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Abstract. A group is said to be finitely co-Hopfian when it contains no proper
subgroup of finite index isomorphic to itself. It is known that irreducible lattices in
semisimple Lie groups are finitely co-Hopfian. However, it is not clear, and does
not appear to be known, whether this property is preserved under direct product.
We consider a strengthening of the finite co-Hopfian condition, namely the existence
of a non-zero multiplicative invariant, and show that, under mild restrictions, this
property is closed with respect to finite direct products. Since it is also closed with
respect to commensurability, it follows that lattices in linear semisimple groups of
general type are finitely co-Hopfian.

§0. Introduction. A group G is finitely co-Hopfian when it contains no
proper subgroup of finite index isomorphic to itself. This condition has a natural
geometric significance; if M is a smooth closed connected manifold whose
fundamental group π1(M) is finitely co-Hopfian, then any smooth mapping
h : M→ M of maximal rank is automatically a diffeomorphism (cf. [8]).

From an algebraic viewpoint, this condition is a weakening of a more familiar
notion; recall that a group is said to be co-Hopfian when it contains no proper
subgroup (of whatever index, finite or infinite) isomorphic to itself. Co-Hopfian
groups are finitely co-Hopfian, but the converse is false, shown by the case of
finitely generated non-abelian free groups, which are finitely co-Hopfian but not
co-Hopfian.

It is known that an irreducible lattice in a linear semisimple Lie group is
finitely co-Hopfian; in the case of a Fuchsian group, this is classical, whilst for
an irreducible non-Fuchsian lattice, this follows from Mostow rigidity [9, 10],
although, in almost all cases, it had previously been demonstrated by Borel [3].
However, the case of a general semisimple lattice, commensurable with a product
of both Fuchsian and Mostow rigid factors, does not seem to have been studied
previously, and one objective of this paper is to fill this gap.

An immediate difficulty concerns the extent to which the finite co-Hopfian
property is preserved under finite direct products. We introduce a class of finitely
generated groups, called quasi-lattices, whose properties weakly approximate
the class of lattices in semisimple Lie groups; for the precise definition see §2.
In the case of semisimple lattices we may recall Serre’s notion of Euler–Poincaré
measure [13]. For quasi-lattices this generalizes to that of a multiplicative
invariant on the class of subgroups of finite index. Thus, to a subgroup H of
finite index in a quasi-lattice G, we may associate a non-zero real number µ(H)
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depending only upon the isomorphism type of H with the property that if K is a
subgroup of index [H : K ] in H , then

µ(K )= [H : K ] µ(H).

Any group admitting such a non-zero multiplicative invariant is automatically
finitely co-Hopfian; indeed, any subgroup of finite index is also finitely
co-Hopfian. We prove the following.

THEOREM A. If 01, . . . , 0n are irreducible quasi-lattices, then 01 ×

· · · × 0n is also a quasi-lattice; in particular, 01 × · · · × 0n admits a non-zero
multiplicative invariant.

From Theorem A, we obtain the following result.

THEOREM B. Let 0 be a torsion-free lattice in linear semisimple Lie
group with finitely many connected components; then 0 is a quasi-lattice. In
particular, 0 admits a non-zero multiplicative invariant.

As a corollary, we obtain the following result.

COROLLARY C. Let 0 be a lattice in linear semisimple Lie group with
finitely many connected components; then 0 is finitely co-Hopfian.

This generalizes a result of Borel [3].
The plan of this paper is as follows. In §1, we give equivalent conditions for

the existence of a non-zero multiplicative invariant. In §2, we review some basic
results on direct products and show that the product structure on a direct product
can be deformed only trivially provided that the factors are sufficiently non-
abelian. In §3, we introduce the notion of a quasi-lattice, and prove Theorem A.
In §§4 and 5, we apply the foregoing theory to the class of semisimple linear
lattices, and prove Theorem B and Corollary C.

We point out that the existence of a multiplicative invariant in general is
more subtle than familiar examples (for example, the Euler characteristic) might
suggest. Thus, it is a consequence of Gottlieb’s theorem [5] that groups with non-
zero Euler characteristic must have trivial centre; indeed, Rosset’s generalization
shows that such a group has no non-trivial abelian normal subgroup [12]. This
property is not shared with groups admitting non-zero multiplicative invariants;
in §6, we give examples of groups with non-trivial centres which admit a non-
zero multiplicative invariant. We conclude, in §7, with a brief discussion of the
question of multiplicative invariants for more general direct products.

