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We present CATHEDRAL, an iterative protocol for determining the location of previously observed protein folds in
novel multidomain protein structures. CATHEDRAL builds on the features of a fast secondary-structure–based method
(using graph theory) to locate known folds within a multidomain context and a residue-based, double-dynamic
programming algorithm, which is used to align members of the target fold groups against the query protein structure
to identify the closest relative and assign domain boundaries. To increase the fidelity of the assignments, a support
vector machine is used to provide an optimal scoring scheme. Once a domain is verified, it is excised, and the search
protocol is repeated in an iterative fashion until all recognisable domains have been identified. We have performed an
initial benchmark of CATHEDRAL against other publicly available structure comparison methods using a consensus
dataset of domains derived from the CATH and SCOP domain classifications. CATHEDRAL shows superior performance
in fold recognition and alignment accuracy when compared with many equivalent methods. If a novel multidomain
structure contains a known fold, CATHEDRAL will locate it in 90% of cases, with ,1% false positives. For nearly 80% of
assigned domains in a manually validated test set, the boundaries were correctly delineated within a tolerance of ten
residues. For the remaining cases, previously classified domains were very remotely related to the query chain so that
embellishments to the core of the fold caused significant differences in domain sizes and manual refinement of the
boundaries was necessary. To put this performance in context, a well-established sequence method based on hidden
Markov models was only able to detect 65% of domains, with 33% of the subsequent boundaries assigned within ten
residues. Since, on average, 50% of newly determined protein structures contain more than one domain unit, and
typically 90% or more of these domains are already classified in CATH, CATHEDRAL will considerably facilitate the
automation of protein structure classification.
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Introduction

Proteins comprise individual folding units known as
domains, with a significant proportion containing two or
more units (multidomain structures) [1]. Each domain adopts
a specific fold, and it is estimated that there are up to several
thousand such folds in nature [2–4]. As the domain is thought
to be an important evolutionarily conserved unit, several
structural classifications, such as SCOP [5] and CATH [6],
have sought to cluster them into fold groups and evolutionary
families. Although a given pair of structures in these families
can diverge below similarities of �30% in their sequence,
these relatives still maintain a comparable topology or fold in
the core of the structure [6,7].

More than 7,000 new proteins structures were deposited in
the Protein Data Bank (PDB; http://www.rcsb.org/pdb) [8] in
2005. Furthermore, analysis of version 2.6 (April 2005) of the
CATH database shows that nearly 50% of classified structures
are multidomain. Although many are close in sequence to
previously solved structures, the structural genomics initia-
tives have concentrated their resources on proteins with low
sequence similarity to existing structures. As a consequence,
they often require considerable manual analysis to be
classified in the CATH domain database. That said, the vast
majority of newly solved structures contain previously

observed folds, although they are often quite remote
homologues. In this situation, structural comparison algo-
rithms can be essential to facilitate the automatic and
semiautomatic classification of domains.
The number of larger multidomain structures has been

gradually increasing since the formation of the PDB, with
improvements in techniques for structure determination. We
can expect this trend to continue, as recent analyses of
completed genomes have suggested that the proportion of
multidomain structures in some organisms, particularly
eukaryotes, may be as high as 80% [1]. Figure 1 shows that
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the majority of multidomain chains comprise two domains,
although some structures have been solved with three, four,
five, and six domains.

A further complication is that approximately 20% of
domains from multidomain proteins in the PDB are
discontiguous [9] (Figure 2); that is, the structure of the
individual domains is formed from disconnected regions of
the polypeptide chain. Both automated and manual ap-
proaches to domain boundary recognition have problems in
assigning these domains.

Various computational methods have been developed to
automatically detect domain boundaries in multidomain
structures (see [10]) through a posteriori knowledge of
domain folding and interactions. Several approaches assume
that a domain makes more internal contacts (intradomain)
than external contacts (contact with residues in the remain-
der of the structure). For example, the DOMAK algorithm of

[11] derives a ‘‘split value’’ from the number of contacts
measured when a protein is divided into two parts. Optimal
values are obtained when the separate parts of the split
structure are distinct domains. The protein domain parser
(PDP) takes a similar approach and looks to divide multi-
domain structures so that the number of internal contacts in
each putative domain increases. By contrast, the parser for
protein unfolding units (PUU) algorithm by [12] uses a
harmonic model to describe interdomain dynamics, and is
used to define domain units in the FSSP database [13]. A
further approach, used by the DETECTIVE algorithm [14],
attempts to determine the hydrophobic core at the heart of
each domain unit. The original CATH classification protocol
[9] used a consensus approach by combining the results from
the three independent methods, described above (PUU,
DOMAK, and DETECTIVE).
Although each method reports 70%–80% accuracy in

benchmarking tests, our experience of updating the CATH
database suggest that these methods frequently (;80%–90%
of the time) produce results that are inconsistent with one
another. As a consequence, manual validation becomes the
only secure way to resolve these conflicting predictions. A
recent analysis by Holland et al. [10] showed that all
automatic methods run into difficulties when assigning
boundaries for certain architectures that do not fit their
chosen model of a domain unit—for example, an alpha
horseshoe domain, which does not form a compact structure.
The authors suggested improvements achieved by a heuristic
method that accounts for exceptions to the theoretical
domain model. An alternative approach would be to compare
a given protein chain against a library of known domain folds.
Although many of the algorithms described above effec-

tively delineate domains for a large percentage of protein
chains in the PDB (even those which contain novel folds), they
provide no indication as to how similar each predicted
domain is to folds already classified within the CATH
database. Therefore, it is still necessary to compare the
excised domain against the CATH library to classify the fold.
Since manual validation of domain boundaries and structure-

Figure 1. Percentage of Multidomain Chains with a Given Number of Component Domains

doi:10.1371/journal.pcbi.0030232.g001
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Author Summary

Proteins comprise individual folding units known as domains, with a
significant proportion containing two or more (multidomain
structures). Each domain is thought to represent a unit of evolution
and adopts a specific fold. Detecting domains is often the first step
in classifying proteins into evolutionary families for studying the
relationship between sequence, structure, and function. Automati-
cally identifying domains from structural data is problematic due to
the fact that domains vary substantially in their compactness and
geometric separation from one another in the whole protein. We
present a novel method, CATHEDRAL, which iteratively identifies
each domain by comparing a query structure against a library of
manually verified domains in the CATH domain database through
computational structure comparison. We find that CATHEDRAL is
able to outperform the majority of popular structure comparison
methods for finding structural relatives. Furthermore, it is able to
accurately identify domain boundaries and outperform other
methods of structure-based domain prediction for the majority of
proteins. CATHEDRAL is available as a Webserver to provide domain
annotations for the community and hence aid in structural and
functional characterisation of newly solved protein structures.

A Novel Algorithm



based database scans are both slow, this has remained one of
the major bottlenecks in the CATH classification process.

As discussed above, there are a limited number of folds,
and a novel multidomain structure could well comprise those
that have already been classified. This concept of recurrence
is not new, and has been successfully exploited by other
structural classifications. For example, the DALI algorithm is
used to detect recurrent folds for classification in the DALI
Domain Database [13], while the SCOP database uses manual
inspection to locate known folds.

