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ARITHMETIC RIGIDITY AND UNITS IN GROUP RINGS

F. E. A. JOHNSON

Abstract. For any finite group G the group U(Z[G]) of units in the integral
group ring Z[G] is an arithmetic group in a reductive algebraic group, namely
the Zariski closure of SL1(Q[G]). In particular, the isomorphism type of the
Q-algebra Q[G] determines the commensurability class of U(Z[G]); we show
that, to a large extent, the converse is true. In fact, subject to a certain
restriction on the Q-representations of G the converse is exactly true.

0. Introduction

Two abstract groups Γ1,Γ2 are said to be commensurable, written Γ1 ∼ Γ2,
when there exists a group ∆, and injections ιr : ∆ → Γr (r = 1, 2), such that
ιr(∆) has finite index in Γr. In this paper, we investigate the structure, up to
commensurability, of the unit group U(Z[G]) of the integral group ring of a finite
group G. By Wedderburn’s Theorem, the rational group ring Q[G] is a direct sum

Q[G] = A1 ⊕ · · · ⊕ Am
of simple two sided ideals; we say that a finite dimensional simple Q-algebra is
small when it is either (i) commutative (hence a field), or (ii) a quaternion algebra
(possibly split) over Q, or (iii) a negative definite quaternion algebra over a totally
real field; otherwise, it is said to be big. A finite dimensional semisimple Q-algebra
A is naturally a sum A ∼= Asmall ⊕Abig where Asmall (resp. Abig ) is the sum
of all the small (resp. big) two sided ideals. We shall see that, for a finite group G,
Q[G]big is an invariant, not only of the isomorphism class of U(Z[G]), but even of
its commensurability class.

Theorem I. Let G1, G2 be finite groups; if U(Z[G1]) and U(Z[G2]) are commen-
surable, then Q[G1]big

∼= Q[G2]big.

The converse is false; if D2n denotes the dihedral group of order 2n, and Q4n the
generalised quaternion group of order 4n, then Q[Q4n]big

∼= Q[D2n]big. However,
U(Q4n) fails to be commensurable with U(D2n) whenever n ≥ 4. The difficulty
arises from the fact that Q[Q4n] has small factors; if these are excluded, we get

Corollary II. Let G1 , G2 be finite groups having no nontrivial small factors in
their rational Wedderburn decompositions; then

U(Z[G1]) ∼ U(Z[G2]) ⇐⇒ Q[G1] ∼= Q[G2].
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We begin by giving a structure theorem for the commensurability class of a unit
group U(Z[G]); say that an infinite group G is reducible when it is commensurable
to a direct product G ∼ H1 ×H2 where H1, H2 are infinite groups; otherwise, G is
irreducible. It is straightforward to see that a finitely generated infinite group G is
irreducible if and only if it contains no subgroup of finite index which is isomorphic
to a direct product of infinite groups.

A group Λ is said to be an L-product when it is a direct product of the form

Λ = Λ1 × · · · × Λn × Λab

where Λab is a free abelian group of finite rank (possibly zero), and Λ1, . . . ,Λn are
irreducible groups of finite cohomological dimension with the property that every
subgroup of finite index has trivial centre. To cope with the degenerate cases which
arise in the context of unit groups of group rings, (for example U(Z[Q8])) we allow
for the possibility that n = 0. The following structural result is almost certainly
known, but does not appear to have been stated in the literature in this form:

Theorem III. Let G be a finite group; then U(Z[G]) is commensurable with an
L-product whose irreducible factors are duality groups in the sense of [3].

In fact, we will describe an L-product representative for the commensurability
class U(Z[G]) directly from the rational Wedderburn decomposition of Q[G].

One should emphasise that the crux of Theorem I is Mostow’s Rigidity Theorem
[14]. However, in addition, our results are heavily dependent on the classical theory
of lattices in Lie groups, and in particular, on the work of Borel [4], [5], [6] and
Borel-Harish Chandra [7]. An excellent and convenient recent reference for this
material is the text of Platonov and Rapinchuk [16].

The plan of the paper is as follows: in §1 we prove a uniqueness theorem for L-
product structures. Theorem III is proved in §2. In §3, we show how the theorem of
Albert [1], [19] places restrictions on the possible irreducible components of U(Z[G])
when G is finite. The rigidity result, Theorem I, is proved in §4. Finally, in §5 we
give a calculation which relates the unit groups of generalised quaternion groups
to those of dihedral groups and show that the converse to Theorem I is false. We
wish to thank the referee for some helpful remarks, and in particular, for pointing
out an oversight in the original formulation of (4.1).

1. A uniqueness theorem for product structures

It is a consequence of the Borel Density Theorem [4] that a lattice in a connected
linear semisimple Lie group admits, up to commensurability, an essentially unique
decomposition into a product of irreducible semisimple lattices ([17], p.86). Here
we give a generalisation of this fact under somewhat weaker hypotheses, allowing,
in particular, for abelian factors.

If C is a class of groups, we say that a group G admits a C-product structure
when it is the internal direct product, written G = G1◦· · ·◦Gm, of a finite sequence
(G1, . . . , Gm) of normal subgroups of G such that each Gi ∈ C.