§1. Multiplicative invariants. A group H is said to have the finite index
property F I when for any subgroups K , K ′ of finite index in H , K ∼= K ′ H⇒
[H : K ] = [H : K ′].

A group homomorphism ι : H → G is a co-finite embedding when ι is
injective and when the index [G : ι(H)] of ι(H) in G is finite. We say
that H has the finite co-index property F C when given co-finite embeddings ιr :
H → Gr (r = 1, 2), G1 ∼= G2 H⇒ [G1 : ι1(H)] = [G2 : ι2(H)]. The following
is straightforward.
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PROPOSITION 1.1. Let H ′ be a subgroup of finite index in H:

(i) if H has property F I , then so does H ′;
(ii) if H ′ has property F C, then so does H.

Slightly less obvious is the following.

PROPOSITION 1.2. If H has property F I , then H has property F C.

Proof. Let ιr : H → Gr (r = 1, 2) be co-finite embeddings, and suppose
that ϕ : G1→ G2 is an isomorphism. Put K1 = ι1(H) ∩ ϕ−1(ι2(H)) and K2 =

ϕ(K1)= ϕ(ι1(H)) ∩ ι2(H). Then Ki is a subgroup of finite index in Gi , and

since ϕ : (G1, K1)
'
→ (G2, K2) is an isomorphism of pairs, then

[G1 : K1] = [G2 : K2]. (I)

However, Kr ⊂ ιr (H), so that

[Gr : Kr ] = [Gr : ιr (H)][ιr (H) : Kr ]. (II)

For r = 1, 2, K ′r = ι
−1
r (Kr ) is a subgroup of finite index in H , and since

ιr : (H, K ′r )→ (ιr (H), Kr ) is an isomorphism of pairs, then

[H : K ′r ] = [ιr (H) : Kr ]. (III)

Now ϕ : K1→ K2 is also an isomorphism, so that K ′1, K ′2 are isomorphic
subgroups of finite index in H . By hypothesis, H has property F I , so that

[H : K ′1] = [H : K
′

2]. (IV)

The desired conclusion [G1 : ι1(H)] = [G2 : ι2(H)] follows from (I)–(IV). 2

Denote by F(H) the set of subgroups of finite index in a group H . A
subset 9 of F(H) is said to be cofinal when for each K ∈F(H) there exists
K ′ ∈9 such that K ′ ⊂ K . There is a weak converse to Proposition 1.2.

PROPOSITION 1.3. Let H be a group; then H has property F I if and only
if F(H) admits a cofinal subset 9 such that each K ∈9 has property F C.

Proof. If H has property F I then by Propositions 1.1 and 1.2, each K ∈
F(H) has property F C. To establish (H⇒) we may thus take 9 =F(H).

For the implication (⇐H), suppose that 9 is a cofinal subset of F(H) with
the property that each K ∈F(H) has property F C. Let K1, K2 be subgroups
of finite index in H such that K1 ∼= K2. Then K1 ∩ K2 has finite index in H ,
so that we may choose K ∈9 such that K ⊂ K1 ∩ K2 and K has property F C.
Since [H : K ] = [H : Kr ][Kr : K ] we have

[H : K1][K1 : K ] = [H : K2][K2 : K ]. (∗)

However, K has property F C and K1 ∼= K2, so that [K1 : K ] = [K2 : K ]. It
follows from (∗) that [H : K1] = [H : K2], and H has property F I . 2
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Let C be a class of groups; by a multiplicative invariant on C, we mean a
function µ : C →R such that, for all G, H, H ′ ∈ C:

(i) if H ∼= H ′, then µ(H)= µ(H ′); and
(ii) if H embeds as a subgroup of finite index d in G, then µ(H)= dµ(G).

The following is clear.

PROPOSITION 1.4. If µ :F(H)→R is a multiplicative invariant, then
either µ(K ) 6= 0 for every K ∈F(H) or µ is identically zero.

The connection with finitely co-Hopfian groups is given by the following.