Many methods exist to find recurring domains using pure
sequence approaches (e.g., MKDOM [15], SMART [16], and
PFam [17]). However, these are designed to identify individual
protein families within gene sequences, rather than predict
structural domains. Others, such as SnapDragon [18] and
Rigden’s covariance analysis [19], attempt to infer domain
boundaries through prior prediction of tertiary structure.
Nagarajan and Yona [20] used a combination of PSI-BLAST
multiple alignments, predicted structural features, and neural
networks to identify the transition between domains in the
sequence (i.e., the boundaries). The authors were able to
correctly predict the domain architecture for 35% of multi-
domain proteins when compared with SCOP.

Recent analyses of structures solved by the structural
genomics initiatives—which are frequently targeted because
they have no clear sequence similarity to existing structures
and may adopt novel folds—show that approximately 90%
are similar to those already observed in the PDB through
sequence or structure comparison [21,22]. Therefore, ex-
ploiting the concept of domain recurrence to detect known
folds in newly determined multidomain structures is a
sensible strategy to classify the majority of new structures.
Moreover, several fast and powerful algorithms for structure
comparison now exist that could be used to perform this task.
Some of these compare secondary structures between
proteins [23–25], while others operate at the residue level
(DALI [26], SSAP [27], COMPARER [28], STRUCTAL [29], and
CE [30]).

The performance of an automatic structural alignment
method should be measured both on its ability to generate

biologically meaningful alignments and its capacity to
accurately detect fold similarities and homologous protein
structures. As Kolodny et al. [29] highlight, not all structural
comparison methods are as good at scoring their alignments
as they are at producing them. A root-mean–squared
deviation (RMSD) value, or any linear transformation of this,
often remains dependent on the number of aligned residues.
Some algorithms (e.g., CE [30]) are optimised to find highly
conserved regions between two protein structures with a low
RMSD. This can be useful in detecting similarities within
extremely diverse superfamilies and fold groups. However,
this approach does not necessarily give a globally optimal
alignment, and can assign high significance to matching small
structural motifs that may not be in equivalent positions in
the two structures being compared. Hence, for the purpose of
domain boundary recognition, it is also vital to consider the
number of aligned residues as a proportion of those residues
in the larger of the two structures as well as the RMSD of
superposed residues.
This paper reports the development of the CATHEDRAL

algorithm, a novel domain identifier that exploits the fold-
recurrence philosophy. CATHEDRAL is an acronym for
CATH’s existing-domain recognition algorithm. It compares
a novel multidomain protein structure against a library of
previously classified folds in the CATH database [6] by
modifying and combining features from two established
structural similarity algorithms. A secondary-structure–
matching algorithm, GT (using graph theory) [25], which is
very fast and reasonably accurate, is combined with a residue-
based method that uses double-dynamic programming (DDP)
[27], and is therefore slower but very accurate. By combining
these approaches, a 100-fold to 1,000-fold increase in speed is
achieved, depending on the size of the query structure, at no
cost to the quality of the domain alignments. This enables
regular scans of newly determined protein structures and
rapid classification of their constituent domains into the
CATH database.
To investigate the efficacy of CATHEDRAL in producing

quality alignments, it has also been benchmarked against
other publicly available structure comparison algorithms at

Figure 2. Example of a Multidomain Protein (PDB: 1cg2) Chain Containing a Discontiguous Domain

Domain two (blue) is inserted between two segments of domain one (red).
doi:10.1371/journal.pcbi.0030232.g002
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the single-domain level. By aligning domains in a consensus
SCOP/CATH dataset, CATHEDRAL was found to give
comparable and, in many cases, superior performance for
fold recognition. In addition, when assessing the fidelity of
the structural alignments in comparison to hand-curated
structural alignments with respect to BAliBASE [31], it
consistently performed better than other approaches by
aligning more residues correctly.

Results

Evaluating the Performance of the GT and DDP
Algorithms for Fold Recognition at the Domain Level
Using a Consensus CATH–SCOP Dataset

The rationale behind CATHEDRAL was to use a fast
secondary structure–based graph theory (GT) algorithm to
discover putative fold matches for a given protein domain/
chain structure, which could subsequently be more accurately
aligned using a residue-based method exploiting DDP. To
evaluate the performance of GT and DDP for fold recog-

nition and accurate alignment, we first created a dataset of
single CATH–SCOP domains and compared this approach
with other publicly available methods before optimising the
algorithm for discovering domain folds in multidomain
chains. This benchmarking was also performed on a larger
dataset of domains in the nonredundant CATH library
(version 2.6) and produced almost identical results.
Comparing DDP and GT. The coverage and precision of

the GT and DDP algorithms was compared by scanning the
benchmark CATH–SCOP dataset (see Methods) against a
library of CATH domains and ranking the results by the GT
E-value and the DDP structural alignment score (SAS; see
Methods for descriptions of scoring schemes). It can be seen
from Table 1 that the DDP algorithm finds the correct fold as
the top hit nearly 95% of the time compared with nearly 84%
for the GT method. Nevertheless, the correct fold is within
the top 10 hits for GT nearly 98% of the time. Given that the
DDP algorithm is 100–1,000 times slower than GT, depending
on the size of the structures being compared, taking the top
ten folds identified by GT forward for more accurate scoring
by DDP maintains coverage yet vastly reduces the number of
DDP comparisons undertaken. We subsequently refer to the
combined use of GT and DDP as CATHEDRAL.

Comparing the Performance of the Component
Algorithms in CATHEDRAL (GT, DDP) with Other
Established Structure Comparison Algorithms
Fold recognition. To benchmark CATHEDRAL, we com-

pared its performance against several other publicly available
methods (DALI, STRUCTAL, LSQMAN, and CE) using the
same CATH–SCOP dataset (see Methods). Kolodny et al. [29]
have also recently benchmarked these methods using various
scoring schemes, and they found that a normalised RMSD
score (SAS; see Methods), performed best for recognising
domains with the same fold.
It can be seen from Figure 3 that CATHEDRAL returns the

highest proportion of true positives for a 5% error rate,
followed by DALI, DDP, and STRUCTAL. It is interesting to

Table 1. Percentage of Correct Folds Identified by GT and DDP

Rank GT E-Value DDP Score

1 83.8 94.6

2 4.2 1.5

3 1.6 0.5

4 1.3 0.3

5 0.6 0.3

6 0.3 0.2

7 0.5 0.1

8 0.5 0.2

9 0.3 0.1

10 0.3 0.1

.10 6.6 2.1

doi:10.1371/journal.pcbi.0030232.t001

Figure 3. ROC (True Positive Rate Versus False Positive Rate) Curve Plotted for Different Structural Comparison Methods Based on the SAS, Where a

Positive Match Represents a True CATH–SCOP Fold Match

TPR, true positive rate; FPR, false positive rate.
doi:10.1371/journal.pcbi.0030232.g003
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note that CATHEDRAL actually outperforms DDP. This is
probably because it excludes potentially low-scoring compar-
isons at an early stage in the algorithm, thus reducing the
number of false positives, while the other methods return
scores for all comparisons.

As well as the ability of the SAS to correctly discriminate
between true and false fold matches across a range of score
cutoffs, it is important to identify the closest relative within a
given fold group to obtain the best alignment. Therefore, the
correct fold should rank highly in the list of matches.

