Engineering Formal Requirements:

an Analysis and Testing Method for 7Z Documents

P. Ciancarini and S. Cimato and C. Mascolo
Dipartimento di Scienze dell’Informazione
Universita di Bologna
Via Mura Anteo Zamboni 7, 1-40127 Bologna, Italy
phone:+39 51 354506, fax:+39 51 354510

e-mail: {ciancarini,cimato,mascolo}@cs.unibo.it

Abstract

7 1s a declarative, non-executable specification language; its diffusion in the field of require-
ments engineering outside academia is slow but growing. In this paper we focus on some
methods for analyzing and testing 7 specification documents, with special emphasis on non-
sequential systems specifications. We describe two techniques we have adopted: the former
allows the specifier to add to the requirements document a number of properties that then
can be checked using a formal semantics; the latter makes it possible to build directly from
the requirements specification document a distributed prototype which can be executed and

tested over a network of workstations.

ii

1 INTRODUCTION

The 7 notation [Spivey, 1992, Brien & Nicholls, 1992] has been used as a specification language
to formally describe and analyze the requirements and the design architectures of a wide range
of hardware and software systems; for some examples see [Hayes, 1993]. However, Z has been
successfully used especially for the specification of sequential systems rather than concurrent
systems. Since 7 is an extremely abstract specification language, specifiers of concurrent or
distributed systems have very poor support and need to take special care of behavioral aspects
of their formal documents.

In fact, even though in the recent years 7 has been sometimes used for specifying concurrent,
reactive, or even distributed systems [Hayes, 1993], non-sequential systems are difficult to be
fully described and analyzed using 7Z. A number of researchers have attempted to overcome the
difficulties, usually combining 7 with some other formalism well suited to specify dynamic prop-
erties; combinations of 7 with either Petri Nets [vanHee et al., 1991, He, 1995, Evans, 1994a],
temporal logic [Carrington et al., 1989], or TLA [Baumann & Lermer, 1995] have been studied.
Usually no tool is given to support the engineering of formal requirements written in these
hybrid notations, except a syntax checker based on a LaTeX-like concrete syntax.

The approach we present here offers the specifier two complementary techniques for analyz-
ing, testing, and validating the formal requirements specification of a concurrent system.

The first approach allows a formal analysis of a 7Z document: its dynamics is formally
expressed and studied on an execution model, in order to be considered a sort of abstract
symbolic execution in the sense of [Kemmerer, 1985]. The second approach consists of using a
tool for automatic generation of a distributed prototype of the system which helps to debug the
specification from errors, inconsistencies, and ambiguities in a truly concurrent framework.

7 has a very abstract, declarative semantics [Spivey, 1992]. We introduce a new operational
semantics: it is based on the chemical metaphor embedded in the notation of the Chemical
Abstract Machine [Berry & Boudol, 1992], which itself has been recently proposed as a spec-
ification notation [Inverardi & Wolf, 1995]. On such a semantics we define a logic offering a
number of constructs which can be used to define and analyze dynamic properties. Moreover,
the semantics has been used also to design a tool that is a parallel animator: it consists of a
source-to-source translator which compiles a 7Z document into a program written in the concur-
rent language Shared Prolog, which has a chemical semantics as well. The resulting animation
can be executed in a distributed environment in order to make observable the concurrent be-
haviors of the system specified.

This paper has the following structure: Sect.2 shortly introduces 7 and surveys the main
tools that a requirements engineer can use to validate a formal requirements document. Sect.3
describes our analysis techniques discussing a simple example with concurrency features we will
use in the rest of the paper. Sect.4 describes the formal operational semantics and the logic
we use to analyze 7 documents. Sect.5 discusses the concept of animating a 7 specification;
in Sect.6 and Sect.7 we discuss an actual animation and its refinement. Finally, in Sect.8 we

describe some related and current work.

2 USING Z FOR REQUIREMENTS ENGINEERING

We think of the specifier acting as an expert in formal methods who works on behalf of the
customer. Specifiers act differently from designers as they do not deal with architectural or
organizational issues. The specifier writes a formal requirements document cooperating with
the user. At this step, a first statement of the problem to be analyzed is given by means of the
presentation of the general framework which is subsequently implemented. The accuracy in the
description of the required system has great importance, because it helps especially to avoid er-
rors that could be more expensive to correct if discovered in subsequent phases. Any error found
by the specifier at this stage requires a reformulation of the specification, limiting the required
modifications at a very high abstraction level. Any requirements inconsistency or incomplete-
ness found at subsequent stages in the development process could imply a redefinition of the
initial specification document, affecting the whole development process [Kemmerer, 1985]. The
use of formal notations and tools during this phase ensures a rigorous approach to requirements
analysis in obtaining coherent, complete, correct, and unambiguous specifications.

We now shortly survey 7 and the tools that a specifier can use to improve confidence in his

requirements document.

2.1 The Z Notation

7 is a formal specification language based on set theory and first-order logic [Diller, 1990,
Spivey, 1992]. A 7 specification includes a set of entities, called schemas representing either
abstract states of a system being specified or operations on them. The specification outlines
an abstract model defined by means of typed entities and their related operations, expressed
through a rich set of mathematical constructs.

A schema consists of a declarative part (the signature), where data structures, variables,
and other schemas can be included, and a predicative part consisting of assertions, properties,
and invariants. For instance, the following example shows four 7 schemas specifying a Buffer.
The invariant specified in the Buffer schema states that the buffer cardinality is less than some

limit.

__ Buffer
buffer : P(MESSAGE)
limit = N

#buffer < limit

__Init_Buffer
Buyffer’

buffer’ = @
limit’ = 10

_ Produce
A Buffer
m? : MESSAGE

#buffer < limit — 1
buffer’ = buffer U {m?}

_ Consume
A Buffer
m!: MESSAGE

m! € buffer
buffer’ = buffer \ {(m!}

There are two basic kinds of schemas: those describing abstract data structures and those
representing operations on them. The description of an operation is based on the concept of
predicate on state transformation, that is a logic formula including a pre-state and a post-state.
Schemas which “change” the state are marked by the presence of the A operator, while schemas
keeping unchanged the current state of the system are marked with the = operator. Initialization
schemas allow the definition of only post-states by simply providing primed signatures in their
declarative part (see the Init schema definition in the Buffer example). The 7 description of
abstract data structures is given by means of schemas in which no A or = inclusions are present.

Variables ending with “?” represent input data, while those ending with “!” represent
output. Furthermore, primed variables represent the state after an operation whereas unprimed
ones denote the before state.

A major feature of 7 is the schema calculus, that is a way of composing schemas. It uses some
special symbols describing how different parts of the specification document can be combined
together (sequential composition, parameter passing, combination through logical connectives,

etc.). For a detailed description of the 7 notation the reader should refer to [Spivey, 1992].