Let Ls (the suffix connotes ‘semisimple’) denote the class of finitely generated
infinite groups of finite cohomological dimension with the property that every sub-
group of finite index has trivial centre, and let L0 denote the subclass of Ls con-
sisting of irreducible groups. An easy argument on Borel’s Density Theorem shows
that any torsion free lattice in a linear semisimple Lie group belongs to Ls; it is also
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true, though not essential for our argument, that an infinite group G belongs to Ls
if and only if it is commensurable to a group possessing an L0-product structure.

Let L = L0 ∪ {free abelian groups of finite rank}. By collecting together
abelian factors, we observe that a group G has an L-product structure precisely
when G ∼= Λ1 × · · · × Λn × Λab where Λab is free abelian of finite rank, and Λi ∈
L0 for 1 ≤ i ≤ n. We will show that an L-product structure is unique up to
commensurability.

Lemma 1.1. Let G1, G2 be groups such that

G1 = Λs1 ◦ Λab1 ; G2 = Λs2 ◦ Λab2

where Λs1, Λs2 are Ls-groups and Λab1 ,Λab2 are free abelian groups. Then G1 is
commensurable with G2 if and only if Λs1 is commensurable with Λs2 and Λab1 is
commensurable with Λab2 .

Proof. (⇒) Denote the centre of a group G by Z(G). First observe that for
a group G which is an internal direct product G = Λs ◦ Λab where Λab is an
abelian group, and Λs ∈ Ls, we have H ∩ Λab = Z(H) for any subgroup H of
finite index in G. Now suppose that H1 ⊂ G1, H2 ⊂ G2 are subgroups of finite
index, and that ϕ : H1 → H2 is an isomorphism. It follows that ϕ induces an
isomorphism ϕ : Z(H1)→ Z(H2). By the observation above, Z(H1) = H1∩Λab1 and
Z(H2) = H2∩Λab2 . We conclude that Λab1 is commensurable with Λab2 since H1∩Λab1

has finite index in Λab1 and H2 ∩ Λab2 has finite index in Λab2 . Likewise, ϕ induces
an isomorphism ϕ∗ : H1 /Z(H1) → H2/Z(H2). Let πs denote the projection
to Λsi is each case. Since Hi /Z(Hi) ∼= πs(Hi), ϕ also induces an isomorphism
ϕ∗ : πs(H1)→ πs(H2). Thus Λs1 is commensurable with Λs2 since πs(Hi) has finite
index in Λsi for i = 1, 2. This proves (⇒); the implication (⇐) is clear.

We obtain the following uniqueness result for L-products:

Theorem 1.2. Let Λ = Λ1 × · · · × Λn × Λab and Ω = Ω1 × · · · × Ωm × Ωab be L-
products; if Λ ∼ Ω then rkZΩab = rkZΛab, m = n and there exists a permutation
σ such that for all i (1 ≤ i ≤ n), Ωσ(i) ∼ Λi .

Proof. In the special case of an L0-product structure, that is where Λab = Ωab = 0,
the result is proved in [12] (Proposition 6.2).

In the general case, suppose that Λ = Λ1◦· · ·◦Λn◦Λab and Ω = Ω1◦· · ·◦Ωm◦Ωab
are L-products such that Λ ∼ Ω. Writing Λs = Λ1 ◦· · ·◦Λn and Ωs = Ω1 ◦· · ·◦Ωm
we have Λ = Λs ◦ Λab, Ω = Ωs ◦ Ωab satisfying the hypotheses of (1.1). We deduce
that Λab ∼ Ωab , so that rkZ(Λab) = rkZ(Ωab), and Λs ∼ Ωs; the result now follows
from the special case considered above.

2. Z-free algebras

If R is a ring (associative with identity), we denote by U(R) the group of units
of R,

U(R) = {x ∈ R : xy = yx = 1 for some y ∈ R}.
Observe that U commutes with direct products, U(R1 × R2) = U(R1) × U(R2).
For any ring B, we denote by GLZ(B) the group of automorphisms of the additive
group of B. There is a faithful representation λ : U(B)→ GLZ(B) ; u 7→ λu where
λu(x) = ux. By a Z-free algebra we mean an algebra over Z whose underlying
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additive group is Z-free of finite rank. If A is a finite dimensional Q-algebra, then
by a Z-order in A we mean a subring B of A with the property that B is a free
Z-algebra which spans A over Q.

Proposition 2.1. Let A be a finite dimensional Q-algebra; if B1, B2 are Z-orders
in A then U(B1) is commensurable with U(B2).

Proof. B1, B2, and B1 +B2 are all Z-lattices in the Q-vector space A. In particular,
Bi has finite index in B1 + B2 for i = 1, 2. Thus B1 ∩ B2, has finite index in Bi for
i = 1, 2, and contains an Q-basis for A. Thus B1 ∩ B2 is also a Z-order in A since
it is a subring. Thus it suffices to prove a more exact special case, namely that if
B2 ⊂ B1 then U(B2) is a subgroup of finite index in U(B1).