PROPOSITION 1.5. Let G be a finitely generated group; if F(G) admits
a non-zero multiplicative invariant, then every subgroup of finite index in G is
finitely co-Hopfian.

Proof. If H ∈F(G) and K is a subgroup of index d > 1 in H , then µ(K )=
dµ(H), so that µ(K ) 6= µ(H). Hence, K 6∼= H . 2

Abstract groups G1, G2 are said to be commensurable, written G1 ∼ G2,
when there exists a group H , and injections ιr : H → Gr (r = 1, 2), such that
ιr (H) has finite index in Gr . The commensurability class 〈G〉 is the collection
of groups commensurable with G. Although it is apparently only a class, when G
is finitely generated, 〈G〉 is equivalent to the set of objects of a small (countable)
category, in which morphisms are co-finite embeddings. So, without loss, we
may regard 〈G〉 as a set. From Propositions 1.2 and 1.4 we obtain the following
result.

THEOREM 1.6. Let H be a finitely generated group; then the following
statements are equivalent:

(i) 〈H〉 admits a non-zero multiplicative invariant;
(ii) F(H) admits a non-zero multiplicative invariant;
(iii) H has property F I ;
(iv) F(H) has a cofinal subset consisting of groups with property F C.

Proof. We begin by showing that (ii)⇐⇒ (iii). Thus, suppose that µ :
F(H)→R is a non-zero multiplicative invariant, and that Ki is a subgroup
of finite index δi in H for i = 1, 2, so that µ(Ki )= δiµ(H). If K1 ∼= K2, then
µ(K1)= µ(K2), thus δ1µ(H)= δ2µ(H), and since µ(H) 6= 0, it follows that
δ1 = δ2, and H has property F I . This proves (ii)H⇒ (iii).

Conversely, when H has property F I the correspondence K 7→ [H : K ] is a
well-defined non-zero multiplicative invariant on F(H). Thus, (ii)⇐⇒ (iii) as
claimed.

By Proposition 1.3, (iii) is equivalent to (iv). Moreover, the set of
isomorphism classes in F(H) is a subset of 〈H〉 so that (i)H⇒ (ii).

To complete the proof, we must show (ii)H⇒ (i). Thus, suppose that µ :
F(H)→R is a non-zero multiplicative invariant. When G is commensurable
with H , there is a group K and finite index embeddings i : K → H , j : K → G;
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we define

ν(G)=
[H : i(K )]

[G : j (K )]
µ(H).

The model for this step is the “rational Euler characteristic” of [15].
We must show that ν is a well-defined function on 〈H〉. First observe that,

given K , this definition is independent of the particular embeddings i , j . This
is because, since K embeds as a subgroup of finite index in H , K has property
F I by Proposition 1.1, and hence also has property F C, by Proposition 1.2. In
particular, this formula depends only upon the isomorphism type of K , which,
without loss, can be assumed to be a subgroup of finite index in H .

We now show that the formula is independent of K . Let Kr be a subgroup
of finite index in H (r = 1, 2), and jr : Kr → G a co-finite embedding. Put
L = K1 ∩ K2, and let λr : L→ G be the composition of the inclusion L ⊂ Kr
with jr : Kr → G; then [G : λr (L)] = [G : jr (Kr )][Kr : L], so that

[H : L]

[G : λr (L)]
=

[H : L]

[G : jr (Kr )][Kr : L]
.

Now [H : L] = [H : Kr ][Kr : L], hence

[H : L]

[G : λr (L)]
=
[H : Kr ]

[G : jr (Kr )]
.

However, again, by Propositions 1.1 and 1.2, L has property F C, so that
[G : λ1(L)] = [G : λ2(L)], and so

[H : K1]

[G : j1(K1)]
=
[H : K2]

[G : j2(K2)]

as required. Thus, (ii)⇐⇒ (i), completing the proof. 2

We say that H admits a non-zero multiplicative invariant when any of the
above conditions are fulfilled.

§2. Rigidity of products. An infinite group G is said to be reducible when it
is commensurable with a direct product G ∼ H1 × H2 of infinite groups H1, H2;
otherwise, G is irreducible. We say that a group 0 has property 5 when given
an expression 0 = 0102 · · · 0m (m ≥ 2) as a product (not necessarily direct) of
mutually centralising normal subgroups 0i , then for some i , 0 j = {1} for j 6= i .

