Engineering formal requirements: analysis and testing

P. Ciancarini, S. Cimato and C. Mascolo
Dipartimento di Scienze dell’Informazione
Universita di Bologna

Via Mura Anteo Zamboni 7, 1-40127 Bologna, Italy

e-mail: {cianca,cimato,mascolo}@cs.unibo.it

Abstract

We introduce a method for formal analysis and symbolic
testing of behavioral aspects of 7 specifications. We start
defining a (chemical) operational semantics, which supports
an abstract execution model and some new constructs to al-
low the verification of dynamic properties. Moreover, us-
ing such a semantics, we have built a parallel animator of
7 specifications which automatically constructs distributed
prototypes directly from a (refined) specification: such a tool
makes effectively observable concurrent behaviors of the 7

requirements specification.

1 Introduction

Formal methods like Z [14] can play an important
role in the engineering of reliable software systems. Re-
quirements specification documents written with a for-
mal notation can be mechanically checked; their careful
analysis and early validation can be the starting point
of a software development process completely based on
formal methods, in which the quality of both software
products and processes can be enhanced [5].

The Z notation is currently used as a specification
language to formally describe and analyze the require-
ments and the architectures of a wide range of hard-
ware and software systems. However, Z has been more
successfully used for the specification of sequential sys-
tems. Since it is an extremely abstract specification
language, the specifiers of concurrent or distributed
systems have very poor support and need to pay spe-
cial attention to behavioral aspects of their formal doc-
uments. A number of researchers have attempted to
overcome these difficulties, typically combining 7Z with
some other formalism (Petri Nets, Temporal Logic or
TLA [10, 4, 1]) well suited to specify dynamic prop-
erties. Usually no tool is given to support the engi-
neering of formal requirements written in these hybrid
notations, except maybe a syntax checker based on a
LaTeX-like concrete syntax (eg. fuzz).

The approach we present here offers the specifier two
complementing approaches for validating and testing

his specification. The former allows a formal analysis
of a 7 document: its dynamics is formally expressed
and studied on an execution model, to be considered
a sort of abstract symbolic execution in the sense of
[11]. In addition to the abstract, declarative semantics
given in [14], we introduce a new operational seman-
tics based on the chemical metaphor embedded in the
notation of the Chemical Abstract Machine [2]. We
define on such a semantics a logic offering a number
of constructs which can be used to define and analyze
dynamic properties.

The latter approach is based on a tool for automatic
generation of a distributed prototype of the system
which makes practical animating the specification in
order to debug it from errors, inconsistencies, and am-
biguities in a truly concurrent framework. The tool is
a parallel animator: it consists of a source-to-source
compiler for the automatic translation of a Z specifica-
tion into a program written in the concurrent language
Shared Prolog, which has a chemical semantics as well.
The use of a combination of logic programming with
coordination mechanisms has the effect that the result-
ing animation can be executed in a truly distributed
environment to make observable the concurrent behav-
iors of the system being specified.

2 A concurrent specification

In order to explain our approach we use an example
widely discussed when dealing with concurrent dynam-
ics of formal specifications: the Lift System [8, 12].

A lift controller system has to service requests com-
ing from the buttons placed on the floors of a building.
The lift is moved by the controller in a direction satis-
fying the pending requests until no more requests are
found; in this case the lift changes direction to service
other new or pending requests.

2.1 Formal requirements specification

In [8] the requirements of such a lift system are spec-
ified using Z; a number of liveness and safety proper-



ties are stated using some Unity like logic constructs.
Although the use of Unity logic allows to capture dy-
namic properties not directly expressible in Z, the in-
tended operational semantic model is strongly under-
specified and the analysis method is unclear.

We elaborate a simpler version of the lift problem
with respect to [8]. Although our specification looks
very similar to the original, the interpretation we as-
sociate to it is completely different.