2.2 The Role Of Tools

We concentrate on the process that starts from a formal requirements document and produces
a validated specification. Ideally, a number of tools can help the requirements engineer during

such a process:

e Pretty printers and text formatters, to improve readability and to provide indexing. For

instance, 7Z has a IATpX-based syntax, that immediately compiles with TEX.

e Type checkers, to verify consistency in a specification document containing typed entities.

For instance, fuzz is a type checker of Z documents written in IATRX[Spivey, 1988b].

e Theorem provers, to prove formal properties improving the confidence in their correctness
[Bowen & Gordon, 1994, Bloesch et al., 1995].

o Model Checkers to analyze state machines by exhaustive search of their state spaces; for

instance, Nitpick is a model checker for a subset of Z [Damon & Jackson, 1996].

e Animators to compile and execute specification documents written in non-executable for-
mal languages. Animators support rapid prototyping, but are also helpful in proving that
a specification is really implementable; some sequential animators for 7Z are described in

[Dick et al., 1989, Sterling et al., 1996].

o Test case generators to generate test suites directly from specifications, that then can be
used by programmers to test and debug the real implementation; a test case generator for

7 is described in [Richardson et al., 1992].

Pretty printers and type checkers are the first tools a specifier can use to parse and check
a 7 document. Type checkers like Fuzz [Spivey, 1988b] or ZTC [Jia, 1994] determine if a 7Z
specification is both syntactically correct and correctly typed.

Unfortunately, parsers and type checkers are not sufficient to guarantee the correctness of
the specification. They can detect mistakes like misusing a variable but they cannot reveal
semantical inconsistencies. For instance, consider the Buffer specification and the following

new operation:

_ OverProduce
A Buffer
m? : MESSAGE

#buffer = limit — 1
buffer’ = buffer U {m?}

OverProduce inserts a message in the buffer when its cardinality is limit — 1. The schema is
clearly inconsistent with the Buffer schema (in fact it does not satisfy the invariant since buffer
could reach value limit) even if the type checker is unable to reveal violation. Consider again
the Produce operation: suppose the specifier forgot to put ’ after the first buffer: the checker
successes in checking the schema and does not report any errors.

The analysis of types cannot alone justify the effort of formalizing a specification. There must
be some means of investigating details of behavior [Jackson, 1994]. Specification verification
is a process that should be used to check whether a specification is correct in some sense
[Barden et al., 1994].

In order to verify the product quality, theorem provers are very important tools, because a
formal document should be proved correct with respect to the requirements specification. Theo-
rem provers allow automatic and detailed analysis of specification documents. More specifically,
provers for 7 provide automatic computation of preconditions of operations checking whether
the operations are feasible, or if there is consistency between pairs of schema predicates. For
instance, the calculus of the precondition for the operation OverProduce shows that the speci-

fication is inconsistent [Wordsworth, 1992]: in fact,

pre OverProduce is #buffer = limit — 1 A #buffer < limit — 1

Theorem provers also help to reveal what is implicit in the specification: a fully formal
proof gives a much higher level of confidence in the specification, but it is not always worth-
while doing it. The Z/Eves system [Saaltnik, 1989] provides a theorem prover (Eves) able to
deal with 7Z documents: 7Z code is translated in the first order predicate calculus supported
by Eves; a drawback of this prover is the amount of machine time taken to compute proofs
[Bowen & Gordon, 1995]. The HOL theorem prover environment has been used for analyzing
Z documents as well: in this case Z code has to be translated into higher order logic (HOL)
before being processed. Though HOL system has better performance, it is less automatic than
Eves: more user interaction is requested to complete proofs.

Unfortunately, the effort needed to formally prove a property of a specification is far greater
than the one needed to write the whole specification [Barden et al., 1994]. Automatic provers
usually need much help from specifier that often must suggest the way the prove should progress.
Guiding a theorem prover calls for a mathematical sophistication (and investment of time) that
most users do not have, so these tools have been mostly confined to experts working in areas
that can afford the cost, such as safety-critical software [Jackson, 1994].

Model checking calls for no user guidance (like type checking), but like theorem proving,
it can answer quite sophisticated queries. However, model checking works on only finite state
machines and most software systems have infinitely many states. The rationale behind why the-
orem proving has been primary approach for reasoning about software systems is that software
systems are, in general, infinite state machines. In [Jackson, 1994] model checking is success-
fully used on software systems with infinite states: the idea is to build an abstraction in which
a small number of abstract models represents a large (possibly infinite) set of concrete models.
For instance, the type Int can be abstracted to { neg, zero, pos [}. Abstraction can be used to
automate the proof of some simple theorems usually proved by hand.

In order to state a property that guarantees a safe behavior of the buffer, for instance “a
message produced will eventually be consumed”, we need to specify the buffer’s dynamic behavior.
7, declarative semantics does not permit to define a concept of “history”, so a property like the
one defined above cannot be defined. In fact, no existing tools for Z can perform analysis on
dynamic aspects of the system being specified.

A language derived from Z, namely Object-Z [Carrington et al., 1989], allows temporal prop-
erties to be specified, introducing a trace-based semantics. We are here interested in original

7, so that we can continue to use all the existing tools and techniques.

3 A CONCURRENT SPECIFICATION: A LIFT SYSTEM

In order to explain our approach we use a well known example: the Lift System [Evans, 1994b,
Richardson et al., 1992, Cuellar et al., 1994, Garzotto et al., 1987].
3.1 Informal Requirements Specification

A lift controller system has to serve requests coming from the buttons placed on the floors of a

building. A lift is moved by the controller in a direction satisfying the pending requests until

no requests are found; in this case the lift changes direction to service other new or pending

requests.

3.2 Formal Requirements Specification

In [Evans, 1994b] the requirements for a lift system are specified using Z; a number of dynamic
properties are stated using some Unity-like logic constructs [Chandy & Misra, 1988]. Although
the use of Unity logic allows one to capture dynamic properties not directly expressible in 7,
the intended operational semantic model is strongly underspecified and the analysis method
is unclear. Instead, starting with a specification very similar to the original, we will formalize
both an operational semantics and a logic suitable to reason on it. We start the specification

introducing a number of free types, namely primitive types defined by enumeration.

DIRECTION ::= up | down

STATE ::= stopped | moving

DOOR ::= open | closed

REQUEST_TYPFE ::= up_request | down_request

A lift can be defined by its position, direction, state, and door state:

— Lift
position : N
direction : DIRECTION
state : STATE
door : DOOR

The following schema describes a lift system, which includes a lift and some records of requests:
Lift_System
Lift
requests : P(REQUEST_TYPE x N)

requests is the set of requests indicating their type and floor.

The initialization operation schema is:

— Init_Lift_System
Lift_System’

position’ = 1
direction’ = up
state’ = stopped
door’ = open

requests’ = @

The operation schema Make_Requests adds a new request to the requests set.