It can be seen from Figure 4 that CATHEDRAL assigns the
correct fold as its top hit more than 94% of the time
compared with the best method DDP, at 96%. When the
percentage of correct fold matches with the top ten matches
are considered, the CATHEDRAL performance rises to 96%
and DDP to 98%, with STRUCTAL also slightly outperform-
ing CATHEDRAL. This small discrepancy is mainly for small
domains with few secondary structures (less than four), which
cannot be compared using GT (see Methods). The perform-
ance could relatively quickly be recovered by comparing
domains with less than three secondary structures against a
library of small domains using just DDP.

Assessment of alignment quality. Alignment accuracy was
initially assessed using a similar strategy to that devised by
Kolodney et al. [29]. The authors measured the proportion of
correct fold matches producing a structural similarity score
below a given threshold. In assessing DDP in this way, we have

also chosen to use the SAS they propose and a new score,
SiMax (see Methods). The latter is a modified version of the
SiMin score used by Kolodny et al. SiMax normalises by the
larger of the two domains being compared rather than the
smallest as with SiMin. This allows it to better determine
whether methods are good at recognising the best ‘‘global’’ as
opposed to ‘‘local’’ fold similarity.
Figure 5A and 5B show alignment quality as measured by

the SAS and SiMax for domains in the same fold. The best
performing method using both scores is LSQMAN, although
it is known to align many fewer residues than the other
methods. Given that it is one of the worst performers in the
receiver operating characteristic (ROC) curve analysis, this
suggests that using an RMSD-based score alone as an
assessment of alignment quality does not necessarily correlate
with a globally optimal alignment. Structural variation within
fold groups and superfamilies can result in high RMSD values
for otherwise good alignments with algorithms that seek to
maximise the number of equivalent residues. For example,
LSQMAN looks to align fragments with low RMSDs, and
consequently can restrict the number of aligned residues.
Although this can be useful for detecting domains sharing
common motifs, it will often not identify all biologically
equivalent positions—information that is essential for do-
main boundary recognition.
In some domain architectures (e.g., three-layer ab sand-

wiches), it is clear that large structural motifs (e.g., baba) can

Figure 4. Graph of the Percentage of Correct Folds Matched Against the Ranked Native Score for the CATH–SCOP Dataset

doi:10.1371/journal.pcbi.0030232.g004
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overlap between domains in different folds, yet these do not
always coincide with equivalent secondary structures. Fur-
thermore, any similarity score based on RMSD will be
dependent on the number of superposed residues, and hence
aligning more residues in variable parts of two structures can
give a disproportionately high score, even if the alignment is
actually more biologically relevant. For the purposes of
applications such as domain boundary recognition, it is
clearly important to identify an alignment between two
domains that maximises the number of equivalent residues.
Consequently, for a given pair of fold matches, we looked at
the average number of residues aligned by each method.
Table 2 shows this calculation relative to DDP, as DDP aligns
more residues than all other methods. What is interesting is
that there appears to be a correlation between this average
value and the SAS ROC curves shown in Figure 3. More
specifically, DALI, STRUCTAL, and DDP align the most
residues and also perform best under the ROC curve analysis.

We also examined the size of the domain fragments aligned
with a given SAS. Figure 6 shows that although LSQMAN and
STRUCTAL are returning a higher proportion of scores
below a given SAS/SiMax threshold (Figure 5), they recognise
and align fewer residues. This may be valuable for finding the
most conserved structural motif between two domains;
however, it is less useful for assigning domain boundaries.
Taken together, Figure 5 and Figure 6 suggest that DDP is a
suitable method to use for domain boundary recognition, as
it aligns large fragments while ensuring these can be super-
imposed with reasonable scores.

Comparison with manually curated alignments. A better
way to assess the biological significance of automatic
structure alignments is to compare them to a manually
validated dataset. To this end, we compared all methods
against curated alignments from the BAliBASE (see Methods).
Figure 7 shows that DALI and DDP produce alignments closer
to the BaliBASE alignments, with nearly 60% of DALI and
DDP alignments having at least 50% residues correctly
aligned, compared with 45% for LSQMAN and 40% for
STRUCTAL. The data from Figures 5–7 suggest that
LSQMAN and STRUCTAL may be optimising alignments to
reduce the RMSD at the expense of finding the most
biologically equivalent residues.

In summary, our benchmarking results suggest that GT and
DDP are complementary approaches that may be combined
to produce a fast yet reliable domain boundary recognition

algorithm. The performance of CATHEDRAL for this
purpose is described in the next section.

Performance of CATHEDRAL for Domain Recognition in
Multidomain Protein Chains
Overview of the protocol adopted by CATHEDRAL. The

preceding sections dealt with the use of the CATHEDRAL
protocol at the domain level to identify fold relatives in a
domain library. In this section, we develop CATHEDRAL to
scan a novel multidomain structure against a library of
representative single-domain folds in order to identify
constituent domains, thereby locating domain boundaries.
A GT approach is initially used to find putative folds in
CATH within the protein structure. Representatives from
each superfamily in each of the high-scoring fold groups are
then aligned against the putative domain region in the chain
using a more accurate, residue-based DDP algorithm. DDP
was modified to allow the common secondary structures
determined by GT to guide a residue alignment by DDP,
which reduces the search space and hence results in a notable
speed increase. The significance of the subsequent matches is
assessed using a support vector machine (SVM), which
accounts for the percentage of overlapping residues, geo-
metric similarity, and number of aligned residues. Once a
domain has been assigned, it is excised from the chain, and
the remaining regions are iteratively recompared using the
same protocol until all known domains have been found. An
optimal balance between coverage and speed was achieved by
only realigning domains in the top ten folds identified by GT
using DDP.
Optimising alignment scoring using an SVM. As discussed

above, it is essential to consider both the RMSD of the
structural alignment of two domains, as well as the
percentage of aligned residues in the largest protein. This
problem becomes more complex when detecting individual
domains in a multidomain chain, as the constituent domains
may be unknown. When comparing a chain with a domain
library, the best RMSD can sometimes be obtained by small
domains with similar secondary structure motifs but different
folds, which might inhibit the detection of truly equivalent
domains.
The highest-scoring match recognised by CATHEDRAL is

used to determine the boundaries of the domain. Residues
associated with that domain are then excised from the
multidomain chain before rescanning the chain against the
fold library. Therefore, it is important that this top match is
frequently the best global match that can be obtained. As well
as using information on the number of residues that
superpose well (provided by the SAS), it is also important to
consider the proportion of residues equivalent between the
two domains, domain sizes, and protein classes. All these
features have been found to be important in the manual
curation process used to classify domains in CATH. We used
an SVM to explore whether some optimal combination of
these features resulted in a measure that was more discrim-
inating than simply using a single structural similarity score.

Table 2. Residues Aligned by Each Method Relative to DDP for
All Genuine Fold Matches

Residues LSQMAN DALI STRUCTAL CE

Aligned residues with

respect to DDP, percent

50 75 76 57

doi:10.1371/journal.pcbi.0030232.t002

Figure 5. Comparison of Alignment Quality of Domains Adopting the Same CATH Fold Using Two Geometric Scoring Schemes

(A) Percentage of correct fold pairs for a given SAS threshold.
(B) Percentage of correct fold pairs for a given SiMax threshold.
doi:10.1371/journal.pcbi.0030232.g005
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From Figure 8, it can be seen that using an SVM to combine
the other scoring schemes into a single value outperforms the
individual methods at low error rates. The SVM ROC curve
benchmark shown is an average of the performance shown
using 5-fold cross-validation to account for any overfitting of
the dataset. It is also interesting to note that the GT E-value
actually outperforms the SAS at error rates higher than 2%.