Let Stab(B2) be the stability group of B2 within GLZ(B1). If u ∈ B1 has the
property that λu ∈ Stab(B2), then u = λu(1) ∈ B2. Thus U(B2) = U(B1) ∩
Stab(B2).

However, Stab(B2) is the kernel of the natural map GLZ(B1) → Aut(B1/B2).
Moreover, since B1, B2 both span A, then B2 has finite index in B1, hence
Aut(B1/B2) is finite and Stab(B2) is a subgroup of finite index in GLZ(B1). Thus
U(B2) = U(B1) ∩ Stab(B2) is a subgroup of finite index in U(B1) = U(B1) ∩
GLZ(B1).

Corollary 2.2. Let A = A1 ⊕ · · · ⊕ Aq be a decomposition as a direct sum of
two sided ideals of the finite dimensional Q-algebra A. Let B be a Z-order in
A, and for each i, let Bi be a Z-order in Ai. Then U(B) is commensurable with
U(B1)× U(B2)× · · · × U(Bq).

Proof. Clearly B1 ⊕ B2 ⊕ · · · ⊕ Bq is also a Z-order in A, so that U(B) is commen-
surable with U(B1 ⊕ B2 ⊕ · · · ⊕ Bq) by (2.2). The result now follows, since

U(B1 ⊕ B2 ⊕ · · · ⊕ Bq) ∼= U(B2)× · · · × U(Bq).

If A is a finite dimensional semisimple Q-algebra, then A ⊗Q C is a product of
matrix algebras over C, whereby U(A) acquires the structure of a linear algebraic
group. Moreover, if B is a Z-order in A, then U(B) is precisely the stability group
of the lattice B under the action of U(A) by left multiplication on A; that is:

Proposition 2.3. Let A be a finite dimensional semisimple Q-algebra, and let B
be a Z-order in A; then U(B) is an arithmetic subgroup of U(A).

For any finite group G, Z[G] is a Z-order in the semisimple Q-algebra Q[G];
the following consequence of (2.3) is presumably well known, but difficult to find a
reference for:

Corollary 2.4. Let G be a finite group; then U(Z[G]) is an arithmetic subgroup of
U(Q[G]).

Let A be a finite dimensional simple Q-algebra with centre E. Then A ⊗E

Q ∼= Md(Q). Thus U(A) is an E-form of GLd. Observe that ([5], Chapter I)
both the centre Z and the commutator subgroup SL1(A) = [U(A), U(A)] are
normal algebraic subgroups of U(A) defined over E. Moreover, the intersection
Φ = SL1(A) ∩ Z is a finite group, isomorphic to the (finite) group of dth-roots of
unity. Thus U(A) is an almost direct product over E

U(A) ∼= SL1(A) ◦Z.
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Let Γ be an arithmetic subgroup of U(A); we may suppose without loss of generality
that Γ is torsion free, so that Γ ∩ SL1(A) ∩ Z is trivial. Let π1, π2 denote the
projections to PSL1(A) and Z/Φ respectively. Both π1, π2 are surjective algebraic
homomorphisms defined over E, so that Γs = π1(Γ) is an arithmetic subgroup of
PSL1(A) and Γab = π2(Γ) is an arithmetic subgroup of Z/Φ. (See for example,
Theorem 6 of [4]; see also [16], Chap 4, p. 204, Thm. 4.1). In particular, we obtain:

Proposition 2.5. Let A be a finite dimensional simple Q-algebra, and let Γ be
an arithmetic subgroup of U(A); then Γ is commensurable with a direct product
Γs × Γab where Γs is an arithmetic subgroup of PSL1(A), and Γab is a finitely
generated abelian group.

A straightforward application of Borel’s Density Theorem shows that if A is a
finite dimensional simple noncommutative Q-algebra, and Γs is an infinite arith-
metic subgroup of PSL1(A), then Γs is irreducible. For a more general statement
compare, for example, [10], Thm. (3.4).

Borel and Serre [8] prove that if Γ is a torsion free arithmetic subgroup of the
reductive Q-group H, then Γ is a duality group, and its cohomological dimension
is given by

cd(Γ) = gd(HR) − rkQ(H),

where rkQ(H) is the rank of a maximal Q-split torus in H and gd(H) is the geo-
metric dimension of H; that is, the dimension of the associated symmetric space
gd(HR) =dim(HR/K) where K ⊂ HR is a maximal compact subgroup.

Proof of Theorem III. We must show that U(Z[G]) is commensurable with an L-
product whose irreducible factors are duality groups. By Maschke’s Theorem, Q[G]
decomposes as a sum A1⊕A2⊕· · ·⊕Am where each Ai is a simple two sided ideal.
Let Bi be a Z-order in Ai. Then B1 ⊕ B2 ⊕ · · · ⊕ Bm is a Z-order in Q[G], so
that, by (2.2), B is commensurable with U(B1)× · · · × U(Bm). By (2.5), U(Bi) is
commensurable with a product Γsi ×Γabi where Γabi is free abelian of finite rank, and
Γsi is an irreducible lattice in a semisimple group and hence, by the Theorem of Borel
and Serre, a duality group. Hence U(Z[G]) is commensurable with Γs1×· · ·×Γsm×Γab

where Γab = Γab1 × · · · × Γabm .