— Make_Requests
A Lift_System
r?: REQUEST_TYPFE
f7:N

requests’ = requests U {(r?,f7)}

The schema describing the moving of the lift up (a single schema in [Evans, 1994b]) is here

divided up in two schemas, namely Move_Up_Up and Move_Down_Up. In this way we avoid

V operator in schemas and obtain simpler rules in the semantic mapping (see Sect.4.2).
Schema Move_Up_Up describes the moving up of the lift when up requests are present above

the lift’s current position; it can be applied only when the lift is already moving “up”.

— Move_Up_Up
A Lift_System

door = closed

(3f : N | (up_request, f) € requests o f > position)
direction = up

position’ = position + 1

direction’ = up

state’ = moving

door’ = closed

Operation schema Move_Down_Up defines the operation of changing the direction of the moving
from down to up if no down requests are present under the lift position and there is at least

one request for the lift above its current position.

— Move_Down_Up
A Lift_System

door = closed

(3f : N | (up_request, f) € requests o f > position)
direction = down

= (3f1: N | (down_request, fl) € requests o fl < position)
position’ = position + 1

direction’ = up

state’ = moving

door' = closed

Move_Down_Down and Move_Up_Down are the specular schemas for the moving of the lift
down, which we do not report here for conciseness. The other operation schemas are Open_Door
and Close_Door which respectively describe the operation of opening the door when requests
are present at the current floor and the operation of closing the door after having served some

requests.

3.3 Formal Analysis

Given the above formal document, do suppose we intend to analyze it, looking for possible
errors or inconsistencies. We need to “interpret” the document, especially if we are interested
in properties of its intended dynamics.

In order to express properties on the dynamic behavior of the system, Unity-like logic
constructs are introduced. Liveness (namely “a good thing will eventually occur”) or safety
(namely “a bad thing never happens”) properties can be expressed in this way.

Properties are predicates (as the ones in the operation schemas) built on using some logic
operators (A, V, =, <, =) and Unity constructs (we will formally define the new logic constructs

and analyze the properties given above in Sect.4.4).

Example We state some properties about the Lift system [Evans, 1994b]

¢ Theorem 1: Invariant door = open = state = stopped

e Theorem 2: (1,f) € requests A f = position A door = closed

ensures door = opeN

e Theorem 3: (1,f) € requests A f > position A direction = up A

state = moving A door = closed leads_to position = f

The first theorem states that when the door is open, the state of the lift is stopped. The
second one ensures that, when the lift arrives at a floor where requests are presents, it opens
its door. The third one means that when the lift is moving up and there are requests above its
position, it will eventually satisfy them on arriving at the floors requested.

Question is: are these properties true or false given the Z specification? Answering this kind

of questions is the goal of the formal analysis we describe in the next sections.

4 SPECIFYING THE DYNAMICS OF Z SPECIFICATIONS

The elementary components of any 7 document are State schemas and Operation schemas. This
means that we can see a 7 specification as a pair: < 5,0 > where S is the set of the State
schemas and O the set of the Operation schemas. Semantically, a State schema s in S can
be seen as the set of all its possible instantiations [Spivey, 1988a]. The standard 7Z semantics
[Spivey, 1988a, Brien & Nicholls, 1992, Breuer & Bowen, 1994] is declarative and does not offer
any formalization for concurrency. For this reason, we have defined an operational semantics
based on a chemical model.

For simplicity and conciseness, here we consider a restricted version of Z; we specify such
a fragment using 7 itself, so following the 7 tradition [Spivey, 1988a, Gardiner et al., 1990].
Moreover, because of the concurrent interpretation of 7Z that we are going to give, we assume
that all variables not explicitly mentioned in the postconditions of an operation schema need
not be invariant (that is: other operations can concurrently modify them). This assumption
is needed in our interpretation and allows concurrency of the operations. In some papers on

analysis of Z documents the assumption is exactly the opposite: “Variables not mentioned in

the schemas are considered unchanged”: e.g. [Richardson et al., 1992]; however, this is not
standard 7 either.

We remark that our assumption, together with the suppression of the invariants Lift’ = Lift
from Make_Requests operation and the invariant Requests’ = Requests from Move_Up_Up and
Move_Down_Up allows concurrency among operations acting on the Lift and operations acting
on the Requests.

In order to better explain our operational semantics, now we briefly introduce the Chemical

Abstract Machine that is the basis of our interpretation of Z.

4.1 The Chemical Model

In the Chemical Abstract Machine model [Berry & Boudol, 1992, Boudol, 1993] Molecules, So-
lutions, and Rules are the fundamental elements. A Chemical Abstract Machine is a triple
(G,C,R) where (G is a grammar, C is a set of configurations (the language generated by the
grammar) or molecules, and R is a set of the rules condition(C') X bag C' X bag C'. A solution is
a multiset of molecules: bag C'; { [} symbols usually delimit a solution. Solutions are considered
the Abstract Machine states. They can be composed of other subsolutions using W: 5 = 5| & .55.

There are some general laws valid for any Cham:

¢ Reaction Law: an instance of the right-hand side of a rule can replace the corresponding
instance of its left-hand side if conditions on the molecules hold. Given a rule
condition(my, my..my) — my, My..my = my, Mh..Mm;

if My, My.. My, My, My..M] are instances of the m;’s and the m[’s by a common substitu-

tion, then

condition(My, My..My) — {| My, My .My, [} = { M{, M. M| [}
¢ Chemical Law: reactions can freely happen in a solution

S =51
SlHS52= S114.52

e Membrane Law: a subsolution evolves freely in every context

S =51
{1 ClsTl =4 Cls11 B

where O] indicates a context.

In the Chemical Abstract Machine two rules can fire concurrently if they do not need the
same molecules to react on; hence, several rules can progress simultaneously on a solution. If
two rules conflict, in the sense that they “consume” the same molecules, one of them is chosen
non-deterministically to react.

A CHAM has some similarities with a 7 specification. The state of a 7 specification is
global, even if it can be seen as a composition of many sub-states, corresponding to the state

schemas involved in the specification. Using the CHAM the global solution is composed of

several completely independent sub-solutions. Moreover, in both Z and the CHAM the firing of
actions cannot be enforced; there are only enabled or not enabled operations (or rules). In fact
7 operations are enabled when their preconditions are satisfied and CHAM rules are enabled
when conditions are true and molecules in the left-hand side of the rule are present.

We consider a fair Cham where repeatedly enabled rules will eventually be fired: this as-

sumption helps in proving properties defined using Unity logic constructs (Sect. 4.4).