DIRECTION ::= up | down

STATE := stopped | moving

DOOR := open | closed

REQUEST_TYPE := up_request | down_request

The direction of the lift can be up or down, while
the state indicates if it is moving or stopped. The
lift door opens when arriving at a floor and while the
state 1s moving it 1s closed. Possible requests are up
or down requests. A lift can be defined by its position,
direction, state, and door state.

__Lift
position : N
direction : DIRECTION
state : STATE
door : DOOR

The following schema describes the system:

— Lift_System
Lift
requests : P(REQUEST_TYPE x N)

requests 1s the set of requests indicating their type and
floor. The initialization operation schema 1s:

—_Init_Luift_System
Lift_System'

position’ =1
direction’ = up
state! = stopped
door' = open
requests’ = &

The operation schema Make_Requests adds a new re-
quest to the requests set.

— Make_Requests
A Lift_System
r?: REQUEST_TYPE
f7:N

requests’ = requests U {(r?,f7)}

The schema describing the moving of the hift up
(a single schema in [8]) is here split in two oper-
ation schemas, Move_Up_Up and Move_Down_Up:
in this way we avoid V operator in schemas and
make simpler the rules for the semantics mapping
(see Sect.3). We only specify Move_Up_Up operation:

Move_Down_Up is very similar, it specifies the chang-
ing of direction. The schema Move_Up_Up defines the
operation of moving the lift up in case up requests are
presents above the lift.

— Move_Up_Up
A Lift_System

door = closed

(3F : N o (up_request, f) € requests A
f > position)

direction = up

position’ = position + 1

direction’ = up

state! = moving

door’ = closed

Move_Down_Down and Move_Up_Down are the
schemas for the moving of the lift down: we do not
report here for conciseness. The other schemas are
Open_Door and Close_Door which describe the oper-
ation of opening the door when requests are present at
the current floor and the operation of closing the door
after having served some requests.

3 An Operational Semantics

The standard 7 semantics [13, 3] is declarative and
does not offer any formalization for concurrency. Thus,
we have defined an operational semantics based on a
chemical model. For simplicity and conciseness, here
we consider a restricted version of Z.

Before giving semantics to Z constructs, we define
the relevant syntactical elements of a 7 specification.
The elementary components of any 7 document are
State schemas and Operation schemas.

Moreover, because of the concurrent interpretation
of Z we are going to give, we make the following as-
sumption: all variables not explicitly mentioned in the
postconditions of an operation schema need not to be
invariant (that is: other operations can concurrently
modify them). This assumption is needed in our inter-
pretation and allows concurrency of the operations. In
some papers on analysis of Z documents the assump-
tion is exactly the opposite: “Variables not mentioned
in the schemas are considered unchanged”: e.g. [12];
however, this is not standard Z too.

A Chemical Abstract Machine [2] is a ftriple
(G, C,R) where G is a grammar, C is a set of con-
figurations (the language generated by the grammar)
or molecules, and R is a set of the rules condition(C') x
bag C x bag C'. A solution is a multiset of molecules:
bag C'. Tn the Chemical Abstract Machine (CHAM)
two rules can fire concurrently if they do not need the
same molecules to react on; hence, several rules can
progress simultaneously on a solution. If two rules
conflict, in the sense that they “consume” the same



molecules, the choice of which to let react is non de-
terministic.

We consider a fair CHAM where repeatedly enabled
rules will eventually be fired: in this way it 1s possible
to capture eventual executions.

We study a CHAM interpretation of Z specifications
which allows us to deal with concurrent dynamics.

Intuitively, an instance inst of a state schema s is
associated to a solution (inst — P(C')) where, in some
way, each variable is a subsolution (in many cases a
single molecule). Tnstead, an operation schema corre-
sponds to a chemical rule where conditions, pretuples,
and posttuples are solutions composed of pre and post
conditions of the operation.

A molecule is a tuple made of a name, a type, and
a value, while a solution is a bag of molecules:

MOLECULE == NAME x TYPE x VALUE

SOLUTION == bag MOLECULFE
RULE == CONDITION x SOLUTION x SOLUTION

A rule is composed of a conditional part, that de-
fines the applicability of the rule, and two solutions to
indicate molecules to delete and add to the state solu-
tion. We call the first SOLUTION “pretuples” and the
second “posttuples” to avoid ambiguity.