PROPOSITION 2.1. Let 0 be an infinite irreducible group with trivial
centre. If 0 has no non-trivial finite normal subgroup, then 0 has property 5.

Proof. Let 0 = 0102 · · · 0m be an expression of 0 as a product of mutually
centralising normal subgroups (m ≥ 2). Then some 0i is infinite. Put 9 =
01 · · · 0i−10i+1 · · · 0m . Since the 0 j are mutually centralising, 0i ∩9 is
central in 0. Thus, 0i ∩9 = {1}, and 0 ∼= 0i ×9. Since 0 is irreducible and 0i
is infinite,9 is a finite normal subgroup of 0, and hence is trivial. Thus, 0 j = {1}
for j 6= i , verifying property 5. 2
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If C is a class of groups, then by a C-product structure on a group G we
mean a finite sequence P = (Gλ)λ∈3 where each Gλ ∈ C is a non-trivial normal
subgroup of G such that G is the internal direct product

G =
∏
λ∈3

Gλ = Gλ1 ◦ · · · ◦ Gλn ,

where 3= {λ1, . . . , λn}. Two C-product structures P = (Gλ)λ∈3, Q=
(Hω)ω∈� on G are said to be equivalent when there exists a bijection σ :3→�

such that for all λ ∈3, Gλ
∼= Hσ(λ), and strongly equivalent when, in addition,

Gλ = Hσ(λ) for all λ ∈3.
Let Q denote the class of finitely generated torsion-free infinite groups in

which every subgroup of finite index has trivial centre. Let Q0 denote the
subclass of Q consisting of irreducible groups. The following can, mutatis
mutandis, be proved along the lines of [7, Proposition 6.2].

PROPOSITION 2.2. Let 1 be a subgroup of finite index in 0, and suppose
that 0, 1 both admit Q0-product structures; thus, 0 = 01 ◦ · · · ◦ 0m , 1=
11 ◦ · · · ◦1µ, then:

(i) µ= m; and
(ii) there is a unique permutation σ ∈6m such that 1i ⊂ 0σ(i) for each i; in

particular
(iii) 1i ∩ 0 j = {1} if j 6= σ(i), and 1i has finite index in 0σ(i).

In similar fashion, we also obtain the following.

PROPOSITION 2.3. Let 1, 1′ be subgroups of finite index in a group G. If
1=11 ◦ · · · ◦1m and 1′ =1′1 ◦ · · · ◦1

′
µ are Q0-product structures, then:

(i) µ= m; and
(ii) for some unique permutation σ ∈6m , 1i ∩1

′

σ(i) has finite index in each
of 1i , 1′σ(i), and 1i ∩1

′

j = {1} if j 6= σ(i).

As a consequence, we have the following.

COROLLARY 2.7. Any two Q0-product structures on a group are strongly
equivalent.

§3. Quasi-lattices and the product theorem. By a quasi-lattice G we mean a
finitely generated Q-group G which admits a non-zero multiplicative invariant.
We prove that a finite product of irreducible quasi-lattices is a quasi-lattice.

We first treat a special case; say that a group 1 is a product of restricted type
when 1∼=11 × · · · ×1N , where 11, . . . , 1N are irreducible quasi-lattices
such that

for all i, j, 1i ∼1 j H⇒1i ∼=1 j . (3.1)

Collecting together isomorphic factors, a product 1 of restricted type may be
described in the form1=1(1) ◦ · · · ◦1(m)where for each 1≤ r ≤ m,1(r)=
11(r) ◦ · · · ◦1er (r) where 11(r), . . . , 1er (r) are irreducible quasi-lattices of
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a single isomorphism type 11(r)∼=12(r)∼= · · · ∼=1er (r), and where distinct
isomorphism types are pairwise incommensurable. Clearly N = e1 + · · · + em .