4.2 An Operational Semantics For Z

We give a CHAM interpretation of 7 specifications which allows us to deal with concurrent
dynamics. Intuitively, an instance of a state schema is associated to a solution where, in some
way, each variable is a subsolution (in many cases a single molecule). Instead, an operation
schema corresponds to a chemical rule where premises and consequences are solutions composed
of pre and post conditions of the operation.

We describe the formalization of such an interpretation using the 7 language itself.

A molecule is a tuple of a name, a type and a value:
MOLFECULFE == NAMFE x TYPE x VALUFE
A solution is a bag of molecules:
SOLUTION == bag MOLECULFE

and a rule is composed of a conditional part that define the applicability of the rule and of

two solutions that indicate molecules to delete and add to the state solution:

RULFE == CONDITION x SOLUTION x SOLUTION

We will call the first SOLUTION “pretuples” and the second “posttuples” in order to avoid
ambiguity.

A rule is applicable to a solution if the solution contains molecules that satisfy the conditional
part (CONDITION) of the rule and molecules that match the pretuples of the rule.

The function FSem associates a solution to a schema_instance:
Fsem : SCHEMA_INSTANCE — SOLUTION

Every identifier of the schema instance is associated to a subsolution (not necessarily a single
molecule): we remark that 7Z sets and bags are decomposed by this function in several molecules
80 as to increase potential concurrency of the model.

Fsem_op associates a rule to an operation schema ':

Fsem_op : SCHEMA_OP — RULF

Fsem_Op associate to pre and postcondition of a schema different part of the rule:

e Every 7 schema postcondition that specifies the removal of an element from a set or bag

is mapped to a pretuple of the rule (molecule to be deleted).

' A similar function has been defined for initialization operation, where no preconditions are present.

e Every postcondition that specifies the insertion of an element in a set or bag is mapped

to a posttuple of the rule (molecules to be added).

e Every 7Z precondition that defines a membership (€, E) is mapped to a pretuple (a removal)
and also to a posttuple (reinsertion) if the Z postcondition does not contain an indication
of removal of that element: in other words a check of membership is seen as a removal

and reinsertion.

e Postconditions containing mathematical operators (4, —,...) on naturals are encoded

deleting one molecule and adding the molecule updated.

Example: 2’ = 2 4+ 1 is seen as (z,N, v) in pretuples and (z,N, v+ 1) in posttuples of the

rule.

e Preconditions containing relational operators are encoded as conditions, but the molecule

corresponding to the variable is deleted and added again as already described 2.

Example: z < 5 is seen as v < 5 — (z,N,v) = (z,N,v)

Now, following the interpretation of the Chemical Machine, rules can fire concurrently when
they are enabled by conditions and non-conflicting on pretuples molecules.
It is possible to define many other functions to describe, for instance, when rules, i.e. oper-

ation schemas, can fire concurrently: it usually depends on their postconditions.

Example To clarify this interpretation let us consider again the Lift system.
The initialization operation (Init_System) is mapped to a chemical rule having no conditions

and no pretuples and as posttuples the following solution:

(position,N, 1), (direction, DIRECTION , up),
(state, STATE, stopped), (door, DOOR, open)

The state schema instance obtained by the application of the operation is the same solution
presented above.
The rule associated to the operation schema Make_Requests has the following posttuple (no

premises):
(requests, AIREQUEST_TYPE x N),(r?, 7))

The rule corresponding to the operation Move_Up_Up (Move_Down_Up is similar) has the

following condition f > pos, as premises:

(door, DOOR, closed), (requests,P(REQUEST_TYPE x N), (up_request, f)),
(position,N, pos), (direction, DIRECTION , up)

and as consequences:

2This is done following the chemical semantics where conditions can only be stated on the local molecules

involved in the rule [Boudol, 1993].

(direction, DIRECTION ,up)), (position,N, pos + 1)),
(state, STATE, moving), (door, DOOR, closed),
(requests, AIREQUEST_TYPFE x N), (up_request, f))

Rules which do not act on the same molecules can react simultaneously: hence, following
our interpretation, enabled operation schemas which do not modify the same variables can react
in parallel.

We remark that both sets and bags can be decomposed in several molecules, thus increasing
potential concurrency. For example, the set requests is decomposed in many molecules, one for
each request: in this way it is possible to have concurrency among different applications of the

operation Make_Requests.

4.3 An Abstract Execution Model And Its Logic

We define now an ezxecution model, namely a way of abstractly executing a 7 specification
document, and a Unity-like logic [Chandy & Misra, 1988] to reason on properties exhibited by
such a model.

The execution model is defined on the semantics just described; it represents the unfolding
of the application of the rules of the operational semantics.

For every state schema s an abstract execution tree can be constructed in the following way:
e the root node is void;
e the first operation applied is the initialization operation without any preconditions;

e from every node several different applicable operation sets can exist, (chosen among all
the enabled operations on that node), thus introducing non-determinism in the choice of

the operations being in conflict.

e each branch corresponds to the application of a group of enabled operations which could

be applied without conflicts, as dictated by the Cham model.

In order to allow the specification of the Unity-like logic constructs using 7 as meta-language,

we introduce the specification of the execution tree:

TREFE ::= Void_tree
| fork({(PAIR x seq TREE))

where
PAIR == SCHEMA_INSTANCE X seq P SCHEMA_OP

The function Frec maps every State schema on an execution tree with particular properties
(we omit the Z specification of the function); the chemical interpretation imposes that for every

node label (s, seq), where s is an instance and seq is a sequence of operations sets:

e all the operations in the sets belonging to the sequence seq must be enabled on s;

e all the operations in the sets belonging to the sequence seq must act on the state schema

of which s is an instance;

e each set, member of the sequence seq, must contain operations that can concur (that is

without conflicts);

e for every s’, label of one of the children of the node (s, seq), there must hold the post-
conditions of all the operations in the operations set applied to reach that node (sequence

structure help to keep link between nodes and operations set).

4.4 A Logic For Expressing Dynamic Properties

In order to be able to reason on dynamic properties, like deadlock and starvation, we introduce
our logic borrowing a few constructs from the Unity logic. Properties are expressed as predicates
related by Unity logic operators; predicates now have chemical semantics and are interpreted as
chemical solutions. We can state a predicate p is valid on a state solution s if all the molecules
in the chemical interpretation of p are also in s.

We briefly list the logic constructs we introduce and their semantics:

e p unless ¢ says that whenever p is true during the execution, surely either ¢ will become
true or p continues to hold. In particular, on the tree: if p is true on some nodes then on

their children ¢ is true or p still holds.

e Stable is an alias for p unless false, that is when p becomes true it will hold forever. On

the tree: if p is true on a node it will remain true for the whole subtree of that node.

e Invariant p says that p is true forever. That is, for every node of the execution tree p is

valid.

e p ensures ¢ means that when p becomes true then eventually ¢ will hold and before that
moment p is still valid. That is, if p is true on a node N, then in each branch through N
there is a node M below N where ¢ holds and on nodes between nodes N and M in the
path, p holds.

e pleads_to ¢ has quite the same meaning as ensures except that it does not ensure that

p is valid until ¢ becomes true. On the tree: if p is true on a node N, then in each branch
through N there is a node M below N where ¢ holds.