Optimising a Score Threshold for Accurately Identifying
Domains in Multidomain Chains

Once CATHEDRAL has identified putative domain
matches for a query multidomain structure, all domain hits
to the chain are ranked by the SVM score, and domain
boundaries are assigned using the protocol described in
Methods. CATHEDRAL was able to assign 90% of domains in
the query dataset to the correct fold group, with 80% of these
within ten residues of the actual boundary (Figure 9).
Although our dataset only contained multidomain chains in
which all component domains were represented in the CATH
library, this is not always the case in classifying novel
structures. Indeed, assigning erroneous folds to chains could
adversely affect the quality of the domain boundaries. Figure
10 shows a plot of coverage according to the percentage of
accurate boundaries (i.e., within 10 residues). It can be seen
that once the SVM score cutoff is increased above 2, the
coverage drops dramatically. However, the accuracy of the
domain boundaries does not increase significantly, suggesting
that this is an appropriate threshold for CATHEDRAL.
Figure 9 shows the coverage of all chains in the dataset with

respect to the accuracy of their predicted domain bounda-
ries.
CATHEDRAL was developed as a method to be applied

unilaterally to all protein chains to be classified into the
CATH database. As it is not known a priori whether a given
chain contains more than one domain, it is important that
the algorithm does not split whole-chain domains unnecessa-
rily. To analyse whether this would pose a problem, the
iterative version of CATHEDRAL was also applied to the
single-domain CATH–SCOP dataset. In less than 4% of cases,
CATHEDRAL predicted that these structures contained more
than one domain.

Increasing the Speed of Domain Boundary Assignments
by CATHEDRAL
The major speed increase in CATHEDRAL is due to the

fact that GT preselects representatives for DDP to align to the
query chain. By default, it takes all relatives (nonredundant at
35% sequence identity level) in each of the top ten top-
scoring fold groups identified by GT, even if this results in
thousands of comparisons, as occurs in large fold groups such
as the Rossmann and TIM barrel folds. This can produce very
long running times for some query chains. Nevertheless, it is
important to find the closest structural relatives for each
assignment to reduce the number of insertions and deletions
and therefore increase the accuracy of the domain boundary.
We explored whether only a limited number of relatives

from each fold could be taken without compromising the
fidelity of the domains boundaries. However, given that GT

Figure 6. Average Number of Aligned Residues per SAS

doi:10.1371/journal.pcbi.0030232.g006
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does not accurately discriminate between homologues and
domains with the same fold, it was decided to take at least one
relative from each superfamily in the target fold group and
explore the effect of varying this number.

CATHEDRAL was run as described above (by targeting the
top ten fold groups at each iteration), but the number of
nonredundant representatives (fr) taken from each super-
family to be aligned by DDP was varied. Figure 11 shows a

plot of the number of correctly assigned domain boundaries
(within ten residues of manually validated boundary) at each
of these levels. It appears that taking any more than seven
representatives from each superfamily does not increase the
number of good assignments, and hence appeared to be an
appropriate level to set the fr parameter.

Relationship between the Accuracy of Assigned Domain
Boundaries and Evolutionary Distance from the Matched
Domain
Figure 12 shows the relationship between the accuracy of

the domain boundary and the sequence identity between the
assigned domain region and best structural match used to
assign the boundary. When sequence identity exceeds 10%,
there is an increase in the number of correct domain
boundaries. It could be expected that the closer the relative
from which the assignment is made, the greater chance of it
being correct. However, it is encouraging to note that 60% of
assignments with sequence identities between 5% and 10%
show very little deviation from the manually verified
boundaries.
Structural embellishments of the core of a fold are

responsible for the majority of examples where there is a
disagreement between a manually assigned boundary and
those predicted by CATHEDRAL. Figure 13 illustrates this
problem by showing a domain assignment for a catalase HPII
[32] (PDB code 1iph) domain, through similarity to its closest

Figure 8. Comparison of GT and DDP Scores with SVM Score for

Assigning Domains to Multidomain Chains

doi:10.1371/journal.pcbi.0030232.g008

Figure 7. Graph Showing How the Alignments of Each Method Compared with Manually Validated BAliBASE Alignments

The higher the curve (or the curve with the greatest area underneath) represents the method that most agrees with the manually curated BAliBASE
alignments.
doi:10.1371/journal.pcbi.0030232.g007
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match in the CATH library [33] (PDB code 1beb). The
matched domain is much smaller than the query, and hence
CATHEDRAL is only effective at aligning the core of the fold
(shown in red). A number of large insertions in the catalase
domain cannot be assigned purely by structural comparison,
and these sites are therefore not included within the domain,
causing a substantial discrepancy from the correct boundary
assignment.

Recent analyses of CATH superfamilies has revealed that in
40% of well-populated superfamilies (nine or more diverse
relatives at ,35% sequence identity), there is 2-fold or more
variation in the sizes of the domains (as measured by the
numbers of secondary structures in the domain) [7]. There-
fore, in these superfamilies, it may be difficult to obtain
accurate boundaries until a close structural relative is
deposited in the PDB.

Comparison of CATHEDRAL Performance to Domain
Boundary Assignment by Other Domain Prediction
Methods

To place the performance of CATHEDRAL in context, we
compared its ability to assign domains boundaries with two

other methods: hidden Markov models (HMMs) and domain
predictions from structure (PDP).
Our dataset of protein chains was scanned against HMMs

built from each structure in the CATH library using the
HMMer suite of programs [34]. Domain boundaries were then
assigned to the query chains in the same way as CATHE-
DRAL, but using the HMM E-value instead of the CATHE-
DRAL SVM score to rank hits. We found that the HMM
method was only able to discover 65% of domain folds within
the dataset chains. One of the main reasons for this low
coverage was that 11% of the chains were not annotated with
any domains using an E-value threshold of 0.001. Of the
domain boundaries assigned, only 33% were within ten
residues, compared with 80% for CATHEDRAL. It is possible
that the number of assigned domains could have been
increased by using a less conservative E-value threshold.
However, this is unlikely to improve the overall quality of the
domain boundaries, given the low quality of those that were
assigned by the HMM alignments. The domain recognition
performance is on a par with the method of Nagarajan and
Yona [20], who predicted the correct domain architecture of
35% of a dataset of multidomain PDB chains. However, by
incorporating structural information they were able to
increase the percentage of boundaries within ten residues
to 63%.
CATHEDRAL finds domain boundaries for a query chain

by using structural alignment to known folds in CATH. To
compare our approach with other methods that do not
exploit the concept of fold recurrence, but instead are based
on ab initio analysis of structural properties such as residue
contacts, we applied the PDP method to our multidomain
chain dataset. PDP was able to predict correct domain
boundaries (within ten residues) for 67% of the chains in the
dataset. Although this is lower than CATHEDRAL, it is
substantially higher than the 33% achieved by HMM
methods. Furthermore, the performance of PDP is still
impressive given the problem of distinguishing domain units
in a chain based purely on structural properties such as
internal contacts and hydrophobicity.