3. Positive semisimple algebras

We review Albert’s classification [1] of simple Q-algebras which admit a positive
involution. Thus let K be a subfield of R, and let A be a finite dimensional
semisimple K-algebra; by an algebra involution τ on A, we mean an isomorphism
of A with its opposite algebra such that τ2 = 1A; τ is said to be positive when
TrK(xτ(x)) > 0 for all nonzero x ∈ A, where ‘TrK’ denotes ‘reduced trace’. If A
is expressed as a sum of simple ideals, A = A1 ⊕ A2 ⊕ · · · ⊕ An, then from the
uniqueness of the Wedderburn decomposition, an algebra involution τ induces an
involution τ∗ on the index set {1, 2, . . . , n} by the condition that τ(Ai) = Aτ∗(i).
If τ∗(i) 6= i, it is immediate that, for any x ∈ Ai, xτ(x) = 0. Hence the positivity
condition forces τ∗ = Id; that is:

Proposition 3.1. Let τ be a positive involution on finite dimensional semisimple
K-algebra A; then there is an isomorphism of involuted K-algebras

(A, τ) = (A1, τ1)⊕ (A2, τ2)⊕ · · · ⊕ (An, τn),

in which each (Ai, τi) is a simple positively involuted algebra.
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If Φ is a finite group, K[Φ] admits a positive involution τ given by

τ(a) =
∑
g∈Φ

agg
−1 where a =

∑
g∈Φ

agg.

If D is a finite dimensional division algebra over K, an involution σ on D extends
to an involution σ̂ on Mn(D); thus

σ̂((xij)) = (σ(xji))

with transposed indices as indicated. By the Skolem-Noether Theorem, each invo-
lution on Mn(D) has this form. Moreover, σ̂ is positive if and only if σ is positive.
It follows from (3.1) that

Proposition 3.2. Let Φ be a finite group; for any real field K, there is an isomor-
phism of involuted K-algebras

(K[Φ], τ) ∼= (Mn1(D1), τ̂1)× · · · × (Mnm(Dm), τ̂m)

where each Di is a finite dimensional division algebra over K, and τi is positive.

When K = Q, the class of positively involuted division algebras has been deter-
mined by Albert [1], [19]. To recall his results we first fix the following notation:
R will denote a commutative ring; n an integer ≥ 2; s : R → R is a ring

automorphism satisfying sn = Id; a will denote a nonzero element of R with the
property that s(a) = a. With this notation, the cyclic algebra Cn(R, s, a) is the two
sided free R-module of rank n, with basis ([Xr])0≤r≤n−1, subject to the relations

[Xr]λ = sr(λ)[Xr ] (λ ∈ R).

Cn(R, s, a) is an algebra over the fixed point ring E = {x ∈ R : s(x) = x} with
multiplication determined by

[X ][Xr] =
{

[Xr+1], 0 ≤ r < n− 1,
a[X0], r = n− 1.

We note that whenR = K is a field and s has order n (rather than merely satisfying
sn = Id) then the fixed point field sK = E is actually the centre of Cn(K, s, a).
This construction is natural with respect to direct products; that is, we have.

Proposition 3.3.

Cn(R1 ×R2, s1 × s2, (a1, a2)) ∼= Cn(R1, s1, a1)× Cn(R2, s2, a2).

A quaternion algebra
(
a,b
E

)
admits two essentially distinct involutions, namely

conjugation c, and reversion r, defined thus

c(x0 + x1i+ x2j + x3k) = x0 − x1i− x2j − x3k,

r(x0 + x1i+ x2j + x3k) = x0 + x1i− x2j + x3k.

Albert showed that a positively involuted division algebra (D, τ), of finite dimension
over Q, falls into one of four classes; here E and K are algebraic number fields.

I: D = E is totally real and τ = 1E;

II: D =
(
a,b
E

)
, where E is totally real, a is totally positive, b is totally negative,

and τ is reversion;
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III: D =
(
a,b
E

)
, where E is a totally real, a and b are both totally negative, and

τ is conjugation;

IV: D = Cm(K, s, a), where s is an automorphism of K, of order m, whose fixed
point field E is an imaginary quadratic extension, E = E0(

√
b), of a totally

real field E0, and a ∈ E. Moreover, if L is a maximal totally real subfield of K,
there exists a totally positive element d ∈ L such that NE/E0(a) = NL/E0(d).

The possible simple summands which can occur in the Wedderburn decomposi-
tion of a finite group are restricted to these four types. Not all such simple algebras
occur in this way, however, and there is an extensive literature on the problem of
determining which algebras do in fact occur (‘the Schur subgroup problem’). Nev-
ertheless, all types of algebra occur. Algebras of Type I, that is matrix algebras
Mn(E) over a totally real field E, occur in the rational Wedderburn decomposition
of dihedral groups D2n. Fields [9] has shown that for any rational quaternion divi-
sion algebra D =

(
a,b
Q

)
there exists a finite group G such that some matrix algebra

Mn(D) occurs as a simple summand in Q[G]. This takes care of Types II and III.
Finally, algebras of Type IV already occur in the Wedderburn decompositions of
cyclic groups, although these are rather trivial, being simply cyclotomic fields. Less
trivially, Amitsur [2] showed that non-commutative division algebras of Type IV
occur as summands for certain metacyclic groups.