The following axiomatic schema shows how we formalize the meaning of the logic constructs

on the execution model. We report only the unless and ensures functions:

unless : PROPERTY x PROPERTY — B

Vp,q: PROPERTY e unless(p, q) = true &
(Ve: TREF; el :seq TREF;
schema : SCHEMA_STATE; set : seqP SCHEMA_OP;
inst : SCHEMA_INSTANCE |
subtree(Fzec(schema), e) = true A fork(inst, set,el) = e
A valid(inst, and(p, not(q)) = true o
(Ve3 :seq TREFE; set’ : seq P SCHEMA_OP;
inst’ : SCHEMA_INSTANCE; e2 : TREF |
e2in el A fork(inst’, set’, e3) = €2

e valid(inst’, or(p, q)) = true))

where function wvalid indicates when a property holds on an instance state: intuitively this is
done considering every property as a solution and analyzing the matching with the state solution

like what has been done for rules.
ensures : PROPERTY x PROPERTY — B

V' p,q: PROPERTY e ensures(p,q) = true &
((unless(p, q) = true) A
(Ve: TREF; el :seq TREF;
schema : SCHEMA_STATE; set : seqP SCHEMA_OP;
inst : SCHEMA_INSTANCE |
subtree(Fzec(schema), e) = true A fork(inst, set,el) = e
A valid(inst, and(p, not(q)) = true o
(3 e3 :seq TREFE; set’ : seq P SCHEMA_OP;
inst' : SCHEMA_INSTANCE; €2 : TREFE |
subtree(e2, e) A fork(inst’, set’, e3) = €2
e valid(inst’, q)) = true))

The formalization of ensures derives from wunless: in fact, p ensures ¢ if p unless ¢ and
exists a set of operations that applied to a state where p is valid generates a state where ¢
holds (that is: eventually ¢ becomes true because of the fairness of the chemical model we have
introduced).

Having described the meaning of these logic predicates on the operational model, we can
define and reason on dynamic properties on the abstract concurrent interpretation of 7Z specifi-

cations.

Example We specify and verify dynamic requirements with the help of the new constructs.
We have already defined three properties on the Lift specification in Sect.3: now we analyze the

specification trying to prove them.

Theorem 1: Invariant door — open = state — stopped
Proof: To prove an invariant property we prove that the property holds after the initial-

ization and that it is stable.

The first condition is true: in fact, the Init_Lift_System operation assigns the value open
to the door variable and stopped to the lift state. Stable(p) is p Unless false: that is, for every
operations set applicable to a state where p A = false = p A true = p is valid, the next state in
the execution will satisfy p V false = p.

In our particular case, consider p as the property door = open = state = stopped; given
a state where p holds, all the operations are enabled, in fact p may be rewritten as door =
closed V state = stopped. The operation Make_Requests does not modify the lift state while
other specification operations change it accordingly to the invariant. Moreover, operations sets
to be executed can contain only one operation acting on the lift system (all the operations on
the lift need to modify the same molecules) plus several Make_Requests. Then we can conclude

that the invariant holds.

Theorem 2: (1,f) € requests A f = position A door = closed ensures door = open

Proof: To prove p ensures ¢ (where p is (t,f) € requests A f = position A door = closed
and ¢ is door = open) we must prove p unless ¢ and the existence a set of operations that
applied to a state where p A — ¢ is valid generates a state where ¢ holds. We now prove
p unless ¢; for every enabled operations set on the solution containing molecules:

(requests, (REQUEST_TYPFE x N),(t,f)), (position,N, pos), (door, DOOR, closed)
the application has to lead to a state where molecule (door, DOOR, open) is present or the
previous molecules are still in the solution (this is the unless formalization of our concurrent
execution model).

Considering our 7 specification, we notice that the only enabled operations on an instance
state containing those molecules are Make_requests (which only adds new requests molecules
without modifying the lift state) and Open_Door which exactly opens the lift door. Hence,
p unless ¢ holds.

We now prove the second part of our theorem, that is: given a state where p A = ¢ holds,
there exists an enabled operations set applicable, which leads to a state in which ¢ holds. In our
specification such a set is composed of operation Open_Door and some (or none) Make_Requests.
Assuming the fairness condition given in Sect.4, we can state that the set will eventually be

applied. This completes the proof.

Theorem 3: (,f) € requests A f > position A direction = up
A state = moving A door = closed leads_to position = f

Proof: in order to prove a p leads_to ¢ property we must ensure that at least one chain
of operations sets does exist starting from a state containing the molecules:
(requests, (REQUEST_TYPFE x N), (t,f)), (direction,P DIRECTION , up),
(position,N, pos), (state, P STATE, moving), (door,P DOOR, closed), with f > pos
leading to a state containing (position, N, f).

The operations sets in the chain are composed of the operation Make_Requests and the
operation Move_Up_Up, which continuously move the lift up until requests are present above

the lift position.

5 ANIMATING A Z SPECIFICATION

A formal requirements document provides a precise and rigorous description of the system being
developed. Its aim is to define abstract properties of the system, describing what the system
has to do, and not how to do it [Hayes & Jones, 1989].

We stress the fact that 7Z has non-executable semantics. Z specifications are declarative since
the specifier is allowed to declare not computable entities, like infinite sets or not computable
functions, and to specify properties and operations on them.

However, the specifier often could desire to have a prototype of the system which can be
tested and whose dynamic properties can be directly inspected by either the specifier himself
or even the customer. Hence, there is a problem. A notation like 7 is typically used to make
simple the proof of important properties of the system studied, but it cannot help to establish
a very important property from a practical point of view: the executability (implementability)
of the specification [Fuchs, 1992]. Moreover, specifiers who want to experiment intermediate
specifications in order to gain feedback from a customer are deprived from using the computer

to test and validate the current version.

5.1 Animation By Prolog

The technique of validation by animation has been introduced in order to overcome the difficulty
of obtaining a prototype from a non-executable specification language. Specifically, several
approaches have been used to transform a 7 specification into an executable form, using different
programming languages and different methodologies [Sterling et al., 1996]. There are several
problems that must be faced according to the chosen method of translation and the target
language. In general, most problems derive from trying to match different abstraction levels.
Executable languages are less expressive than non-executable ones, since their functions must
be computable and their domains must be finitely representable. Any acceptable solution has
to balance declarativeness versus efficiency in the sense that we want not only an executable
form of a very high level specification, but also a reasonably efficient execution to test the
specification [Breuer & Bowen, 1994].