A rule is applicable to a solution if the solution
contains molecules that satisfy the conditional part
(cONDITION) of the rule and molecules matching the
pretuples of the rule.

The semantics associates a solution to a
schema_instance:

SCHEMA_INSTANCE — SOLUTION

Every identifier of the schema instance is associated
to a subsolution (not necessary a single molecule): we
remark that 7Z sets and bags are decomposed by this
function in several molecules so to increase potential
concurrency of the model.

A rule is associated to an operation schema:

SCHEMA_OP — RULE.

Pre and postcondition of an operation schema are
mapped on different parts of the rule:

- Every Z schema postcondition that specifies the
removal of an element from a set or bag is mapped
on a pretuple of the rule (molecules to be deleted).

- Every postcondition that specifies the insertion of
an element in a set or bag is mapped on a post-
tuple of the rule (molecules to be added).

- Every 7 precondition that defines a membership
(€, E) is mapped on a pretuple (a removal) and
also on a posttuple (reinsertion) if Z postcondition
does not contain an indication of removal of that
element: in other words a membership test is seen
as a removal and reinsertion.

- Postconditions containing mathematical opera-
tors (4, —,..) on naturals are encoded deleting
one molecule and adding the updated molecule.
FExample: 2’ = 241 is seen as (z,N, v) in pretuples
and (z,N, v + 1) in posttuples of the rule.

- Preconditions containing relational operators
(<,>) are encoded as conditions, but the molecule
corresponding to the variable is deleted and
readded as already described !.

Example: z < 5 is seen as
v<b—(z,N,v) = (z,N, v)

Now, following the interpretation of the chemical
machine, rules can fire concurrently when they are en-
abled by conditions and non conflicting on pretuples
molecules.

Rules which do not act on the same molecules can
react simultaneously: hence, following our interpreta-
tion, enabled operation schemas which do not modify
the same variables can react in parallel.

Example To clarify this interpretation let us con-
sider again the Lift system example.

The initialization operation Init_System is mapped
on a chemical rule with no pretuples:

(position,N, 1), (direction, DIRECTION ,up),
(state, STATE, stopped), (door, DOOR, open)

The state schema instance obtained after the appli-
cation of the operation is the same solution presented
above. The rule associated to the operation schema
Make_Requests has the following posttuple (no pretu-
ples):

(requests, P(REQUEST_TYPE x N), (r7,f7))

The rule corresponding to the operation Move_Up_Up

(rule corresponding to Move_Down_Up is very similar)

has the following condition f > pos, as premises:
(door, DOOR, closed),

(requests, P(REQUEST_TYPE x N), (up_request, f)),
(position,N, pos), (direction, DIRECTION , up)

and as consequences:

(direction, DIRECTION , up),

(position,N, pos + 1), (state, STATE, moving),

(door, DOOR, closed),

(requests, P(REQUEST_TYPE x N), (up_request, f))

4 An abstract execution model

We define now an ezecution model, namely a way of
abstractly executing a Z specification document, and

1This is done following the chemical semantics where condi-
tions can only be stated on the local molecules involved in the
rule.



a Unity-like logic to reason on properties exhibited by
such a model.

The execution model is defined on the semantics just
described and represents the unfolding of the applica-
tion of the rules of the operational semantics. For ev-
ery state schema s an abstract execution tree can be
constructed in the following way:

- the root node is void;

- the first operation applied is the initialization op-
eration without any preconditions;

- from every node there can be several different ap-
plicable operation sets (chosen in the set of all the
enabled operations on that node) depending on
the non determinism of the choice of the opera-
tions being in conflict. Each branch corresponds
to the application of a group of enabled opera-
tions that could be applied without conflicts, as

dictated by the CHAM model [2].