In §4, we will apply Mostow Rigidity [14] to the irreducible semisimple lattices
obtained from the group of units of an integral group ring. In this section, however,
we study the noncommutative simple algebras (types LDI, LDII, LDIII below)
whose associated irreducible lattices are nonrigid.

LDI: M2(Q);
LDII:

(
a,b
Q

)
, where a > 0, b < 0, and the form ax2

1 +bx2
2−abx2

3 is Q-anisotropic;

LDIII:
(
a,b
E

)
, where E is a totally real number field, and a and b are both

totally negative.

Proposition 3.4. Let A be a finite dimensional simple Q-algebra admitting a pos-
itive involution; then

(i) SL1(A)R ∼= SL2(R) ⇐⇒ A is of Type LDI or LDII;
(ii) SL1(A)R ∼= SU(2)× · · · × SU(2)︸ ︷︷ ︸

d

⇐⇒ A is of Type LDIII.

Disregarding compact factors (which in our context occur only in the degenerate
class LDIII), the only irreducible semisimple lattices which fail to be Mostow rigid
are those in SL2(R) or PSL2(R). In fact, we need only consider nonrigid lattices
Γ in PSL2(R), since up to commensurability, we may replace a lattice in SL2(R)
by a torsion free lattice in PSL2(R). When PSL2(R)/Γ is noncompact, Γ is a
free group of finite rank; when it is compact, Γ is a Surface group; that is, the
fundamental group of an orientable surface of genus g ≥ 2, with a presentation of
the form

Γ = 〈X1, . . . , Xg, Y1, . . . , Yg :
g∏
i=1

XiYiX
−1
i Y −1

i = 1〉.
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Again modulo compact factors and isogeny, neither Surface groups nor finitely
generated free groups occur as irreducible lattices in any semisimple group other
than PSL2(R). In terms of algebras, we have

Proposition 3.5. Let A be a simple Q-algebra admitting a positive involution, and
let Γ be a torsion free arithmetic subgroup of SL1(A); then

(i) A is of Type LDI ⇐⇒ Γ is a nonabelian free group of finite rank;
(ii) A is of Type LDII ⇐⇒ Γ is a Surface group;
(iii) A is of Type LDIII ⇐⇒ Γ is trivial.

4. The Rigidity Theorem

Let A be a finite dimensional simple Q-algebra. We say that A is small if either
A is commutative or a simple algebra of Type LD according to the definition of
§3. Otherwise, A is said to be big. Any finite dimensional semisimple Q-algebra
A is naturally a sum A ∼= Asmall ⊕ Abig where Asmall (resp. Abig) is the sum of
all the small (resp. big) summands.

Let E be a finite algebraic extension of Q, and let A be a central simple E algebra
with dimE(A) = n2; the centre ZU(A) of U(A) is isomorphic to E∗. Moreover,
U(A) = GL1(A) is an E-form of GLn, and the projective unit group PU(A) =
U(A)/ZU(A) is an E-form of PGLn. Let Mn denote the algebra valued functor
F 7→Mn(F). PGLn acts as the automorphism group of Mn under the action

• : PGLn ×Mn → Mn,

α •X = αXα−1.

We observe that the group isomorphism θ : GLn → GLn, defined by

θ(X) = (X−1)T = (XT )−1,

descends to an automorphism, denoted by the same symbol, θ : PGLn → PGLn.
However, for n ≥ 2 the Dynkin diagram of PGLn admits a single nontrivial sym-
metry, of order 2; that is, Out(PGLn) ∼= C2, the generator being represented by θ.
Thus Aut(PGLn) is a semidirect product

Aut(PGLn) ∼= PGLn ×θ C2.

Fix an algebraic number field E, and let Γ = Gal(Q/E). It is a standard result
of Galois cohomology, essentially the Skolem-Noether Theorem, that central simple
E-algebras of dimension n2, that is, E-forms ofMn, are in 1-1 correspondence with
elements of H1(E, PGLn) = H1(Γ, PGLn) (See, for example, [18], p. III-5.) The
isomorphism Mn →Mopp

n ; X 7→ XT is θ -equivariant; that is,

(α •X)T = θ(α) •XT .

It follows that under the above correspondence, if the 1-cocycle (aγ)γ∈Γ repre-
sents the algebra A, then the opposite algebra Aopp is represented by the 1-cocycle
(θ(aγ))γ∈Γ.

If A is a central simple E-algebra, then E is the field of definition of PU(A),
which is an E-form of PGLn. E -forms of PGLn are in 1-1 correspondence with
elements of H1(Γ,Aut(PGLn)) = H1(Γ, PGLn ×θ C2); moreover, the mapping
A 7→ PU(A) is modelled by the mapping

i∗ : H1(Γ, PGLn)→ H1(Γ, PGLn ×θ C2)
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induced by the inclusion i : PGLn → PGLn ×θ C2 of coefficients. Let A,B be
central simple E-algebras represented in H1(Γ, PGLn) respectively by 1-cocycles
a = (aγ)γ∈Γ,b = (bγ)γ∈Γ, and suppose that PU(A) ∼= PU(B). This means that a,
b become cohomologous in Z1(Γ, PGLn×θC2); that is, there exists d ∈ PGLn×θC2

such that, for all γ ∈ Γ,

(bγ , 1) = d−1(aγ , 1) γd.