Many researchers have directed their efforts toward the development of methods for map-
ping 7 specifications to Prolog programs. Indeed, using logic programming appears to be a
natural way to animate Z documents, since the practice shows that most predicates found in
7, documents have an easy implementation in terms of Prolog clauses. For instance, Knott
and Krause in the SuZan project developed a basic strategy for manual translation of 7
to Prolog and produced a library of Prolog predicates implementing standard 7 constructs
[Knott & Krause, 1992]. Such an approach is called generate and test because it is based on
generating all values which could possibly satisfy the abstract state described in the specification
document, and testing them using the specification properties and invariants. Unfortunately, it
can handle any specification document, but is impractical: it suffers from a problem of combina-
torial explosion of solutions and often no satisfactory answer from a query is obtained, because
there are infinite answers or the program loops too much time to find at least one solution.

To overcome these difficulties we can somewhat restrict the Z notation to be used in our speci-

fication document, in order to have a subset of the language “almost directly” executable or com-
pilable [Valentine, 1995, Doma & Nicholl, 1991]. This is the procedural method [Diller, 1990],
which typically also defines a style and an order in which Z constructs must be used. In fact, the
specification must be written bearing in mind a successive animation, such that it is possible
to have a straightforward translation into procedures of the target language. The restriction
imposed on the 7 language are paid back in terms of efficiency of execution of the obtained
prototype.

Our approach to animation can be classified as procedural since the original specification has
first to be refined in a simplified notation we call Zel. The main novelty of our proposal lies in the
use of a coordination language, Shared Prolog [Ciancarini & Gaspari, 1996], as target language
for the mapping of 7 specifications. Shared Prolog is an extension of Prolog with support for
explicit parallelism and its semantics is also based on the chemical model [Ciancarini, 1991]. So
the semantics we gave in Sect.4 for 7 specifications, gives us a formal basis for the animation
process which leads to the construction of a parallel/distributed prototype of the system being
specified. The simplicity of the mapping from 7 constructs to Prolog predicates is maintained
but now the system has the capability of dealing with concurrent features of the specification.

A distributed prototype offers a more realistic model of the system we are developing,
allowing one to test and inspect concurrent behaviors. Issue of efficiency is also addressed since
the code obtained by the automatic translation of the refined specification can be executed over
a network of workstations.

Unlike other animators that simply offer a way of executing single operations sequentially
and step by step, our animator generates Shared Prolog code, which is an executable form of

the 7 specification able to generate a parallel trace.

5.2 A Parallel Animation Language

Shared Prolog is based on the combination of the shared dataspace coordination model (as in
Linda) with logic programming computing (as in Prolog) [Ciancarini & Gaspari, 1996].

A program in Shared Prolog consists of a set of modules called theories, an initial goal and
an initial coordination medium called tuple_space or blackboard. The blackboard is a multiset
of logical tuples (Prolog atoms). The initial content of the blackboard is defined by a special
goal:

tuple_space{tuple-1, ... ,tuple-n}.

Another special goal defines some agents which share the tuple space (we also call agents

“active tuples”, since they are part of the tuple space):
initial_goal(agent-1 °||’ .. ’||’ agent-n.

An agent represents a process executing a theory and accessing the tuple space for read-
ing/consuming/producing tuples. A theory is a Prolog program extended with mechanisms for
coordination through the tuple space.

Each theory is composed of a set of patterns and a knowledge base. Syntactically a theory

looks as follows:

agent theory_name (V_1,..,V_n)
eval
pattern_1
#

#
pattern_k
with knowledge base

The theory name is a functor with zero or more arguments V; which are logic variables
scoping over all the patterns.

A pattern has the following form:

{in_guard},read_guard
-—=>
body {out_set},

fail failure_set

The in_guard and the read_guard are evaluated trying to unify a multiset of tuples in the
blackboard with those contained in the guard. The body of a pattern contains predicates defined
in the knowledge base of the theory. Semantically, each pattern consists of two components
named preactivation and postactivation. The former defines an activation condition consisting
of reading and/or deleting some tuples from the blackboard. The latter consists of a Prolog
goal (body) and two multisets of tuples: one to be added to the blackboard in case of successful
evaluation of the goal (out_set), and the other to be added in case of body failure (failure_set).

Initially, every pattern of a theory is examined to check the satisfiability of its own guard. If
a guard is satisfied, the corresponding body is evaluated and tuples are added to the blackboard.

If several patterns satisfy their preactivation, one is non-deterministically chosen and executed.

5.3 Animating A Z Specification With SP

According to the specification style described in Sect.4, a 7 specification document is composed
of state schemas which contain predicates on the abstract state of the system, and operation
schemas which contain predicates describing how the state of the system may evolve. Operation
schemas consist of a set of preconditions which specify the set of valid states of the system to
which it is possible to apply such an operation and a set of postconditions which define the set
of states that can be reached after the application of the operation itself.

An operation is enabled if the current state of the system satisfies its preconditions; two (or
more) operations are concurrent if they are enabled at the same time. This implies that in the
animation, several operations can be executed at the same time. In fact, the animation of a
requirements specification document using a concurrent language has the immediate effect of
capturing and making observable the concurrent characteristics of the system being specified.

In order to simplify the translation we have restricted 7 to a number of constructs (we call
Zel - 7. elementary - the resulting notation). In the following table is summed up what can be

used in Zel:

Predefinite types

Type constructors

Operators on set

Operators on multiset

Operators and functions on sequences

Arithmetic operators

N, Z

P, bag, seq, X
€,¢,U,N,C,C
E,u,U

in, ~, head, tail, front, last

+,-,%,div, mod

Relational operators =,#,>,<,>,<
Logical operators -, A
Quantifiers 3

Schema connectives VoA =5, >>
Variable decorations byt

The restrictions we have introduced concern types and use of variables, form of predicates,

and usability of some quantifiers.

5.3.1 Types

Types can be defined in Zel as follows:
e predefinite type, as N e Z;
o given set;
o structured type, defined by enumerating elements;
e applying type constructors as P,bag,seq,x;

e schema type.

5.3.2 Variables

Variables in the declarative part of a schema must be defined as P, bag or seq of another type
X, because they are mapped to SP tuples, as we will see later. These restrictions do not apply
if a variable is inside the scope of an existential or universal quantifier in the predicative part
of a schema.

Special attention must be paid to i/o variables. If the type of an input(output) variable is
defined as P X, the corresponding predicates must be translated using another variable of type

X existentially quantified and whose singleton set must be equal to the original variable.

5.83.83 Predicates

In our approach only a subset of Z predicates can be used in specifications, since not all the
predicates are easy to animate. In the predicative part of a schema, it is possible to use only A
as logical operator, while = can be used in conjunction with membership tests.