In order to allow the specification of the logic con-
structs using 7 as meta-language, we introduce the
specification of the execution tree:

TREE ::= Void_tree
| fork{(PAIR x seq TREE))

PAIR == SCHEMA_INSTANCE x
seqP SCHEMA_OP

Every state schema is mapped on an execution tree
with specific properties; the chemical interpretation
imposes that for every node label (s, seq), where s is
an instance and seq 1s a sequence of operations sets:

- all operations in the sets belonging to the sequence
seq must be enabled on s;

- all operations in the sets belonging to the sequence
seq must act on the state schema of which s 1s
instance;

- each set member of the sequence seq must con-
tain operations that can concur (that is without
conflicts);

- for every s in a pair (¢, seq’), label of one of the
children of the node labeled (s, seq), there must
hold the postconditions of all the operations ap-
plied to reach that node (sequence structure helps
to link nodes and operations set).

4.1 A logic for expressing dynamic
properties

In order to be able to reason on dynamic properties,
like deadlocks and starvation, we borrow a few con-
structs from the Unity logic. TLiveness (namely “a
good thing will eventually occur”) or safety (namely
“a bad thing never happens”) properties can be ex-

pressed through predicates (as the ones in the opera-

tion schemas) built using some logic operators (A, V,
-, &, =) and Unity constructs stated out of every
operation schema. Properties have a chemical inter-
pretation as well, so that we can analyze their truth
on the execution model.

- p unless ¢ means that whenever p is true during
the execution, surely ¢ will become true or p con-
tinues to hold. In particular, on the tree: if p is
true on some nodes then on their children either
g will be true or still p holds.

- The meaning of p ensures ¢ is that when p be-
comes true than eventually ¢ will hold and before
that moment p is still valid. That is, if p is true
on a node, ¢ will eventually hold on a node in all
its subtree and before that moment p is valid on
all the visited nodes.

The other constructs are Stable, Invariant,
Leads_to which are defined in a similar way (further
details in [6]).

Having introduced the meaning of these logic pred-
icates on the model, we can reason and define new
dynamic properties on the abstract concurrent inter-
pretation of Z specifications.

4.2 Formal analysis of the lift system

It is now possible to introduce and verify dynamic re-
quirements of the Lift system with the help of the con-
structs defined on the chemical execution model.

Theorem 1:
Invariant door = open = state = stopped

Theorem 2: ({,f) € requests A f = position A
door = closed ensures door = open

Theorem 3: (r,f) € requests A r > position A
direction = up A state = moving A door =
closed leads_to position = r

The first theorem states that in every moment the
door i1s open if and only if the lift is stopped. The
second one ensures that when the lift arrives to a floor
where requests are present it opens its door. The third
one means that when the lift is moving up and there
are requests above its position, it will eventually satisfy
them arriving at the requested floors.

We now prove Theorem 2 (the other two theorems
can be proved in a similar way).

Proof of Theorem 2: TIf p ensures ¢ (where p
is (t,f) € requests A f = position A door = closed
and ¢ is door = open) must be valid, first p unless ¢
has to hold (see the formalization). That means that
for every enabled operations set on the solution con-
taining molecules (requests, P(REQUEST_TYPE X



N), (1, 1)), (position,N, pos) and (door, DOOR, closed),
the application leads to a state where either
molecule (door, DOOR, open) is present or the previ-
ous molecule is still in the solution (this is the unless
formalization of our execution model).

Considering our 7 specification, we notice that the
only enabled operations on an instance state con-
taining those molecules are Make_requests (that only
adds new requests molecules without modifying the lift
state) and Open_Door that exactly opens the lift door.
Hence, p unless ¢ holds.

To prove p ensures ¢ is now necessary to ensure
that, given a state where p A = ¢ holds, there is an en-
abled operations set applicable, which leads to a state
in which ¢ holds. In our specification such a set is
composed of the operation Open_Door and some (or
none) Make_Requests. This completes the proof.