Figure 9. Percentage of Domain Assigned (Blue) and Percentage of Domain Boundaries within Ten Residues of Verified Boundaries (Pink) at a Range of

SVM Score Cutoffs

doi:10.1371/journal.pcbi.0030232.g009

Figure 10. Domain Coverage Versus Quality of Domain Boundaries

doi:10.1371/journal.pcbi.0030232.g010
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CATHEDRAL Webserver
More than 50 structural comparison algorithms have been

published in the literature in the last 30 years, the vast
majority of which are not in regular use by the bioinformatics
or structural biology communities. Those which have gained
popularity tend to have a Web-based interface for users to
submit their own structures or structures from the PDB.
CATHEDRAL has been implemented as a crucial part of the
CATH classification protocol, and a new Webserver was
created to provide users to investigate domain assignments
and homologue recognition with their protein structure of
choice (http://cathwww.biochem.ucl.ac.uk/cgi-bin/cath/
CathedralServer.pl).

Discussion

We have developed a protocol for domain boundary
assignment in multidomain proteins (CATHEDRAL) that
exploits the recurrence of folds in different multidomain
contexts. This was devised because a high proportion

(currently .90% [21]) of domains in newly determined
structures contain folds that have been previously classified
in CATH.
CATHEDRAL first scans a query structure against a library

of folds from the CATH databases. The algorithm first uses
GT to perform a secondary structure–based comparison and
identify putative domain fold matches in the query structure.
A representative sample of nonredundant superfamily
relatives from the top ten folds are then recompared to try
to obtain a better alignment and refine the domain
boundaries. This latter step exploits a DDP algorithm that
has been guided by information on equivalent secondary
structures identified by the GT match.
CATHEDRAL combines the power of two established

structural comparison algorithms in order to develop a fast
and accurate protocol for homologue recognition and
domain assignment. CATHEDRAL misses ;10% of the
domains in the target dataset. Of these, ;30% are too small
(fewer than three secondary structures) and so are ignored by
the CATHEDRAL protocol. Manual inspection revealed that
a further ;20% are distorted or irregular structures giving
poorly defined graphs. The remaining ;50% are missed
because they do not pass the score similarity cutoff, as the
relatives are too distant and related structural motifs in
neighbouring fold groups are better matched.
The CATH classification of protein folds gives a discrete

description of fold space. However, there are difficulties in
identifying distinct folds in some populated regions of fold
space where the structural universe could be more reasonably
represented as a continuum [6]. In many cases, as the size of
the protein increases, the repertoire of folds appears to
consist of extensions to existing motifs. It has been shown by
Koppensteiner et al. [35] that it is possible to ‘‘walk’’ from one
a/b sandwich fold to another, through the extension of a/b
motifs. Furthermore, certain motifs, described as ‘‘attrac-
tors,’’ occur as the core of a protein’s structure more
frequently than others [36]. Recent analyses of the overlaps
between fold groups has shown that for some protein
architectures (ab sandwiches and mainly b sandwiches),

Figure 12. Graph of the Percentage of Correct (within Ten Residues) Domain Boundaries against the Sequence Identity between the Assigned Region

and the Matched Domain

doi:10.1371/journal.pcbi.0030232.g012

Figure 11. Percentage of Domains with Correct Domain Boundaries

(within Ten Residues) When Varying the Number of Representatives

Taken from Each Superfamily in the Targeted Fold Groups

doi:10.1371/journal.pcbi.0030232.g011
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extensive overlaps between fold groups are observed due to
large common structural motifs [37].

For nearly 80% of the test set, all domain boundaries
within the multidomain were correctly assigned within ten
residues. This is a considerable improvement over a previous
consensus protocol (DBS; [9]) described above, for which on
average only 10%–20% of domains could be identified as
having reliable boundary assignments from agreement
between three independent methods. Furthermore, as known
folds are recognised by CATHEDRAL, individual domains
can be simultaneously classified in the CATH database,
without the need for further structure comparison as in
previous classification protocols. The method is currently
being extended to assign a confidence level or p-value to the
boundary and fold assignments predicted by CATHEDRAL.
Furthermore, at present, CATHEDRAL assigns domains to a
query chain in an iterative fashion. It could be conceived that
a better prediction of boundaries and fold assignments could
be attained by considering a number of different classifica-
tions. The best of these could be identified as the prediction
with the highest confidence value.

Since CATH aims to maintain high quality domain
boundary assignments [38], results returned by the CATHE-
DRAL algorithm will continue to be manually assessed.
However, the high accuracy of the approach will considerably
facilitate this process. Since the proportion of domain folds
classified within CATH is likely to continue to increase
significantly in the next decade due to the progress of the
structural genomics initiatives, the CATHEDRAL algorithm
will considerably increase the speed of classification of new
multidomain structures and their constituent folds within
CATH.

Methods

Generation of a dataset for benchmarking structure alignments of
single domains. CATHEDRAL and DDP (a modified version of the
SSAP algorithm [27]) were benchmarked against other publicly
available structural comparison methods, STRUCTAL [29], DALI
[26], LSQMAN, and CE [30] (see Text S1 for description of methods).
An all-against-all structural comparison was performed on the 6,003
unique CATH domains (,35% sequence identity to each other) from
907 fold groups for each of the different structural comparison
methods, giving more than 18 million individual comparisons. To
minimise any bias in the CATH dataset, a dataset that was a subset of
CATH version 2.6.0 and SCOP verson 1.65 was also constructed. Each
of 6,003 CATH (SRep) domains was checked to see if it had an
equivalent SCOP domain containing at least 80% of the same
residues. All domains satisfying this criterion were mapped to their
CATH and SCOP superfamilies. These superfamilies were then
compared, and only those sharing 80% of the same members were
identified. This restricted the CATH–SCOP dataset to 1,779 SReps
encompassing 406 folds.

Overview of the publicly available methods used to assess the
relative performance of CATHEDRAL and DDP for domain–domain
structure alignment. There are several publicly available methods
that have been endorsed by widespread community use and/or
validation by comparative benchmarking against established meth-
ods. We selected a range of methods, many of which had been
previously benchmarked by Kolodny et al. [29] for their performance
in fold recognition and alignment accuracy.

Protocol used to compare the performance of CATHEDRAL and full DDP in
fold recognition and alignment accuracy with other established methods—fold
recognition. Structure alignment methods were compared using ROC
curves. These plot true positive rate (sensitivity) against the false
positive rate (1 � specificity) for different similarity scores returned
by the individual methods. A binary classifier was defined by the
CATH hierarchy whereby a positive match is one in which both
domains share the same fold classification. The matches for each
method were ordered by the structural similarity score of their
alignment, and the number of true positives and false negatives were
calculated at varying thresholds.

Protocol used to compare the performance of CATHEDRAL and full DDP in
fold recognition and alignment accuracy with other established methods—
alignment accuracy.

Kolodny and coworkers tested several measures for assessing the
accuracy of structural alignments [29]. They identified redundant
measures, and alignment accuracy was subsequently compared using
the two geometric measures shown in Equations 1 and 2 below: SAS,
and SiMin where Nmat represents the number of aligned residues and
L1/L2 represents the length of the respective domains. The different
measures attempt to balance the different properties that describe a
‘‘good’’ alignment, weighting the RMSD against the length of the
alignment as a fraction of the length of the proteins aligned.