A permutation σ of {1, . . . , N } which preserves the partition

{1, . . . , e1}
∐
{e1 + 1, . . . , e1 + e2}

×

∐
· · ·

∐
{e1 + · · · + em−1 + 1, . . . , N }

will be written in the form σ = σ1
∐
· · ·

∐
σm where σr is a permutation of

{1, . . . , er }; that is, we perform a psychological normalization and regard each
component of the partition as indexed independently. We note for reference that
the indexing now obeys the rule.
(3.2): If 1 is a product of restricted type, then for any i, j, r, s,

1i (r)∼1 j (s)H⇒ r = s and i, j ∈ {1, . . . , er }.

PROPOSITION 3.3. Any product of quasi-lattices of restricted type has
property F C.

Proof. Let 1∼=11 × · · · ×1N , be a product of restricted type, and let
ιr :1→ 0(r) be co-finite embeddings (r = 1, 2). It should cause no confusion
to suppress the symbols ιr and simply write 1⊂ 0(r).

Let ϕ : 0(1)→ 0(2) be an isomorphism, and put 1′i (r)= ϕ
−1(1i (r)), so

that1′(r) also has a Q0 product structure1′(r)=1′1(r) ◦ · · · ◦1
′
er
(r). Putting

1′ = ϕ−1(1) we see also that 1′ =1′(1)× · · · ×1′(m). Observe that 1 ∩1′

has finite index in 0(1). The permutation σ of {1, . . . , N } provided by
Proposition 2.3 must preserve the partition

{1, . . . , e1}
∐
{e1 + 1, . . . , e1 + e2}

∐
· · ·

· · ·

∐
{e1 + · · · + em−1 + 1, . . . , N };

that is, there are permutations σr of {1, . . . , er } such that 1i (r) intersects
1′σr (i)

(r) in a subgroup of finite index. Put �i (r)=1i (r) ∩1′σr (i)
(r).

For all r, j , 1′j (r)= ϕ
−1(1 j (r)) is isomorphic to 1 j (r), and since

each 1 j (r) admits a non-zero multiplicative invariant, then

[1i (r) :�i (r)] = [1
′

σr (i)(r) :�i (r)].

Put �(r)=�1(r) ◦ · · · ◦�m(r). From the identities

[1(r) :�(r)] =
∏

i

[1i (r) :�i (r)]

and
[1′(r) :�(r)] =

∏
i

[1′σr (i)(r) :�i (r)]

it follows that [1(r) :�(r)] = [1′(r) :�(r)]. Since 1=1(1) ◦ · · · ◦1(m),
1′ =1′(1) ◦ · · · ◦1′(m) and �=�(1) ◦ · · · ◦�(m) then [1 :�] = [1′ :�].
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Now ϕ(�)⊂1, and ϕ : (1′, �)
'
→ (1, ϕ(�)) is an isomorphism of

pairs; thus, [1′ :�] = [1 : ϕ(�)], and [1 :�] = [1 : ϕ(�)]. Again, there

is an isomorphism of pairs ϕ : (01, �)
'
→ (02, ϕ(�)) so that [01 :�] = [02 :

ϕ(�)]. However, [01 :�] = [01 :1][1 :�] and [02 : ϕ(�)] = [02 :1][1 :

ϕ(�)]. Hence, [01 :1] = [02 :1], as claimed. 2

If 11, . . . , 1m are groups such that 1i ∼1 j for each i, j , then each 1i
contains a subgroup 3i of finite index such that 31 ∼=32 ∼= · · · ∼=3m .
Hence, a group 1 possessing a Q0-product structure 1=11 ◦ · · · ◦1m has
a subgroup 3 of finite index of the form 31 ◦ · · · ◦3m where (i) 3i ⊂1i , and
(ii) 3i ∼3 j ⇒3i ∼=3 j . The next result follows easily.

PROPOSITION 3.4. If 0 is a group possessing a subgroup 1 of finite index
which admits a Q0-product structure, then the set of subgroups of finite index
in 1 which are products of restricted type is cofinal in F(0).

Now suppose that 0 = 01 × · · · × 0N where 01, . . . , 0N are irreducible
quasi-lattices. It follows from Propositions 3.3 and 3.4 that F(0) contains a
cofinal subset of groups of type F C. Hence, 0 admits a non-zero multiplicative
invariant by Theorem 1.6, and we arrive at the following result.

THEOREM A. If 01, . . . , 0n are irreducible quasi-lattices, then 01 ×

· · · × 0n is also a quasi-lattice.

