grey squares.
The light grey square in the middle does not represent a
tetrahedron; however its diagonally opposing spins occur in
the same plane. The component of each spin parallel to the
z axis is indicated by a + and − sign. In perspective (B),
the four tetrahedra of the unit cell are numbered to enable
comparison with (A).

The zero field static properties of the spin ice materials
Ho2Ti2O7 ( [28]) and Dy2Ti2O7 ( [29,34]) and most re-
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cently Ho2Sn2O7 ( [31]) can now be considered to be very
well described by the dipolar spin ice model. The essen-
tial scenario is a continuous freezing process into a disor-
dered magnetic state below ∼ 1 K. In the earliest study
of Ho2Ti2O7 it was pointed out that its field dependent
static properties were far from trivial ( [15]). Two or-
dered magnetic phases were observed to rapidly develop
in a magnetic field of ∼ 0.1 T applied along [11̄0] at base
temperature ∼ 50 mK. Both of these can be described
with the same tetrahedral basis as the face centered cu-
bic crystal structure, but one has “ferromagnetic” face
centering, the Q = 0 phase, and the other has partial
“antiferromagnetic” face centering, the Q = X phase. It
has been shown that both states fulfill the spin ice rules
( [15]). The field induced order displays strong history
dependence as a function of field (up to 3 T) and tem-
perature (50 mK - 2 K). Low temperature susceptibility
studies, discussed below, have confirmed that a strongly
history dependent magnetic moment can be induced by
an applied field below a temperature of ∼ 0.7 K ( [43])
(Fig. 6). Theoretical studies of the near neighbour spin
ice model ( [27]) suggests several interesting effects as the
field is applied along the other main symmetry directions,
[100] and [111]. Application of a field along [100] breaks
symmetry such that each tetrahedron has the same “two
in − two out” state, but a symmetry sustaining first order
phase transition is predicted, analogous to the liquid gas
transition or those that can be observed in ferroelectrics
( [27,44]). A field of several Tesla along [111] breaks the
ice rules to give a state with “three in − one out” (or
vice-versa). This transition, also predicted by the dipo-
lar model ( [45]), has been observed by single crystal
magnetization measurements at 2K, first on Ho2Ti2O7

by Cornelius and Gardner ( [22]) and more recently on
Dy2Ti2O7 by Fukuzawa et al. ( [46]). These two stud-
ies reveal a potentially interesting difference between the
two compounds: while the saturation magnetization of
Dy2Ti2O7 along the three main symmetry directions is in
remarkable quantitative agreement with the predictions
of the spin ice rules ( [46]), that for Ho2Ti2O7 shows a
significant departure ( [22]). At 2K the field-dependent
behaviour of the spin ice materials appears to be equally
well-described by the dipolar and near neighbour mod-
els. However, it is most unlikely that the success of the
oversimplified near neighbor model will extend to lower
temperatures. Hints of this have already been observed
in the specific heat of Dy2Ti2O7, where polycrystalline
samples display several thermal anomalies as a function
of field and temperature which do not agree with the
near neighbour model ( [29]). It would be hoped that
the dipolar spin ice model will account for these details (
[45]). The field dependent and related field induced relax-
ational dynamic behavior of spin ice materials promises
to be an interesting area of research. For example, recent
neutron studies show that the magnetization process in
the spin ice regime of a single crystal sample of Dy2Ti2O7

occurs via a series of steps and plateaus ( [30]).
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FIG. 6. Temperature dependence of the dc magnetization
of the Ho2Sn2O7 spin ice materials in an applied magnetic
field, H , of 1kOe ([49]). Zero field cooled, ZFC, denotes a
procedure that involves cooling in zero field and measuring
the magnetization, M , upon warming with the field H on.
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The dynamics of the Ising spins in spin ice materials is
of broad potential interest in context of the long standing
problem of the proton dynamics in the various phases of
water ice ( [47]). Matsuhira et al. have investigated the
dynamic properties of the spin ice materials Ho2Ti2O7