5 Animating a specification

A formal requirements document should provide a pre-
cise and rigorous description of a system being devel-
oped. Its aim is to define abstract properties of the
system, describing what the system has to do and not
how to do it [9]. Z is not executable because it allows
to declare not computable entities, like infinite sets or
non computable functions, and to express properties
and operations on them.

However, it is often desirable to have a prototype
of the system which can be tested and whose dynamic
properties can be directly inspected by either the spec-
ifier or even the customer. The technique of anima-
tion has been introduced in order to overcome the dif-
ficulty of obtaining a prototype from a non executable
specification language like Z. Several approaches have
been used to animate a Z specification, using differ-
ent methodologies and languages; a short review can
be found in [15]. All the proposed solutions have to
balance declarativeness versus efficiency in the sense
that we want not only an executable form of a very
high level specification, but also a reasonably efficient
execution to test the specification [3].

We propose here a method for the distributed anima-
tion of specification documents written in 7Z by trans-
lating them into programs written in the coordination
language Shared Prolog [7], an extension of Prolog with
support for parallelism.

Our approach consists of refining the original spec-
ification to obtain a more procedural version directly
translatable or executable by generate-and-test clauses
and queries. We define a subset of Z in which specifi-
cations must be refined before the animation process is
carried on. The translation from such a refined spec-

ification 1s automatically performed by a source-to-
source translator which produces a correct distributed
program in Shared Prolog. The code obtained is fi-
nally compiled by the SP compiler and executed over
a network of workstations.

5.1 A Coordination Language

Shared Prolog is a coordination language based on
the combination of the shared dataspace coordination
model (as in Linda) with logic programming comput-
ing (as in Prolog) [7].

A SP program consists of a set of modules called
theories, an initial goal and a coordination medium
called tuple_space or blackboard. The blackboard 1s
a multiset of logical tuples (Prolog atoms). The ini-
tial content of the blackboard is defined by the special
goal tuple_space, while initial_goal defines some agents
which share the tuple space (we also call them “active
tuples”, since they are part of the tuple space):

tuple_space{tuple-1, ... ,tuple-n}.
initial_goal(agent-1 >||> .. ’||’ agent-n).

An agent represents a process executing a “the-
ory” and accessing the tuple space for read-
ing/consuming/producing tuples. A theory is a Prolog
program extended with mechanisms for coordination
through the tuple space.

Each theory is composed of a set of patterns and a

knowledge base. Syntactically a theory looks as follows:

agent theory_name (V_1,..,V_n)
eval
pattern_1 # ...
with knowledge base

# pattern_k

The theory name is a functor with zero or more ar-
guments V; which are logic variables scoping over all
the patterns. A pattern has the following form:

{in_guard},read_guard
-—=>
body out_set, fail failure_set

The in_guard and the read_guard are evaluated try-
ing to unify a multiset of tuples in the blackboard
with those contained in the guard. The body of a
pattern contains predicates defined in the knowledge
base of the theory. Semantically, each pattern consists
of two components named preactivation and postac-
tivation. The former defines an activation condition
consisting of reading and/or deleting some tuples from
the blackboard. The latter consists of a Prolog goal
(body) and two multisets of tuples: one to be added to
the blackboard in case of successful evaluation of the



goal (out_set), and the other to be added in case of
body failure (failure_set).

Initially every pattern of a theory is examined to
check the satisfiability of its own guard. If a guard
is satisfied, the corresponding body is evaluated and
tuples are added to the blackboard. If several patterns
satisfy their preactivation, one is nondeterministically
chosen and executed.

5.2 Animating Z specifications with SP

Operation schemas in Z consist of a set of preconditions
which specify the set of valid states of the system to
which it is possible to apply such an operation and a
set of postconditions which define the set of states that
can be reached after the application of the operation
itself.

Consistently with the Chemical sematics for 7, an
operation is enabled if the current state of the system
satisfies its preconditions and two (or more) operations
can concur if they are enabled at the same time and
not conflicting. The translation of a specification into
a concurrent language with chemical semantics (like
SP) has the immediate effect of capturing and making
observable the concurrent characteristics of the system
being specified.