§4. Multiplicative invariants on irreducible semisimple lattices. In this
section, we consider examples of multiplicative invariants which arise in
practice.

(I) The Euler characteristic.. Let 0 be a group of type FP [4]; 0 is then
finitely generated and has finite cohomological dimension; in particular, 0 is
torsion free. The Euler characteristic χ(0) is then defined in the usual way, and
is an integer.

PROPOSITION 4.1. Let 0 be a group of type FP. If χ(0) 6= 0, then 0 is a
quasi-lattice.

Proof. If 1 is a subgroup of finite index in 0, then 1 is also of type FP
and χ(1) 6= 0, so that χ gives the required non-zero multiplicative invariant.
Moreover, 1 has trivial centre, by the theorem of Gottlieb [5]. 2

(II) The invariant volume on a rigid semisimple lattice.. Denote by L the class
of infinite linear semisimple lattices; that is, 0 ∈ L when there exists a non-
compact linear Lie group G with finitely many connected components whose
identity component G0 is semisimple such that 0 admits an embedding 0 ⊂ G
as a discrete subgroup of G, and such that G/0 has finite invariant volume.

In the case where G is a direct product of simple non-compact Lie groups
G = G1 × · · · × Gm , 0 is said to be lattice irreducible in G when πI (0) is non-
discrete for every proper non-empty subset I of {1, . . . , m} where

πI : G→
∏
i∈I

Gi = G I
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is the projection. An argument using Borel’s density theorem (see [11, p. 86])
shows that when 0 is lattice irreducible, it is irreducible in the former sense,
namely that it is not commensurable with a direct product of infinite groups.
Denote by L0 the subclass of torsion-free irreducible lattices in this sense. If
0 ∈ L0 and G is a connected adjoint semisimple Lie group which contains 0 as
a discrete subgroup of finite covolume, then 0 is said to be a rigid lattice when
(G, 0) satisfies Mostow rigidity; that is, any automorphism of 0 has a unique
extension to G. In this case, make a specific choice for the infinitesimal volume
element on the tangent space T GId; when1⊂ 0 is a subgroup of finite index d ,
define

µ(1)= vol(G/1).

Then µ is a non-zero multiplicative invariant, since by Mostow rigidity,
vol(G/1) depends only upon the isomorphism class of 1; that is, we have the
following result.
(4.3) A rigid lattice admits a non-zero multiplicative invariant.

§5. Multiplicative invariants for general semisimple lattices. We begin by
making the following observation.

PROPOSITION 5.1. If 0 ∈ L0, then 0 is an irreducible quasi-lattice.

Proof. As is well known (cf. [9]), any semisimple linear lattice 0 is finitely
generated. If 0 is torsion free, then by a standard Borel density argument, all of
its subgroups of finite index have trivial centre. If 0 is a lattice in PSL2(R), it
is either a free non-abelian group of finite rank or the fundamental group of an
orientable surface of genus at least two. Either way, 0 has type FP, and we take
the multiplicative invariant to be the Euler characteristic, which is necessarily
non-zero in either case.

When 0 is an irreducible non-Fuchsian lattice, 0 is Mostow rigid and we take
as multiplicative invariant the invariant volume of (4.3). 2

We now show that Proposition 5.1 remains true without the restriction
of irreducibility. We recall briefly the principal structural facts about lattice
groups. As observed previously, semisimple linear lattices are finitely generated.
Selberg’s theorem [2] now shows that a semisimple linear lattice admits a normal
subgroup of finite index which is torsion free.

Suppose that 0 ∈ L is torsion free and embeds as a discrete subgroup of
finite covolume in a connected semisimple Lie group; on taking the quotient
first by the finite centre of the containing Lie group, and then by its maximal
compact normal subgroup, we see that 0 embeds as a discrete subgroup of
finite covolume in a non-compact connected semisimple adjoint Lie group G
which has no non-trivial compact normal subgroup. Thus, 0 contains a torsion-
free normal subgroup 1 of finite index such that 1 embeds as a lattice in
a connected non-compact semisimple Lie group. A Borel density argument
[11, Theorem 5.22, p. 86] shows that 1 contains a torsion-free subgroup 00
which admits an L0-product structure, and which has finite index in 1. A
standard argument, conjugating by the finite number of generators and taking
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intersections, allows us, by passing to a further subgroup of finite index if
necessary, to assume that 00 is also normal in 0. On writing the L-product
structure as 00 = 01 ◦ · · · ◦ 0m , we obtain the following normal form for linear
semisimple lattices.