SAS ¼ 100
RMSD
Nmat

ð1Þ

SiMin ¼ ðL1;L2Þ
RMSD
Nmat

ð2Þ

As CATHEDRAL is exploiting fold recognition to obtain reliable
domain boundary assignment, we developed a further measure that
scores the global alignment accuracy. As opposed to SiMin, which
gives a good score for a small fold appearing as a conserved motif
within a much larger fold, SiMax (Equation 3 below) takes account of
the proportion of residues aligned in the larger domain structure to
determine whether a significant fold match has been achieved.

SiMax ¼ maxðL1L2Þ
RMSD
Nmat

ð3Þ

All the measurements are in angstroms, and the percentage of
alignments within a particular distance in angstroms were calculated
for each measure (SAS, SiMax, and SiMin).

In addition to these geometric measures, alignment accuracy was
also assessed by comparison against a set of manually curated
alignments. BAliBASE is a database of manually refined multiple
structure alignments specifically designed for the evaluation and
comparison of multiple sequence alignment programs. The align-
ments in BAliBASE are selected from the FSSP [36] or HOMSTRAD
[39] structural databases, or from manually constructed structural
alignments taken from the literature. When sufficient structures are

Figure 13. Superposition of the Catalase HPII (PDB 1iph; First Domain of

Chain A) as It Is Classified in the CATH Database and Its Match to Bovine

Beta-Lactoglobulin, Coloured Red, (PDB 1beb; Chain A), the Closest

Relative Identified by CATHEDRAL

doi:10.1371/journal.pcbi.0030232.g013
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not available, additional sequences are included from the HSSP
database [40]. The VAST Webserver [23] is used to confirm that the
sequences in each alignment are structural neighbours and can be
structurally superimposed. Functional sites are identified using the
PDBsum database [41], and the alignments are manually adjusted to
ensure that conserved residues and secondary structure elements are
correctly aligned.

A total of 14 BAliBASE multiple alignments were selected,
comprising 108 pairwise structural comparisons. All the alignments
represented single-protein domain chains that shared less than 25%
sequence identity, making alignment nontrivial. All three major
protein classes were represented, and the quality of the alignments
generated by the different structure comparison methods are
measured by the score, fm, which quantifies the number of amino
acids correctly aligned in the structural alignment divided by the
total number of aligned residues in the BAliBASE alignment. CE was
not included in this analysis, as it only identifies the largest
continuous motif.

Generation of a dataset used in benchmarking CATHEDRAL for
assigning folds to multidomain protein chains. CATHEDRAL was
benchmarked to calculate its ability to delineate domains within
multidomain proteins, as well as correctly recognising the fold of the
constituent domains. A set of representatives from 1,071 multi-

domain S35 sequence families (clustered by single linkage at 35%
sequence identity) was selected. From this set, those chains containing
domains from folds with less than two S35 sequence families were
removed. The remaining set contained 964 chains comprising 1,593
domains. These originated from 245 distinct fold groups and 462
superfamilies.

Generation of a CATH library of representative folds for
CATHEDRAL. To identify domain boundaries in a novel multi-
domain structure, CATHEDRAL scans the query structure against a
library of folds classified in the CATH database (see Text S1 for
description of CATH hierarchy) that are derived from contiguous
domain representatives from each sequence family (in which relatives
have at least 35% sequence identity) in version 2.6 of the CATH
database. This comprised 4,707 domains, covering 907 folds. A
secondary structure graph of each domain was generated as described
in Harrison et al. [25].

Overview of the CATHEDRAL algorithm. Iterative protocol used by
CATHEDRAL. CATHEDRAL uses an iterative protocol illustrated in
Figure 14. As described above, novel multidomain proteins are first
scanned against a library of domain folds from CATH using the
secondary structure GT algorithm. All folds containing hits in the top
ten ranked fold hits are then selected for further analysis. To improve
the alignment of the matched regions and thereby identify the closest
structural neighbour, fr representatives from each superfamily in the
selected folds are compared against the matched region using the
DDP algorithm.

As matches to small domains (fewer than five secondary structures)
can produce insignificant E-values (see [25]) when compared to large
chains, these were isolated from the original CATH library and
scanned only after all large domains had been assigned by
CATHEDRAL.

A variety of different scoring schemes were assessed for their
ability to recognise true matches, together with a combination of
several measures using an SVM (see below). If the score suggests that
the match is valid, the region is accepted as a putative domain and the
alignment used to indicate the residues that can be excluded from the
multidomain structure (and score matrix) in future searches. A new
graph is constructed from the remaining secondary structures, and
the GT and subsequent DDP search is repeated to identify another
putative domain. CATHEDRAL continues for up to ten iterations or
until there are fewer than three secondary structures left to be
assigned.

Identification of corresponding secondary structures in the multidomain
protein and a single domain structure using GT. GT was first introduced for
protein structure comparison by Artymiuk and coworkers [42].
CATHEDRAL uses a new implementation of this approach [25] (see
Text S1) that includes further structural features (e.g., chirality) to
obtain a better resolution between related and unrelated folds. A
robust statistical framework was also derived to calculate expectation
values (E-values) that can be used to assess the significance of each
comparison (see [25] for a detailed description of the GT algorithm
used in CATHEDRAL).

Generating a residue alignment of the fold match using DDP. Once a
putative domain within the multidomain structure has been matched
to a fold in the CATH database, an accurate alignment between this
domain and the target structure can be obtained using a residue-
based method that exploits DDP.

CATHEDRAL uses the global alignment version of the DDP
algorithm, described in Taylor and Orengo [27]. This choice followed
assessment of the performance obtained using the global and local
alignment versions [43]. The global alignment version is better able to
handle proteins with discontiguous domains, as the alignment
produced by the local version in such cases was found to match only
one of the fragments of the discontinuous domain. The break in the
discontiguous domain appears to the alignment program as a large
gap, and the local alignment score within the gapped region rapidly
falls to zero, thus terminating the alignment incorrectly.

Using secondary structure matches from the GT filter to guide residue
alignment by DDP. The full DDP algorithm is computationally
expensive because it makes an exhaustive search of all possible
pathways through the residue and summary level matrices, although
this search can be constrained by imposing a window on the score
matrix [27]. Fortunately, it is not necessary to compare all the
equivalent positions between two related proteins to obtain an
accurate residue alignment. Therefore, the clique information
identifying matching secondary structures can be used to exclude
large regions of the score matrix by populating a binary matrix,
which dictates which residues to compare. First, residues in
equivalent secondary structures must pair with one another. As
equivalent strands and helices can vary in length (e.g., a helix with 11

Figure 14. Flowchart of CATHEDRAL Algorithm for Assigning Folds and

Domain Boundaries to Protein Chains

doi:10.1371/journal.pcbi.0030232.g014
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residues could be aligned to one with eight residues), it must be an all-
versus-all pairing (represented by a square of ‘‘1’’ values in the
matrix). Similarly, residues on the end of aligned secondary
structures could potentially be paired with residues in the loop
regions, so the boundary is extended by 10 residues on either side.

Second, although the alignment for residues outside the clique is
unknown, it is possible to exclude certain pairings. The clique
effectively orientates the alignment and dictates that if helix 1 in
protein A is equivalent to helix 2 in protein B, it cannot
simultaneously be equivalent to helix 3 in protein B. Moreover, it
gives the overall direction of the alignment and allows the regions
between the clique secondary structures to be linked together.