In order to simplify its translation we have restricted
7 to a number of admissible constructs (we call Zel - 7
elementary - the resulting notation). The limitations
we have introduced concern types and use of variables,
form of predicates, and usability of some quantifiers.
No restrictions are imposed on schemas construction
and connections.

Types can be defined in Zel as: predefinite type (as N
e 2), given set, structured type (defined by enumerating
elements), applying type constructors (as P,bag,seq,x)
or schema type.

Variables in the declarative part of a schema must
be defined as P, bag or seq of another type X, because
they are mapped into SP tuples, as we will see later.
Special attention must be paid to i/o variables. If the
type of an input(output) variable is defined as P X,
the corresponding predicates must be translated using
another variable of type X existentially quantified and
whose singleton set must be equal to the original vari-
able.

Not all the predicates are easy to animate. In the
predicative part of a schema, it is possible to use only A
as logical operator, while = can be used in conjunction
with membership tests (more details in [6]).

The order of the predicates is important and influ-
ences the SP program obtained from the animation.
One must pay attention to define predicates without

unbound variables, so that the corresponding SP pro-
gram does not evaluate non ground terms.

However, properties can be defined using non ani-
matable predicates and the syntactical restrictions are
not applied; only under these circumstances other log-
ical operators (e.g. V) or the universal quantifier are
allowed. Although these predicates are type checked,
they produce no effect on the resulting animation.

5.3 From Zel to SP

Once a Zel specification document has been obtained
(by manual refinement of the original Z specification)
the animation process continues using a translator tool
which automatically produces a SP program. We now
describe the ideas we used to build the translator.

Each schema not defined by a schema calculus ex-
pression in the Zel document is transformed in a SP
pattern; instead, a schema defined by a schema calcu-
lus expression is translated into a theory containing the
patterns corresponding to the simple schemas which
are operands in the expression.

Each variable defined in the predicative part of a
Zel schema corresponds to a unique SP tuple in the
blackboard, obtained concatenating the name of the
variable and the schema in which it is defined. Input
variables are removed from the blackboard, while out-
put variables are added. For each schema, the system
tries to determine a couple of animatable predicates
in the list of precondition and postconditions, and the
corresponding action is added to the pattern.

5.4 Querying the animation

The SP program obtained from the transformation
process has to be initialized before it can be executed.
In fact, the initial state of the blackboard and the ini-
tial goal cannot be obtained by automatic translation
of the specification, but must be defined in the query.

In the version we use, SP programs are static, it is
not possible to activate agents during the execution:
they must be all defined in the initial goal. Moreover,
tuples representing input data for the animation must
be added to the tuple space in the initial blackboard.
Once the initial goal has been defined and the tuple
space has been opportunely modified, the SP program
is passed to the Shared Prolog compiler producing the
executable code corresponding to the requested ani-
mation. This code runs on a network of workstations.

6 Animating the Lift System

We describe now the animation of the specification of
the lift system introduced in Section 2. The first step



consists of refining the Z document. This amounts to
refining 7 schemas to Zel and making some simplifica-
tions.

For instance, the following schema describes the op-
eration of moving the lift up, provided that there is
at least one pending request above its current position
when the lift is going up.

Note how few changes have been made (they only
concern variables defined as P sometype and i/o vari-
ables).

— Move_Up_Up
A LiftSystem

34f : REQUESTTYPE x N;
t: REQUESTTYPE; f,p1,p2: N;
d:DOOR; c: DIRECTION o
(tf € requests A tf = (4,f) A
pl € position A f > pl Ap2=pl+1A
d = closed A d € door A
c = up A ¢ € direction A
position’ = position \ {p1} U {p2} A
direction’ = {up} A
state! = {moving} A
door’ = {closed})

The next step is the automatic translation of the speci-
fication in Shared Prolog. Here is the code obtained by
translating the schema Move_Up_Up reported above.

