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(formed by dissociation of ammonia) and the vast 
majority of Titan’s methane inventory.  Upon 
cooling, dissolved methane in the ocean forms a solid 
crystalline clathrate. In the upper half of the water 
column the pressure is low enough to form a stable 
structure I clathrate (having a guest:host ratio of 
1:5.75), which floats to form a crust. In the lower half 
of the water column, the pressure is high enough to 
form the high-pressure clathrate polymorph MH-II 
(guest:host ratio = 1:3.5), which will also float 
upwards, presumably transforming to MH-I nearer 
the surface and expelling excess methane. The final 
methane clathrate crust thickness is ~150 km. Macro-
porous clathrate grains will carry pockets of 
ammonium sulfate solution upwards and incorporate 
them into the crust, where they will ultimately 
solidify to ice + ammonium sulfate tetrahydrate 
(AST) [8]. During the formation and growth of the 
crust, we would expect major melt throughs due to 
thermal plumes and and impact events, as well as 
local thermally-, compositionally-, or tidally-driven 
volcanism, to emplace large volumes of aqueous 
ammonium sulfate at the surface and within the crust. 
Underneath the crust, the aqueous ammonium sulfate 
ocean (which is almost at its eutectic) will initially 
precipitate high-pressure ice VI as it cools further. 
This will sink and accumulate on the ocean floor (as 
a layer a few tens of kilometers thick), driving the 
composition of the residual liquid towards the binary 
eutectic at 40 wt % (NH4)2SO4 (at ambient pressure). 
Additional clathrate will crystallize as the oceanic 
salinity increases towards the eutectic, lowering the 
methane solubility. Although we have not done 
detailed thermal evolution modeling of this scenario, 
it is quite plausible that the ocean of eutectic ASS 
approximately 375 km deep persists to the present 
day, in which case it will be detectable from the tidal 
variation of Titan’s quadrupole moments [e.g., ref. 
9].  If the ocean has crystallized, it will consist of a 
mixture of ices II, V and VI and AST (and possible 
high-pressure polymorphs of AST). 

The subsurface ocean (if it exists) is probably too 
dense for liquids to be extruded through the crust, 
without invoking an unfeasible volatile content, or 
tidal pumping [10]. However, the AST + ice 
intrusions permeating the crust can be partially 
melted to yield aqueous ammonium sulfate magma. 
The volume change on melting (we estimate ~1.5 %) 
will generate an overpressure in the melt source of 
perhaps several tens of MPa, capable of forming 
cracks in the brittle crust and pumping magma 
towards the surface. Moreover, contact between the 
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magma and wall rock (methane clathrate) will allow 
some methane to dissolve in the magma, as well as 
eroding fragments of wall-rock that can be transported 
as xenoliths.  Upon rising to the clathrate 
decomposition depth (at 270 K, MH-I decomposes at 
26 bar, corresponding to a depth of ~2000 m), the 
entrained xenoliths will break down to ice + methane 
gas, powering highly explosive eruptions (see 
companion abstract [11]) with lava fountains up to 
several kilometers high. 

Discussion:  There have been no high pressure 
studies of the (NH4)2SO4 – H2O system; indeed, 
virtually nothing is known about even the ambient 
pressure tetrahydrate phase. However, comparison with 
the MgSO4 – H2O system at high pressure [12] suggests 
that the eutectic melting temperature will reach a 
minimum where AST is in equilibrium with ice III (at 2 
– 3 kbars, or 150 – 225 km depth). Given the very low 
thermal conductivity of methane clathrate [13], the 
estimated heat flow [14] may result in a thermal 
gradient of 10 K km-1 (compare 2.5 K km-1 for an ice Ih 
crust).  Thus, the ambient-pressure eutectic melting 
temperature can be reached at a depth of just 16 km. 
Melt pockets could be carried up to the base of the 
brittle lithosphere by convection cells in the lower 
portion of the clathrate shell. 

Sulfate solutions will have a much lower viscosity 
compared to aqueous ammonia [3], and are erupted at a 
higher temperature (~270 K). Although we do not know 
how ammonium sulfate solutions will behave when 
quenched, we know from our own laboratory 
experience that supersaturated magnesium sulfate 
solutions crystallize rather than forming glasses when 
quenched from room temperature in liquid nitrogen 
(i.e., at very high rates of > 50 K s-1): we have found 
that aqueous ammonia solutions form glasses even 
when cooled at rates of 0.01 K s-1.  The combination of 
low eruption viscosity, high eruption temperature, and 
an ability to crystallize even when quenched very 
rapidly (thus providing latent heat of crystallization to 
the flow) means that ammonium sulfate cryomagmas 
might be a more attractive proposition for explaining 
the very long (ca. 100 km) flow features at Ganesa 
Macula. 

We predict here, and in our companion abstract 
[11], that Titan has been extensively resurfaced by 
lavas composed of aqueous ammonium sulfate, and by 
huge quantities of easily eroded cryotephra consisting 
of ice and ammonium sulfate (or its tetrahydrate). 
Given the very large difference in density between ice 
and ammonium sulfate (ρ = 1770 kg m-3), both fluvial 
and aeolian processes will very effectively separate the 
two minerals. Thus, we should expect ammonium 
sulfate to form the major lag deposit on the higher 
terrain (and the first airfall from cryoclastic clouds), 
whereas ice should be more easily transported to 

lowland basins; more so in the case of possible highly 
vesicular icy scoria or pumice. 

The diffuse near infrared reflection spectrum of 
ammonium sulfate [15] is similar to that of ice and of 
other hydrated sulfate salts, and is a credible 
candidate for the unidentified component of the 
surface spectrum at the Huygens landing site [16]. 
Although the reflection spectrum of ammonium 
sulfate in the mid-infrared appears not to have been 
measured, the transmission spectrum exhibits no 
absorption features at 5 µm (whereas the reflectance 
of ice is roughly 3 % at this wavelength [17]), also 
making it a viable candidate for the 5 µm bright spot 
(associated with the feature provisionally named 
Hotei Arcus) described by Barnes et al. [18] 

Finally, a warm ammonium-rich subsurface 
ocean is a considerably more attractive environment 
for life than the previously mooted aqueous ammonia 
ocean [19]. Indeed, organisms could survive in pore 
fluids or grain-boundary fluids to within a few tens of 
kilometres of the surface. 
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