The order of the predicates is important and influences the SP program obtained through

the animation. One must pay attention to define predicates without unbound variables, so

that the corresponding SP program does not evaluate non-ground terms. However, properties
can be defined using non-animatable predicates and the syntactical restrictions are not applied;
only under these circumstances other logical operators (e.g. V) or the universal quantifier are
allowed. Although these predicates are type checked, they produce no effect on the resulting

animation.

5.4 From Zel To SP

Once a Zel specification document has been obtained (by manual refinement of the original
7 specification) the animation process continues using a translator tool which automatically
produces a SP program. We now describe the ideas we used to build the translator.

Each simple schema not defined by a schema calculus expression in the Zel document is
transformed in a SP pattern; instead, a schema defined by a schema calculus expression is
translated into a theory containing the patterns corresponding to the simple schemas which are
operands in the expression.

To each variable defined in the predicative part of a Zel schema corresponds a unique SP
tuple in the blackboard, which is obtained concatenating the name of the variable and of the
schema in which it is defined. Input variables are removed from the blackboard, while output
variables are added. For each schema, the system tries to determine a couple of animatable
predicates in the list of precondition and postconditions, and the corresponding action is added

to the pattern.

Example Suppose that in a precondition we have a set membership predicate, and in the

postcondition we update the set removing the tested element.

precondition | v € set

postcondition | set’ = set \ {V}

pattern {set(v)} — ..

In the SP program this is equivalent to including a tuple in the in-guard of the corresponding

pattern, with the meaning that it will be removed from the blackboard.

5.5 Querying The Animation

The SP program obtained through the transformation process has to be initialized before it can
be executed. The initial state of the blackboard and the initial goal in fact cannot be obtained
by automatic translation of the specification, but must be defined in the query.

In the version we use, SP programs are static: it is not possible to activate agents during
the execution, they must be all defined in the initial goal. Moreover, tuples representing input
data for the animation must be added to the tuple space in the initial blackboard. Once the
initial goal has been defined and the tuple space has been opportunely modified, the SP program
is passed to the Shared Prolog compiler producing the executable code corresponding to the
requested animation. This code runs on a network of workstations.

The following diagram visualizes the animation process for a given specification:

zd
Specification

Query

6 ANIMATING THE LIFT SYSTEM

We describe now the animation of the lift system specification of the lift system introduced
in Sect.3. The first step consists of refining the 7Z document. This amounts to refining and
simplifying 7 schemas into Zel syntax.

For instance, the following schemas describe the operation of moving the lift up, provided
that there is at least one pending request above its current position either when the lift is
going up or when there are no requests going down. Note how few changes have been made
with respect to the original version given in Sect.3: they only concern variables defined as

P sometype and i/o variables.

— Move_Up_Up
A LiftSystem

34f : REQUESTTYPE x N; { : REQUESTTYPE;
fypl,p2:N;d: DOOR; c: DIRECTION e

(tf € requests A tf = (1,f) A

pl € position A f > pl Ap2=pl+1A

d = closed N d € door A

¢c=up A ¢ € direction A

position’ = position \ {p1} U {p2} A

direction’ = {up} A

state’ = {moving} A

door’ = {closed})

— Move_Down_Up
A LiftSystem

34f : REQUESTTYPE x N; { : REQUESTTYPE;
fypl,p2:N;d: DOOR; c: DIRECTION e
(tf € requests A tf = (1,f) A
pl € position A f > pl Ap2=pl+1A
d = closed N d € door A
¢ = down A ¢ € direction A
- (Jug : REQUESTTYPE x N; u : REQUESTTYPE; g :Ne
(ug € requests A ug = (u, g) A g < pl)) A
position’ = position \ {p1} U {p2} A
direction’ = {up} A
state’ = {moving} A
door’ = {closed})

The next step is the automatic translation of the specification in Shared Prolog. Here is the

code obtained by translating the schema Move_Up_Up above reported.

{moveupup?},

{position__liftsystem(P1)}, requests__liftsystem(TF),
TF=(T,F), F>P1, P2 is P1 + 1,

D=closed, door__liftsystem(D),

C=up, direction__liftsystem(C),
{findall(direction__liftsystem(_V3),_V4)},
{findall(state__liftsystem(_V5),_V6)},
{findall(door__liftsystem(_V7),_V8)}

{position__liftsystem(P2), direction__liftsystem(up),
state__liftsystem(moving), door__liftsystem(closed)}

The initial tuple space is obtained from the InitSystem_Lift schema defined in the specifi-
cation document. It can be modified to satisfy a particular query to be animated.
In the following example, we put into the tuple space a set of tuples representing a sequence

of service requests for the lift, and an initial condition for the lift.

tuple_space{position__liftsystem(1l),direction__liftsystem(up),
state__liftsystem(stopped),door__liftsystem(open),
r((upRequest,3)),r((upRequest,1)),r((upRequest,4))>.

Moreover, at least one agent has to be activated by the initial goal:
initial_goal (op_liftsystem).

The SP program is then compiled and executed. Trace (a) below shows the report of an

animation of the system for the above sequence of service requests, including the final state of

the lift.

req upRequest,3
up from 1 to 2
up from 2 to 3
open 3

req upRequest,4
closel]

req upRequest,3
req upRequest,1

closel[] up from 3 to 4

up from 1 to 2 open 4

up from 2 to 3 req upRequest,b

open 3 up from 4 to 5

open 5

closel]

req upRequest,4

closel]

up from 3 to 4 down from 5 to 4

open 4 open 4

final set:[(upRequest,4)] Tinal set:[(upRequest,4)]

final position: floor 4 door: open final position: floor 4 door: open

trace(a) trace(b)

A trace helps the specifier to debug a specification. He should aim to check aspects of the
system that have not been fully explored or to correct an improper behavior due to mistakes in
the specification.

For instance, trace b) shows the animation report if we “forget” to include in the Move_Up
schemas the test concerning the shutting of lift door. The trace shows that a lift can move to
a new floor to satisfy a request without closing its door; moreover, since requests are deleted in
the Close_Door schema, request for floor 4 remains among the pending requests list and it is
serviced twice.

Testing a specification can be carried on using different test cases that are instances of a
particular functional requirement and observing the resulting animation. An unsuccessful case
shows that the functional requirements tested is not valid, but only if all instances of a functional
requirement are tested satisfiability is demonstrated [Kemmerer, 1985]

The main advantages of the animation are in terms of accelerating the specification validation
with respect to the user requirements and increasing the degree of trust the specifier can have

in the system being built.

7 REFINING THE ANIMATION

Since the process of obtaining an animation is automatic, it is possible to rapidly build a
prototype of the system even if the original specification is incrementally modified in order to
test different or new features. The feedback coming from the execution of the animation can
be used to improve or emend the original specification document.