{moveupup},
{position__liftsystem(P1)},
requests__liftsystem(TF),
TF=(T,F), F>P1, P2 is P1 + 1,
D=closed, door__liftsystem(D),
C=up, direction__liftsystem(C),
{findall(direction__liftsystem(_V3),_V4)},
{findall(state__liftsystem(_V5),_V6)},
{findall(door__liftsystem(_V7),_V8)}
->
{position__liftsystem(P2),
direction__liftsystem(up),
state__liftsystem(moving),
door__liftsystem(closed)}

The initial tuple space for the SP program is ob-
tained from the InitSystem_Lift schema defined in the
specification document. It can be modified to satisfy a
particular query to be animated.

In the following example, we put into the tuple space
a set of tuples representing a sequence of service re-
quests for the lift. Also at least an agent has to be
activated by the initial goal:

tuple_space{position__liftsystem(1l),
direction__liftsystem(up),

state__liftsystem(stopped),
door__liftsystem(open),
r((upRequest ,3)) ,r((upRequest,1)),
r((upRequest ,4))}.

initial_goal (op_liftsystem).

The SP program is then compiled and executed. In
the figure (b) is reported the result of the animation of
the system for the above sequence of service requests,
with the final state of the lift.

This trace helps the specifier to debug a specifica-
tion. He should aim at checking aspects of the system
that have not been fully explored or to correct an im-
proper behavior due to mistakes in the specification.

The part (a) of the figure shows, for example, the
animation report if we “forget” to include in the
Move_Up_Up and Move_Down_Up schemas the test
concerning the shutting of lift door:

req upRequest,3
up from 1 to 2
up from 2 to 3

open 3

req upRequest,4 req upRequest,3
close[] req upRequest,1
up from 3 to 4 close[]

open 4 up from 1 to 2

req upRequest,5 up from 2 to 3

up from 4 to 5 open 3

open 5 req upRequest,4
close[] closel]

down from 5 to 4 up from 3 to 4
open 4 open 4

final set:[(upRequest,4)] final set:[(upRequest,4)]
final pos.:fl 4 door:open final pos.:fl 4 door:open
(a) (b)

The above trace shows that a lift can move to a
new floor to satisfy a request without closing its door,
moreover, since requests are deleted in the Close_Door
schema, request for floor 4 remains among the pending
requests list and it is serviced twice.

Testing a specification can be carried on giving in
input different test cases that are instances of a partic-
ular functional requirement and observing the result-
ing animation. An unsuccessful case shows that the
functional requirements tested is not valid, but only
if all instances of a functional requirement are tested
satisfiability is demonstrated [11]. The main advan-
tages of the animation are in terms of accelerating the
validation of the specification with respect to the user
requirements and increasing the degree of trust of the
specifier in the system being built. As result an early
detection of errors can be accomplished, saving devel-
opment time and reducing overall costs.

7 Conclusions and future works
When formal requirements specification is the first
phase in a software development process based on for-
mal methods, the possibility of analyzing and test-
ing relevant properties of requirements (including the
implementability /executability property) early in the
process avoids to carry costly mistakes over the next
phases.



We have introduced two methods for the analysis
of specification dynamics: the first one is abstract
and is able to deal with global behavioral components,
whereas the second is concrete offering a rapid proto-
type for the study of system behavior using some spe-
cific test cases. The main novelties of our approach are
the introduction of a Z chemical semantics to analyze
operational properties of reactive systems and the in-
tegration of parallelism into the prototyping language
to highlight concurrent behaviors.

Our work can be closely compared with the one ex-
posed in the classic paper [11]. The main difference is
that our method aims clearly at the requirements spec-
ification document, whereas Kemmerer was apparently
more interested in design. We believe it is important
to clearly distinguish requirements specification from
design specification [5], and to introduce and study
methods and tools for the analysis, testing, and verifi-
cation of the requirements specification document.