Finally, the alignment of embellishments of the core clique
secondary structures at the start and ends of the domains is
unspecified. However, it is known that these cannot be aligned to
any of the core residue pairs. Hence, the starts and ends of the domains
are paired up for DDP to decide where the equivalences lie. As
outlined in the DDP description in Text S1, residue pairs possessing
similar torsional angles and accessibility within these matching
secondary structure blocks are then selected for comparison.

Cliques indicate blocks within which residues in matching
secondary structures should be aligned. Gaps between these blocks
are also possible locations for the residue alignment algorithm to
search. The rest of the score matrix can be ignored. This typically
gives a significant reduction in the number of residue pairs that must
be compared in the first pass of the DDP algorithm. As well as
speeding up the alignment, it also reduces the amount of noise in the
summary score matrix accumulated in the first pass, as fewer
nonequivalent residue pairs are compared. Similarly, once a domain
has been matched in the multidomain structure, the block associated
with that domain need not be subsequently searched. These
restrictions on the search space result in much faster comparisons
without significantly affecting the ability to recognise equivalents.

Adapting the CATHEDRAL protocol to favour global matches over local
motif matches. The accuracy of the secondary structure–matching
algorithm improves with clique size because for larger cliques there
are more equivalent geometric relationships identified. This is
because a clique that has N nodes contains N(N � 1) / 2 edges.
Matches identified using GT are therefore more secure when the
clique is large, independent of the residue similarity score.
Furthermore, because the scoring scheme for graph-matching breaks
down for the very small folds (fewer than three secondary structures
[25]), to maintain the integrity of CATHEDRAL’s predictions, these
very small proteins are excluded by the algorithm.

As CATHEDRAL iterates toward a solution, the CATH database is
repeatedly scanned. However, some large folds contain structural
motifs that match well to small folds. These motif matches sometimes
rank higher in the match list because the geometry is very well
conserved, and the selection of these matches over equivalent folds
can therefore confuse the identification of domain boundaries. This
effect can be avoided by attempting to match only large domains first;
that is, two passes of CATHEDRAL are performed. The first pass only
allows matches to folds in CATH that have graphs of five or more
nodes. Once CATHEDRAL has reached its termination, it is applied
again to the folds in CATH that have graphs with three or four nodes.

This strategy results in the smallest folds only being compared
against regions of the multidomain protein that are not part of a
large fold, as well as typically increasing CATHEDRAL’s speed by
50% or more since fewer searches are required. Hence, CATHEDRAL
essentially assigns all large domains first before attempting to align
smaller domains to any remaining unassigned regions. To aid the
assignment of discontiguous domains, in the first iteration, the top
hit is also required to be contiguous (i.e., the assigned region
comprises one continuous sequence segment).

Scoring the structural similarity of the domain region aligned by DDP. To
assess whether a given structural hit represents a true fold match
within the multidomain protein, several measures of similarity are
calculated. The structural similarity score returned by the DDP
algorithm is normalised to lie in the range of 0–100 (with 100 for
identical structures) irrespective of the protein sizes [44]. This score is
based on similarities in the vectors between Cb atoms of equivalent
residues in the aligned proteins and is normalised to take account of
the size of the largest domain being compared.

A rigid body superposition of the structures is also generated from
the equivalent residues identified by the alignment. RMSD of the
aligned Ca atoms is calculated, and a cutoff can be imposed on the
local structural similarity (see above) to select only the most similar
residue pairs when generating the superposition of the structures. A
cutoff of 30 (with 100 representing identical residues) is used to

ensure the most equivalent residues pairs are used to calculate the
SAS.

Using an SVM to validate structural matches. Determining domain
boundaries in protein chains through iterative fold assignment
presents several challenges. For example, there is the problem of
mis-assigning folds that simply match a large structural motif that
does not correspond to a significant ‘‘global’’ match to the domain
region. Discontiguous domains can also present problems for
structural alignment algorithms. Several similarity measures can be
considered when gauging whether a match is valid. Manual
experimentation can be used to explore and optimise the combina-
tion of these measures, or machine learning methodologies can be
used. In CATHEDRAL, we exploited an SVM to perform the
optimisation automatically and to determine when a significant
domain structure match to a classified fold in CATH was occurring.

In addition to the similarity measures provided by the GT and DDP
algorithms, we also considered other features (e.g., the proportion of
residues matched between the two structures, and similarity in
domain sizes) to help improve recognition of global similarity
between domain structures. We used the SVMLight package [45] to
combine these features using a linear kernel.

To train the SVM, 5-fold cross-validation was used to assess the
performance of the SVM models. That is, the dataset was split into
five sets, and each one was successively used as the test set, while the
model was trained on the other four sets. This reduces any potential
bias caused by random fluctuations in the composition of the training
and test sets. The error cost for positive examples was weighted
according to their ratio to negative examples.

Features included the raw score, E-value, and clique size (number
of matched secondary structures) returned by the GT comparison. In
addition, the raw score derived from the DDP algorithm together
with the residue overlap (percentage of residues in the CATH domain
aligned against the putative domain region), CATH domain size,
sequence identity, and SAS. To improve the ability of the classifier to
avoid bias toward one feature, each was normalised between 0 and 1.

Identifying domain boundaries and handling discontinuous domains. The
individual DDP similarity score of equivalent residue pairs, normal-
ised to lie between 0–100, indicates where residue similarity is good
(high), where it is poor (low), and where it is nonexistent (residue
score is zero). Since only individual domains from CATH are scanned
against the multidomain structure, the alignment can be used to find
domain boundaries, because the residue pair score falls to zero at the
boundary.

When CATHEDRAL determines which fold to assign to a region of
the protein chain, it is also making a judgment of where the domain
boundaries lie. The fidelity of this latter process is arguably
dependent on the structural similarity between the domain region
in the chain and the domain it has matched in the library. Although
domain boundaries can be assigned to the chain in the same step as
taking the highest scoring hits to each region of the chain, the
accuracy can be improved by modifying the boundaries once all
assignments have been made.

Subsequently, domain assignments that contain regions of the
chain that overlap with one another are processed as a last step in the
protocol. Conflicts are resolved by assuming that the highest-scoring
domain is most likely to have the correct boundaries. The boundaries
of the overlapping domain are cropped to exclude the shared region.
Second, some chains may contain small regions at the start and end
that are unassigned. This is often fewer than 20 residues and is
unlikely to contain another domain, or comprise an additional
segment of a discontiguous domain. In these instances, CATHEDRAL
assigns the extra residues at the beginning and end of the chain to the
first and last domains, respectively. Similarly, some chains contain
small regions between assigned segments. In these cases, CATHE-
DRAL splits the unassigned residues equally between the two
neighbouring segments.

Supporting Information

Text S1. Description of CATH Domain Structure Database

doi:10.1371/journal.pcbi.0030232.sd001 (48 KB PDF)

Acknowledgments

We would like to thank the rest of the CATH team for their help and
advice, particularly Tony Lewis for technical assistance and Russell
Marsden for valuable comments on the manuscript.

Author contributions. OCR, AH, and CAO conceived and designed

PLoS Computational Biology | www.ploscompbiol.org November 2007 | Volume 3 | Issue 11 | e2322346

A Novel Algorithm



the experiments. OCR, AH, and TD performed the experiments.
OCR, TD, and FMGP analyzed the data. OR wrote the paper.

Funding.OCR was funded by an Engineering and Physical Sciences
Research Council (EPSRC) studentship. TD was funded by a
Biotechnology and Biological Sciences Research Council (BBSRC)

studentship. CAO and AH thank the Medical Research Council for
funding.