Now either d = (d, 1) or d = (d, θ). In the first case,

bγ = d−1aγ
γd

and a, b are already cohomologous in Z1(Γ, PGLn); that is B ∼= A. In the second
case,

bγ = e−1θ(aγ) γe,

where e = θ(d), so that B ∼= Aopp. Thus we have shown

Theorem 4.1. Let A, B be finite dimensional simple Q-algebras; if PU(A) ∼=
PU(B), then either A ∼= B or Aopp ∼= B.

We first treat rigidity in the case of a single simple factor:

Theorem 4.2. Let A, A′ be finite dimensional simple Q-algebras which are big in
the above sense, and let Γ ⊂ SL1(A) and Γ′ ⊂ SL1(A′) be arithmetic subgroups; if
Γ ∼ Γ′, then either A ∼= A′ or Aopp ∼= A′.

Proof. Put G = PU(A)R,0 and G′ = PU(A′)R,0. By descending to subgroups of
finite index, and projecting from SL1 to PU , we may, without loss of generality,
suppose that Γ, Γ′ are both torsion free, and that Γ ⊂ G and Γ′ ⊂ G′. By hy-
pothesis, Γ ∼ Γ′, so there exists a group ∆ together with injective homomorphisms
i : ∆ → Γ, j : ∆ → Γ′ such that Im(i) has finite index in Γ, and Im(j) has finite
index in Γ′. By Mostow’s Rigidity Theorem [14], [15], there exists an isomorphism
α : G′ → G such that α◦j = i. In the notation of [11], (PU(A), Id) and (PU(A′), α)
are arithmetic structures for the inclusion i : ∆→ G. It follows, by the Uniqueness
Theorem of [11], that PU(A) ∼= PU(A′). The conclusion follows by (4.1).

If G is a finite group which has ν simple summands in the Wedderburn de-
composition of Q[G], we denote by ν1 the number of big simple summands in the
Wedderburn decomposition of Q[G], whilst ν2 (resp. ν3) will denote the total num-
ber of simple summands which are either of type LDI or LDII (resp. which are
either commutative or of type LDIII). Moreover, if Q[G] = A1 ⊕ · · · ⊕ Aν is the
decomposition of Q[G] into its simple summands (so that ν = ν1 + ν2 + ν3), we
agree to arrange the summands so that Ai is big for 1 ≤ i ≤ ν1, of Type LDI or
LDII for ν1 + 1 ≤ i ≤ ν1 + ν2, and commutative or of Type LDIII otherwise. We
describe such an ordering as nice.

Choosing a nice ordering of the summands, let Λi ⊂ SL1(Ai) be a torsion free
lattice for 1 ≤ i ≤ ν1 + ν2; for some finitely generated free abelian group Λab,

Λ = Λ1 × · · · × Λν1+ν2 × Λab

is an L-product representative for U(Z[G]). Similarly, let

Q[G′] = A′1 ⊕ · · · ⊕ A′µ
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be a nice ordering of the summands for a finite group G′, and let

Ω = Ω1 × · · · × Ωµ1+µ2 × Ωab

be the corresponding L-product representative for U(Z[G′]).
Suppose that U(Z[G]) ∼ U(Z[G′]); then Λ ∼ Ω. By Theorem IV, µ1 + µ2 =

ν1 +ν2, and for some permutation σ, Ωσ(i) ∼ Λi. Since we chose a nice arrangement
for the summands, in the L-product decomposition

Λ = Λ1 × · · · × Λν1+ν2 × Λab,

Λi is either a free group or a Surface group if and only if ν1 + 1 ≤ i ≤ ν1 + ν2.
Likewise, Ωj is either a free group or a Surface group if and only if µ1 + 1 ≤ j ≤
µ1 + µ2.

Now a finitely generated torsion free group is commensurable with a free group
if and only if it is itself free [20]; likewise, an orientable Poincaré Duality group is
commensurable with a Surface group if and only if it is itself a Surface group [13].
It follows that µ2 = ν2 and hence µ1 = ν1. We may now, without loss, arrange the
indices so that Ωi ∼ Λi for 1 ≤ i ≤ ν1 + ν2 = µ1 + µ2. By (4.2), it follows that for
all i, 1 ≤ i ≤ ν1, either Ai ∼= A′i or Aoppi

∼= A′i. However, since we are dealing with
the simple components of a positively involuted algebra Q[G], each Ai admits a
positive involution and in particular Ai ∼= Aoppi . Thus Ai ∼= A′i for all i, 1 ≤ i ≤ ν1.
Hence Q[G]big =

⊕ν1
i=1Ai ∼=

⊕ν1
i=1A′i = Q[G′]big, and we have shown

Theorem I. Let G1, G2 be finite groups such that U(Z[G1]) ∼ U(Z[G2]); then

Q[G1]big
∼= Q[G2]big.