The notation and tool described here have been used
in our undergraduate course on software engineering in
several student projects. The major shortcomings our
users have found concern the compiler tool: it lacks
support for incremental debugging. Another aspect
we are investigating is the formal relationship between
the operational semantics and the original declarative
semantics. We are studying correctness and complete-
ness of our semantics with respect to the original one,
and the possibility to extend either Z coverage (i.e. Zel
notation) or SP language.

Acknowledgments. Partial support for this work
was provided by the Commission of European Union
under ESPRIT Programme Basic Research Project
9102 (COORDINATION), and by the Ttalian MURST
40%- Progetto “Ingegneria del Software”.

References

[1] P. Baumann and K. Lermer. A Framework for the
Specification of Reactive and Concurrent Systems in
Z. In P. Thiagarajan, editor, Proc. 15th Conference
on Foundation of Software Technology and Theoreti-
cal Computer Science, volume 1026 of Lecture Notes
in Computer Science, pages 6279, Bangalore, India,
1995. Springer-Verlag, Berlin.

[2] G. Berry and G. Boudol. The Chemical Abstract
Machine. Theoretical Computer Science, 96:217-248,
1992.

[3] P. Breuer and J. Bowen. Towards Correct Executable
Semantics for Z. In J. Bowen and J. Hall, editors, Proc.
8th Z Users Workshop (ZUM94), Workshops in Com-
puting, pages 185-212, Cambridge, 1994. Springer-
Verlag, Berlin.

[4] D. Carrington, D. Duke, R. Duke, P. King, G. Rose,
and G. Smith. Object-Z: an Object-Oriented Exten-
sion to Z. In Formal Description Techniques (FORTE
89), pages 281-296. North-Holland, 1989.

[5] P. Ciaccia, P. Ciancarini, and W. Penzo. From For-
mal Requirements to Formal Design. In Proc. 7th
Int. Conf. on Software FEngineering and Knowledge
FEngineering, pages 23-30, Rockville, Maryland, 1995.
Knowledge Systems Institute.

[6] P. Ciancarini, S. Cimato, and C. Mascolo. Engineering
formal requirements: an analysis and testing method
for 7 documents. Technical Report UBLCS-6, Di-
partimento di Scienze dell’Informazione, Universita di
Bologna, Ttaly, 1996.

[7] P. Ciancarini and M. Gaspari. Rule Based Coordi-
nation of Logic Programs. Computer Languages, (to
appear), 1996.

[8] A. Evans. Specifying and Verifying Concurrent Sys-
tems Using 7. In M. Bertran, T. Denvir, and M. Naf-
talin, editors, Proc. FMFE’9 Industrial Benefits of
Formal Methods, volume 873 of Lecture Notes in Com-
puter Science, pages 366—-380. Springer-Verlag, Berlin,
1994.

[9] 1. Hayes and C. Jones. Specifications are not (neces-
sarily) executable. IEFE Software Engineering Journal,
4(6):330-338, November 1989.

[10] X. He. PZ Nets: A Formal Method Integrating Petri
Nets with Z. In Proc. 7th Int. Conf. on Software En-
gineering and Knowledge Engineering, pages 173-180,
Rockville, Maryland, 1995. Knowledge Systems Insti-
tute.

[11] R. Kemmerer. Testing Formal Specifications to De-
tect Design Errors. TEEF Transactions on Software
FEngineering, 11(1):32-43, January 1985.

[12] D. Richardson, S. Aha, and T. O’Malley. Specification-
based Test Oracles for Reactive Systems. In Proc. 14th
IFEFE Int. Conf. on Software Engineering, pages 105—
118, Melbourne, Australia, 1992.

[13] J. Spivey. Understanding 7. Cambridge Tracts in
Theoretical Computer Science. Cambridge University
Press, 1988.

[14] J. Spivey. The Z Notation. A Reference Manual.
Prentice-Hall, 2 edition, 1992.

[15] L. Sterling, P. Ciancarini, and T. Turnidge. On the
Animation of Not Executable Specifications by Prolog.
Int. Journal on Software Fngineering and Knowledge
FEngineering, 6(1):(to appear), 1996.