and Ho2Sn2O7 by measuring both dc and ac magnetiza-
tion ( [43]). History dependence of the dc magnetization
in the spin ice phase shows a sharp splitting between field
cooled and zero field cooled susceptibility, indicative of
the expected spin freezing process (Fig. 6). The charac-
teristic response of the ac magnetization is peaked near
∼ 1 K which shifts to higher temperature with increasing
frequency. This can be analysed in terms of an thermally
activated Arrhenius-type spin relaxation with a charac-
teristic relaxation time of ∼ 10−10 s and an activation
barrier of 28 K and 20 K for Ho2Ti2O7 and Ho2Sn2O7,
respectively. This behaviour may be compared with that
of other types of magnetic system that exhibit spin freez-
ing ( [48]). In fine particle magnets one observes the
thermally activated flipping of independent spin clusters
which becomes frozen, or “blocked”, at low temperature,
while in certain dilute transition metal alloys (such as
AuFe0.01) one observes “spin glass” behaviour in which
the spin freezing is a cooperative process. The behaviour
of Ho2Ti2O7 and Ho2Sn2O7 appears more similar to a
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blocking phenomenon than to a spin glass transition (
[43]). Very recently, two ac-magnetization studies of
Dy2Ti2O7 have been reported ( [49,50]). The first of
these studies, by Matsuhira et al. ( [49]) finds behaviour
below 2 K analogous to Ho2Ti2O7 and Ho2Sn2O7, which,
if fitted to an Arrhenius expression gives an activation
barrier of 10 K. This process is cautiously ascribed to
spin ice freezing. In addition, Matsuhira et al. report
an ac-susceptibilty peak that is observed above 10 K,
which indicates an Arrhenius-type response with a large
activation energy of 220 K. This high temperature sus-
ceptibility peak is also observed in the second study, by
Snyder et al. ( [50]). However, the two reports disagree
in their interpretation of this feature. Snyder et al. argue
that the high temperature susceptibility peak reflects a
single relaxation time and ascribe this to spin ice freez-
ing. Matsuhira et al., in contrast, suggest that the high
temperature susceptibility peak indicates a spread of re-
laxation times, at least near to T ∼ 10 K, but do not
speculate on the physical origin. It would be premature
to discuss which interpretation might be correct, but it
would seem to us that in view of the energy scale, another
possible physical origin worth investigating is spin-lattice
relaxation. The dynamics of spin ice materials is clearly
an active area of research. We also note µSR studies on
Ho2Ti2O7 ( [23]) and theoretical investigations into or-
dered state selection in spin ice materials via quantum
fluctuations, as ongoing reseacrh activities ( [51]).

Possible modifications of spin ice materials include
doping with diamagnetic impurities. In water ice, dop-
ing with KOH (which effectively removes protons) leads
to the ordered phase known as ice XI ( [52]): it is be-
lieved that the holes introduced in the proton structure
“free up” the dynamics so that the system can find its
true ordered ground state. In the case of spin ice it is
not clear that dilution with diamagnetic impurities, such
as replacing Ho3+ and Dy3+ by non-magnetic Y3+, will
have the same effect ( [45]). However, dilution is likely to
have some effect on the dynamical properties on the spin
ice state. With considerable dilution, one would expect
to form a spin glass state. Such studies might go a long
way to clarifying the precise differences between the spin
ice state and the spin glass state, and their similarities,
or lack thereof, in their freezing mechanisms. The fact
that spin ice is “self-averaging” (see above) while a spin
glass is not ( [48]) points to the essentially simpler na-
ture of the spin ice freezing process. However it is not
yet clear how such a detailed difference will manifest itself
experimentally.

Perhaps the most fruitful area of future research will
be into materials and models which can be considered
derived from or related to spin ice. At a theoretical level
the near neighbour spin ice model of ( [25]) is a “sixteen
vertex” model of the ferroelectric type long studied by
theoreticians ( [13]); the discovery of spin ice materials
is giving a new experimental relevance to these models

( [53,54]). Modifications of the near neighbour model
may be designed to include quantum mechanical effects (
[51]) or the effect of finite anisotropy ( [55]). Such models
might be relevant to as-yet undiscovered spin ice mate-
rials based on transition metal ions where spin values
are smaller and exchange is larger. Known spin ice re-
lated materials include the frustrated pyrochlore magnet
Tb2Ti2O7, the behaviour of which remains essentially
mysterious ( [56,57]). Tb2Ti2O7 has been described as a
“cooperative paramagnet” ( [56]), but it may also share
some properties with the spin ice materials ( [34,57]).
Another example is Nd2Mo2O7, in which spin-ice like
correlations on the Nd sublattice perturb the metallic
behaviour on the Mo sublattice to give a striking anoma-
lous Hall effect ( [58]). A final example is Dy2Ir2O7, a
metallic material, but in which the Dy spins appear to
be antiferromagnetically coupled, leading to an ordering
transition ( [59]). The possiblity that one could obtain a
metallic spin ice is an intruiging one: the conduction elec-
tron mediated coupling of localised spins, the so-called
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, is
similarly long-ranged to the dipolar interaction. Perhaps
this long range coupling could, like the dipolar interac-
tion, stabilise spin ice behaviour. If so, it would represent
another novel realisation of concept of spin ice.

In conclusion, the previous discussion emphasises the
current interest in systems in which the strong mag-
netic anisotropy of localised f -electrons leads to novel
collective effects based on frustration. The spin ice phe-
nomenon exemplifies the richness of the intrinsic physics
of frustration while, at the same time, affording a close
connection between theory and experiment. This has
allowed real progress to be be made and some surpris-
ing properties (for example, the effective self-screening of
the long range dipolar interactions) to be identified. One
may hope that the current experimental and theoretical
studies of spin ice materials will lead to a deeper under-
standing of the effects of frustration in related rare-earth
( [58,60,61]) and transition metal magnets. This in turn
should provide a solid platform from which we can con-
solidate our understanding of the diverse electronic phe-
nomena in which frustration is, or might be, implicated.
Exciting topical examples include heavy-fermion behav-
ior in LiV2O4 ( [62,63]), spin-Peierls related phenomenon
in ZnCr2O4 ( [64]), and superconductivity in Cd2Re2O7

( [65–67]). We expect that new collective phenomena
in spin ice materials and their relatives will continue to
capture the attention of condensed matter physicists and
solid state chemists for years to come ( [68]).
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