PROPOSITION 5.2. Let 0 ∈ L; then 0 occurs in an exact sequence

1→ 01 ◦ · · · ◦ 0m→ 0→8→ 1

where 01, . . . , 0m ∈ L0 and 8 is finite.

From Propositions 5.1 and 5.2 and Theorem A, we now obtain the following.

THEOREM B. Let 0 be a torsion-free lattice in a linear semisimple Lie
group with finitely many connected components; then 0 is a quasi-lattice. In
particular, 〈0〉 admits a non-zero multiplicative invariant.

As a corollary, we obtain the desired generalization of Borel’s result [3].

COROLLARY C. Let 0 be a lattice in linear semisimple Lie group with
finitely many connected components; then 0 is finitely co-Hopfian.

§6. Non-degenerate central extensions. The examples of finitely co-Hopfian
groups considered so far all have trivial centres. However, as we now show,
that is not an essential feature, and we give a sufficient condition for a central
extension to be finitely co-Hopfian. Let

E = (0→Z → G→ 0→ 1)

be a central extension where 0 is a finitely generated group with trivial centre,
and Z is a finitely generated abelian group. The homology spectral sequence of
the extension takes the form:

E2
p,q = Hp(0; Hq(Z; Z))H⇒ Hp+q(G; Z).

say that E is non-degenerate when Coker(d2
2,0 : H2(0; Z)→ H1(Z; Z)) is

finite.

THEOREM 6.1. Let E = (0→Z → G
π
→ 0→ 1) be a central extension

where Z is a finitely generated abelian group, and 0 is a finitely generated
group in which every subgroup of finite index has trivial centre. If 0 is finitely
co-Hopfian and E is non-degenerate, then G is finitely co-Hopfian.

Proof. Let H be a subgroup of finite index in G. Then 1= H/(H ∩Z) is
a subgroup of finite index in 0 = G/Z . Denote by ZK the centre of a group K .
Since Z0 is trivial, it is clear that Z =ZG , and the subgroup condition on 0
implies that H ∩Z =Z H .

If H ∼= G, then 1= H/Z H ∼= G/ZG = 0. Since 0 is finitely co-Hopfian, it
follows that 1= 0. Thus, without loss of generality, we may suppose that H
is defined by an extension E ′ = (0→ H ∩Z → H

π
→ 0→ 1). To establish the
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desired conclusion, it suffices to show that H ∩Z =Z . Denote the homology
transgression of the extension E ′ by

δ2
2,0 : H2(0; Z)→ H1(H ∩Z; Z).

Let ι : H ∩Z ⊂Z denote the inclusion, which is an embedding of finite index j ,
say. There are extensions

0→ Coker(d2
2,0)→ Tor1(H1(G; Z))→ Tor1(H1(0; Z))→ 0

0→ Coker(δ2
2,0)→ Tor1(H1(H ; Z))→ Tor1(H1(0; Z))→ 0

and ι induces an embedding Coker(δ2
2,0)→ Coker(d2

2,0) with index j . Since

H ∼= G, it follows that Tor1(H1(G; Z))∼= Tor1(H1(H ; Z)) and |Coker(δ2
2,0)| =

|Coker(d2
2,0)|. Hence, j = 1, so that H ∩Z =Z and H = G. 2

Let 6g denote the orientable surface of genus g, and let 6g = π1(6
g).

Central extensions

E = (0→ Z→ G→6g→ 1)

are classified up to congruence by a cohomology class c(E) ∈ H2(6g; Z)∼= Z.
Denote by 6(g, r) the group defined by the extension

E(g, r)= (0→ Z→6(g, r)→6g→ 1)

with c(E)= r . These groups have a geometrical description, namely that
6(g, r)= π1(E(g, r)), where E(g, r) is the total space of the S1-bundle
over 6g with Chern class c1 = r . Analysis of the proof of Theorem 6.1 reveals
that a stronger statement is true.