Competing interests. The authors have declared that no competing
interests exist.

References
1. Apic G, Gough J, Teichmann SA (2001) Domain combinations in archaeal,

eubacterial and eukaryotic proteomes. J Mol Biol 310: 311–325.
2. Orengo CA, Jones DT, Thornton JM (1994) Protein superfamilies and

domain superfolds. Nature 372: 631–634.
3. Coulson AF, Moult J (2002) A unifold, mesofold, and superfold model of

protein fold use. Proteins 46: 61–71.
4. Grant A, Lee D, Orengo C (2004) Progress towards mapping the universe of

protein folds. Genome Biol 5: 107.
5. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: A structural

classification of proteins database for the investigation of sequences and
structures. J Mol Biol 247: 536–540.

6. Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, et al. (1997)
CATH—A hierarchic classification of protein domain structures. Structure
5: 1093–1108.

7. Reeves GA, Dallman TJ, Redfern OC, Akpor A, Orengo CA (2006)
Structural diversity of domain superfamilies in the CATH database. J Mol
Biol 360: 725–741.

8. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The
Protein Data Bank. Nucleic Acids Res 28: 235–242.

9. Jones S, Stewart M, Michie A, Swindells MB, Orengo C, et al. (1998) Domain
assignment for protein structures using a consensus approach: Character-
ization and analysis. Protein Sci 7: 233–242.

10. Holland TA, Veretnik S, Shindyalov IN, Bourne PE (2006) Partitioning
protein structures into domains: Why is it so difficult? J Mol Biol 361: 562–
590.

11. Siddiqui AS, Barton GJ (1995) Continuous and discontinuous domains: An
algorithm for the automatic generation of reliable protein domain
definitions. Protein Sci 4: 872–884.

12. Holm L, Sander C (1994) Parser for protein folding units. Proteins 19: 256–
268.

13. Holm L, Sander C (1998) Dictionary of recurrent domains in protein
structures. Proteins 33: 88–96.

14. Swindells MB, MacArthur MW, Thornton JM (1995) Intrinsic phi, psi
propensities of amino acids, derived from the coil regions of known
structures. Nat Struct Biol 2: 596–603.

15. Gouzy J, Corpet F, Kahn D (1999) Whole genome protein domain
analysis using a new method for domain clustering. Comput Chem 23:
333–340.

16. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular
architecture research tool: Identification of signaling domains. Proc Natl
Acad Sci U S A 95: 5857–5864.

17. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, et al. (2002) The Pfam
protein families database. Nucleic Acids Res 30: 276–280.

18. George RA, Heringa J (2002) SnapDRAGON: A method to delineate protein
structural domains from sequence data. J Mol Biol 316: 839–851.

19. Rigden DJ (2002) Use of covariance analysis for the prediction of structural
domain boundaries from multiple protein sequence alignments. Protein
Eng 15: 65–77.

20. Nagarajan N, Yona G (2004) Automatic prediction of protein domains from
sequence information using a hybrid learning system. Bioinformatics 20:
1335–1360.

21. Todd AE, Marsden RL, Thornton JM, Orengo CA (2005) Progress of
structural genomics initiatives: An analysis of solved target structures. J Mol
Biol 348: 1235–1260.

22. Chandonia JM, Brenner SE (2006) The impact of structural genomics:
Expectations and outcomes. Science 311: 347–351.

23. Madej T, Gibrat JF, Bryant SH (1995) Threading a database of protein
cores. Proteins 23: 356–369.

24. Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new
tool for fast protein structure alignment in three dimensions. Acta
Crystallogr D Biol Crystallogr 60: 2256–2268.

25. Harrison A, Pearl F, Sillitoe I, Slidel T, Mott R, et al. (2003) Recognizing the
fold of a protein structure. Bioinformatics 19: 1748–1759.

26. Holm L, Sander C (1993) Protein structure comparison by alignment of
distance matrices. J Mol Biol 233: 123–138.

27. Taylor WR, Orengo CA (1989) Protein structure alignment. J Mol Biol 208:
1–22.

28. Sali A, Blundell TL (1990) Definition of general topological equivalence in
protein structures. A procedure involving comparison of properties and
relationships through simulated annealing and dynamic programming. J
Mol Biol 212: 403–428.

29. Kolodny R, Koehl P, Levitt M (2005) Comprehensive evaluation of protein
structure alignment methods: Scoring by geometric measures. J Mol Biol
346: 1173–1188.

30. Shindyalov IN, Bourne PE (1998) Protein structure alignment by
incremental combinatorial extension (CE) of the optimal path. Protein
Eng 11: 739–747.

31. Thompson JD, Plewniak F, Poch O (1999) BAliBASE: A benchmark
alignment database for the evaluation of multiple alignment programs.
Bioinformatics 15: 87–88.

32. Bravo J, Verdaguer N, Tormo J, Betzel C, Switala J, et al. (1995) Crystal
structure of catalase HPII from Escherichia coli. Structure 3: 491–502.

33. Brownlow S, Morais Cabral JH, Cooper R, Flower DR, Yewdall SJ, et al.
(1997) Bovine beta-lactoglobulin at 1.8 A resolution—Still an enigmatic
lipocalin. Structure 5: 481–495.

34. Eddy SR (1996) Hidden Markov models. Curr Opin Struct Biol 6: 361–
365.

35. Koppensteiner WA, Lackner P, Wiederstein M, Sippl MJ (2000) Character-
ization of novel proteins based on known protein structures. J Mol Biol 296:
1139–1152.

36. Holm L, Sander C (1996) Mapping the protein universe. Science 273: 595–
603.

37. Harrison A, Pearl F, Mott R, Thornton J, Orengo C (2002) Quantifying the
similarities within fold space. J Mol Biol 323: 909–926.

38. Veretnik S, Bourne PE, Alexandrov NN, Shindyalov IN (2004) Toward
consistent assignment of structural domains in proteins. J Mol Biol 339:
647–678.

39. Mizuguchi K, Deane CM, Blundell TL, Overington JP (1998) HOMSTRAD:
A database of protein structure alignments for homologous families.
Protein Sci 7: 2469–2471.

40. Sander C, Schneider R (1991) Database of homology-derived protein
structures and the structural meaning of sequence alignment. Proteins 9:
56–68.

41. Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, et al.
(1997) PDBsum: A Web-based database of summaries and analyses of all
PDB structures. Trends Biochem Sci 22: 488–490.

42. Grindley HM, Artymiuk PJ, Rice DW, Willett P (1993) Identification of
tertiary structure resemblance in proteins using a maximal common
subgraph isomorphism algorithm. J Mol Biol 229: 707–721.

43. Orengo CA, Taylor WR (1993) A local alignment method for protein
structure motifs. J Mol Biol 233: 488–497.

44. Orengo CA, Brown NP, Taylor WR (1992) Fast structure alignment for
protein databank searching. Proteins 14: 139–167.

45. Joachims T (1999) Making large-scale SVM learning practical. In: Schölkopf
B, Burges C, Smola A, editors. Advances in kernel methods—Support
vector learning. Cambridge (Massachusetts): MIT Press. 376 p.

PLoS Computational Biology | www.ploscompbiol.org November 2007 | Volume 3 | Issue 11 | e2322347

A Novel Algorithm