For any finite groupG, there is at least one small factor in Q[G], namely the copy
of Q corresponding to the trivial representation. IfG1, G2 are finite groups in which
this trivial factor is the only small factor, then clearly Q[G1]small ∼= Q[G2]small.
We deduce from this and Theorem I that

Corollary II. Let G1, G2 be finite groups having no nontrivial small factors in
their rational Wedderburn decompositions; then

U(Z[G1]) ∼ U(Z[G2]) ⇐⇒ Q[G1] ∼= Q[G2].

The hypothesis of Corollary II is reasonably easy to satisfy; for example, a prod-
uct of nonabelian simple groups has no nontrivial small factors in its rational Wed-
derburn decomposition.

5. Units of dihedral and generalised quaternion groups

For any integer n ≥ 3, the generalised quaternion group Q4n is defined by the
presentation

Q4n = 〈 a, b | a2n = b2, aba = b 〉,

whilst we take the dihedral group D2n in the presentation

D2n = 〈 ξ, η | ξn = η2 = 1, ξηξ = η 〉.

There is a nontrivial central extension

1→ C2 → Q4n
ψn→ D2n → 1
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defined by assigning ψn(a) = ξ, ψn(b) = η. This enables us to relate the structure
of Q[Q4n] directly to that of Q[D2n]. Denote by Q〈n〉 the quotient

Q〈n〉 = Q[x]/(xn + 1).

Proposition 5.1. For each n ≥ 2, there is an algebra isomorphism

Q[Q4n] ∼= Q[D2n]⊕ C2(Q〈n〉, σn,−1).

Proof. Let z denote the central element z = am = b2 ∈ Q4m, and let

θ : Q[Q4n]→ Q[Q4n]

denote the translation map θ(v) = zv. Then θ2 = Id, so that we have a decompo-
sition

Q[Q4n] = J+ ⊕ J−
as a direct sum of two sided ideals, where J+, J− denote respectively the +1 and −1
eigenspaces of θ. In fact, J+ is spanned over Q by elements of the form arbs(1+z

2 )
where 0 ≤ r ≤ n−1, 0 ≤ s ≤ 1, from which it is easy to see that the homomorphism
ψn induces an algebra isomorphism ψn : J+ → Q[D2n].

To complete the proof, it suffices to show that J− ∼= C2(Q〈n〉, σn,−1). In fact,
J− is spanned over Q by elements of the form arbs(1−z

2 ) where 0 ≤ r ≤ n− 1 and
0 ≤ s ≤ 1. We regard

S = spanQ{ ar(
1− z

2
) : 0 ≤ r ≤ n− 1 }

as a ring where 1−z
2 , which is a central idempotent of Q[Q4n], acts as the identity.

It is straightforward to see that S ∼= Q〈n〉. Now J− is a free module of rank 2
over S, generated by {X0, X1}, where X0 = (1−z

2 ) and X1 = b(1−z
2 ). However,

conjugation byX1 on S corresponds to the action of σn on Q〈n〉, and (X1)2 = −X0.
Thus

J− ∼= C2(Q〈n〉, σn,−1)

as required.

Let Ω ⊂ C∗ be the multiplicative subgroup of roots of unity, and let

Ω(d) = { ω ∈ Ω : ord(ω) = d }.

Then xn + 1 =
∏

d|2n,d 6| n
cd(x) where cd(x) is the cyclotomic polynomial

cd(x) =
∏

λ∈Ω(d)

(x− λ).

It follows that

Q〈n〉 ∼=
∏

d|2n,d 6| n
Q(d)

where Q(d) = Q[x]/(cd(x)). Under the isomorphism Q[Cn] ∼= Q[x]/(xn − 1) ∼=∏
d|nQ(d) the canonical involution ̂ : Q[Cn] → Q[Cn] induces an involution

cd : Q(d) → Q(d) which is the identity for d = 1, 2, and complex conjugation
otherwise; we obtain
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Proposition 5.2. For each n ≥ 2, there is an algebra isomorphism

Q[Q4n] ∼= Q[D2n]×
∏

d|2n,d 6| n
C2(Q(d), c,−1).

Put ζd = cos(2π
d ) + i sin(2π

d ); the fixed field of Q(d) under complex conjugation
is Q(µd) where µd = 2cos(2π

d ). Put s(d) = sin(2π
d ). When d ≥ 3, C2(Q(d), c,−1)

is a free module of rank 4 over Q(µd). As a basis over Q(µd) we may take 1 = X0;
i = (ζd− ζ̄d); j = X1; k = (ζd− ζ̄d)X1. Noting that (ζd− ζ̄d)2 = −4s(d)2, we check
easily that ij = −ji = k and i2 = −4s(d)2 ; j2 = −1, so that

Proposition 5.3. For any d ≥ 3

C2(Q(d), c,−1) ∼=
(
−4s(d)2,−1

Q(µd)

)
.

For d ≥ 3, the rational division algebra
(
−4s(d)2,−1

Q(µd)

)
has the property that(

−4s(d)2,−1
Q(µd)

)
⊗Q R ∼= H× · · · ×H︸ ︷︷ ︸

ν(d)

.