COROLLARY 6.2. When g ≥ 2 and r 6= 0, a subgroup H of finite index δ
takes the form H ∼=6(h, s) where for some positive integers δB , δF such that
δ = δBδF ,

(i) h = 1+ δB(g − 1) and (ii) s =
r

δF
.

If g ≥ 2 and r 6= 0, and H is a subgroup of finite index δ, then δ is
automatically determined by the isomorphism type of H; if H ∼=6(h, s), then
put

µg,r (H)=
r

s

(
h − 1
g − 1

)
(= δ).

COROLLARY 6.3. For g ≥ 2 and r 6= 0, µg,r determines a non-zero
multiplicative invariant on F(6(g, r)).

The groups 6(g, r) embed as lattices in the nonlinear simple group S̃L2(R),
the universal covering group of SL2(R).
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§7. More general direct products. Theorem A gives conclusions which seem
difficult to establish more directly; for example, we have the following result.

THEOREM 7.1. Let 0 be a lattice in a linear semisimple Lie group with
finitely many connected components and let 1 be a group of type FP with
χ(1) 6= 0. Then 0 ×1 admits a non-zero multiplicative invariant.

Proof. First observe that the normal form theorem for semisimple linear
lattices, Proposition 5.2, has an analogue for groups of type FP. Thus, if 1 is
reducible, it splits, up to commensurability, as a product of infinite groups; it
is known, [4], that the factors are also of type FP. If the factors are reducible,
proceed to split these in the same way. However, the cohomological dimension
of 1 places, a priori, a bound on the number of times splitting may occur.
Hence,1 is commensurable with a direct product11 × · · · ×1n of irreducible
groups of type FP. Moreover, since χ(1) 6= 0, then each χ(1i ) 6= 0, and, as
in Proposition 4.1, 1i is a quasi-lattice. Applying Proposition 5.2 to 0, we
see that 0 ×1 is commensurable with a direct product 01 × · · · × 0m ×11 ×

· · · ×1n , where each 0i ,1 j is an irreducible quasi-lattice. The conclusion now
follows from Theorem A. 2

There is an obvious question, as follows.
(∗) Does every finitely co-Hopfian group admit a non-zero multiplicative
invariant?

One suspects that the answer is “no”, but the situation is not clear. For
example, the groups 6(g, r) of §6 are irreducible when g ≥ 2 and r 6= 0.
However, since 6(g, r) has non-trivial centre, the argument of Theorem A
does not apply to a product G =6(g1, r1)× · · · ×6(gm, rm), and it is not
immediately apparent whether such a product admits a non-zero multiplicative
invariant. However, G is still finitely co-Hopfian, as it may be written as an
extension

0→ Zm
→ G

π
→6g1 × · · · ×6gm → 1

satisfying the hypotheses of Theorem 6.1 above. Furthermore, G satisfies
Poincaré duality and so by Strebel’s theorem [14] is not isomorphic to any
subgroup of infinite index; thus, we have the following result.

PROPOSITION 7.2. The groups 6(g1, r1)× · · · ×6(gm, rm) are co-
Hopfian provided that for each i , gi ≥ 2 and ri 6= 0.

Free products form another class of examples for which the situation
is not entirely clear. Using the theorems of Grushko and Kurosh [6], it
is straightforward to show that with the sole exception of C2 ∗ C2, any
finitely generated non-trivial free product G1 ∗ · · · ∗ Gk is finitely co-Hopfian.
However, the theorem of Baumslag–Dyer–Heller [1] allows us to construct free
products of type FP with χ = 0, removing the possibility of using the most
obvious multiplicative invariant. For example, if G(n) is a Baumslag–Dyer–
Heller group corresponding to the n-sphere Sn and F2 is the free group of rank
two, then 0n = G(2n) ∗ F2 is a group of type FP with χ(0n)= 0. Here 0n
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is torsion free, and every subgroup of finite index, being a free product not
isomorphic to C2 ∗ C2, has trivial centre and is finitely co-Hopfian. However, it
is not immediately clear whether 0n admits a non-zero multiplicative invariant,
or whether direct products of such groups are finitely co-Hopfian.
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