As C2(Q(2), c,−1) is isomorphic to the field Q(i) = Q
√
−1, the factors

C2(Q(d), c,−1) of Q[Q4n] are all small; from (5.2), it follows that Q[Q4n]big
∼=

Q[D2n]big.

However, the factor
(
−4s(2n)2,−1

Q(µ2n)

)
of Q[Q4n] contains a copy of the unit group

of Z[µ2n], and so contains an infinite free abelian group whenever n ≥ 4. Thus
the virtual cohomological dimension of U(Q[Q4n]) is in general greater than that
of U(Q[D2n]), and the converse statement to Theorem I is false.
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Invent. Math. 20 (1973) 103 - 124. MR 49:5204

[4] A. Borel; Density and maximality of arithmetic subgroups: J. Reine Angew. Math. 224 (1966)
78-89. MR 34:5824

[5] A. Borel; Linear algebraic groups: Benjamin, New York 1969. MR 40:4273
[6] A. Borel; Introduction aux groupes arithmétiques: Hermann, Paris 1969. MR 39:5577
[7] A. Borel and Harish-Chandra; Arithmetic subgroups of algebraic groups: Ann. of Math. 65

(1962) 485-535. MR 26:5081
[8] A. Borel and J.P. Serre; Corners and arithmetic groups: Comment. Math. Helv. 48 (1973)

436-491. MR 52:8337
[9] K.L. Fields; On the Brauer-Speiser Theorem: Bull. A.M.S. 77 (1971) 223. MR 42:3192

[10] F.E.A. Johnson; On the existence of irreducible discrete subgroups in isotypic Lie groups of
classical type: Proc. L.M.S. 56 (1988) 51 - 77. MR 89f:22017

[11] F.E.A. Johnson; On the uniqueness of arithmetic structures: Proc. Roy. Soc. Edin. 124A
(1994) 1037 - 1044. MR 95h:22013

[12] F.E.A. Johnson; Linear properties of poly-Fuchsian groups: Collectanea Math. 45, 2 (1994)
183-203. MR 95m:20030

[13] S.P. Kerckhoff; The Nielsen realisation problem: Ann. of Math. 117 (1983) 235 - 265. MR
85e:32029

[14] G. D. Mostow; Strong rigidity of locally symmetric spaces: Annals of Mathematics Studies
no. 78. Princeton University Press 1974. MR 52:5874

http://www.ams.org/mathscinet-getitem?mr=17:577c
http://www.ams.org/mathscinet-getitem?mr=49:5204
http://www.ams.org/mathscinet-getitem?mr=34:5824
http://www.ams.org/mathscinet-getitem?mr=40:4273
http://www.ams.org/mathscinet-getitem?mr=39:5577
http://www.ams.org/mathscinet-getitem?mr=26:5081
http://www.ams.org/mathscinet-getitem?mr=52:8337
http://www.ams.org/mathscinet-getitem?mr=42:3192
http://www.ams.org/mathscinet-getitem?mr=89f:22017
http://www.ams.org/mathscinet-getitem?mr=95h:22013
http://www.ams.org/mathscinet-getitem?mr=95m:20030
http://www.ams.org/mathscinet-getitem?mr=85e:32029
http://www.ams.org/mathscinet-getitem?mr=52:5874


ARITHMETIC RIGIDITY AND UNITS IN GROUP RINGS 4635

[15] G. Margulis; Discrete subgroups of semisimple Lie groups: Ergebnisse der Math. 3 Folge, Bd.
17. Springer-Verlag, Berlin (1991). MR 92h:22021

[16] V. Platonov and A. Rapinchuk: Algebraic groups and number theory. Academic Press (1994).
MR 95b:11039

[17] M.S. Raghunathan; Discrete subgroups of Lie groups: Ergebnisse der Math. no. 68. Springer-
Verlag (1972). MR 58:22394a

[18] J.P. Serre; Cohomologie Galoisienne: Springer Lecture Notes 5 (1965). MR 34:1328
[19] G. Shimura; On analytic families of polarised abelian varieties and automorphic function:

Ann. of Math. 78 (1963) 149 - 192. MR 27:5934
[20] J.R. Stallings; On torsion free groups with infinitely many ends: Ann. of Math. 88 (1968)

312-334. MR 37:4153

Department of Mathematics, University College London, Gower Street, London

WC1E 6BT, United Kingdom

E-mail address: feaj@math.ucl.ac.uk

http://www.ams.org/mathscinet-getitem?mr=92h:22021
http://www.ams.org/mathscinet-getitem?mr=95b:11039
http://www.ams.org/mathscinet-getitem?mr=58:22394a
http://www.ams.org/mathscinet-getitem?mr=34:1328
http://www.ams.org/mathscinet-getitem?mr=27:5934
http://www.ams.org/mathscinet-getitem?mr=37:4153

	0. Introduction
	1. A uniqueness theorem for product structures
	2. Z-free algebras
	3. Positive semisimple algebras
	4. The Rigidity Theorem
	5. Units of dihedral and generalised quaternion groups
	References