For instance, we can refine our example to make the lift system more realistic increasing
the number of lifts and specifying a scheduling policy for user requests. This can be easily
accomplished by parameterizing opportunely the operations and the state of the original lift

system. The modified schema looks as:

_ LiftSystem
position : P(LIFT x N)
direction : P(LIFT x DIRECTION)
state : P(LIFT x STATE)
door : P(LIFT x DOOR)
requests : P(LIFT x REQUESTTYPE x N)
Lifts : P LIFT

where LIFT ::= al | a2 | a3 defines the available lifts.

The following schema refines the corresponding one presented in the preceding section.

_ Move_Up_Up
A LiftSystem

34f : LIFT x REQUESTTYPE x N;

t: REQUESTTYPFE; e : LIFT; f,pl,p2:N; d : DOOR;
cl,c¢2: DIRECTION; s1,52: STATE o

(tf € requests A e € Lifts N tf = (e, t,f) A
(e,pl) € position N f > pl Ap2=pl+1A
(e,d) € door A d = closed N

(e, cl) € direction N\ c2 = up A

(e,s1) € state A s2 = moving A

position’ = position \ {(e,pl)} U {(e,p2)} A
state’ = state \ {(e,s1)} U {(e,s2)} A
direction’ = direction \ {(e, c1)}U{(e, 2)})

The operation Move_Up_Up is now enabled when one of the active lifts has to serve a
request at a floor above its current position; state, direction, and position of the moving lift are
consequently updated. User requests are scheduled by a controller which assigns each pending

request to the lift nearest to the requested floor.

_ Controller
A LiftSystem
r? :P(REQUESTTYPE x N)

3s: REQUESTTYPE x N; r1: LIFT x REQUESTTYPE x N;
t: REQUESTTYPFE; el : LIFT; a,f,al,pl :Ne
{s}=r?As=(t,f) A

(el,pl) € position N a=pl—f ANal =a*xaA

= (Je2: LIFT; b,b1,p2:Ne

((e2,p2) € position Nb=p2—f ANbl=0>b*bA bl <al))A
rl=(el,t,f) A

requests’ = requests U {r1})

A change of scheduling policy of requests involves the redefinition of the above schema; the
consequences over the whole system can be inspected through the execution trace. Concurrency
of operations of different lifts can be appreciated since concurrently enabled operations are
concurrently executed. What follows is the trace of the animation of a lift system composed of
three lifts and a scheduler assigning requests as specified above. The final state of the system

with a set of pending requests is also showed.

Controller Lift al Lift a2 Lift a3
req upRequest,l assign al

1ift al open 1
req upRequest,8 assign al

lift al close

1ift al up from 1 to 2
1ift al up from 2 to 3
1ift al up from 3 to 4
1ift al up from 4 to 5
1ift al up from 5 to 6
1ift al up from 6 to 7
1ift al up from 7 to 8

1ift al open 8
req upRequest,4 assign a2
1ift a2 up from 1 to 2
1ift a2 up from 2 to 3
1ift a2 up from 3 to 4
req upRequest,3 assign a2
req upRequest,5 assign a2
req upRequest,3 assign a2
req upRequest,l assign a3
req upRequest,6 assign al
req upRequest,4 assign a2
req upRequest,3 assign a2
req upRequest,l assign a3
req upRequest,2 assign a3
req upRequest,8 assign al
req upRequest,4 assign a2
req upRequest,3 assign a2
lift al close
1ift a2 open 4
lift a2 close
1ift a3 open 1
lift a3 close
1ift al open 8
lift al close
lift al down from 8 to 7
1ift a2 open 4
lift a2 close
1ift a3 open 1
lift a3 close
1ift a3 up from 1 to 2
1ift a2 open 4
lift a2 close
1ift a3 open 2
lift al down from 7 to 6
1ift al open 6
1ift a2 up from 4 to 5
1ift a2 open 5
lift a2 close
lift a2 down from 5 to 4

lift a2 down from 4 to 3
1ift a2 open 3

requests [(a2,upRequest,3),(a2,upRequest,3),(al,upRequest,6),
(a2,upRequest,3), (a3,upRequest,2),(a2,upRequest,3)]

position [(a3,2),(al,6),(a2,3)]

door [(a3,open),(al,open),(a2,open)]

direction [(a3,up),(al,down),(a2,down)]

state [(a3,stopped),(al,stopped),(a2,stopped)]

The trace given above shows that the controller correctly assigns requests to the lifts which
concurrently move from floor to floor serving the formerly scheduled requests. Note how the
arrival of a request to the floor where a lift has already stopped causes the re-opening of the
doors. This and other strange behaviors, if found, can be corrected by furtherly refining the

specification.

8 CONCLUSIONS AND FUTURE WORK

When formal requirements specification is the first phase in a software development process
based on formal methods, the possibility of analyzing and testing relevant properties of require-
ments (including the implementability /executability property) early in the process avoids to
carry costly mistakes over the next phases.

We have introduced two methods for the analysis of specification dynamics: the first one is
more abstract, and it is able to deal with global behavioral components, whereas the second is
more concrete, and able to produce a high level prototype. The prototype itself can be used to
study the specification behavior, producing test cases which can be used in subsequent phases.

The main novelties of our approach are the introduction of a chemical operational semantics
for 7, which offers the formal basis to analyze dynamic properties of reactive systems, and the
automatic development of a concurrent animation using a prototyping language able to highlight
concurrent behaviors.

Our work can be closely compared with the one exposed in the classic paper [Kemmerer, 1985].
The main difference is that our method aims clearly at the requirements specification docu-
ment, whereas Kemmerer was apparently more interested in design. We believe it is important
to clearly distinguish requirements specification from design specification [Ciaccia et al., 1996],
and to introduce and study methods and tools for the analysis, testing, and verification of the
requirements specification document.

Some formal approaches integrate 7 with other notations; for instance, Benjamin integrates
7 schemas with CSP notation [Benjamin, 1989]. CSP is used to specify abstract operations,
while 7 is used for detailing some design features of abstract state and data. The integration is
very low level and not formally specified. In [He, 1995] Petri Nets are used to formalize control
flows, causal relations, and dynamic behavior of systems statically specified using 7; there is no
formalization of the interaction between the two notations.

[Evans, 1994a] offers a more formal model of integration of Z with Petri Nets: Petri Nets are

mapped on 7 specifications so that graphical representation given by Petri Nets can be used to

visualize 7 specified systems, yet we think this approach is not giving a formal semantics basis
for 7 but only a visualizing method.

In [Richardson et al., 1992] a formalism based on temporal logic is used to integrate 7
schemas with dynamic properties. The use of temporal logic offers good starting points to
the study of the dynamics of 7 specifications, however the integration is not supported by a
formal semantics.

In this sense something more formal has been done for Object-7Z [Carrington et al., 1989]:
a sequential execution model is introduced, defining a notion of abstract trace as a sequence of
pairs (states and operations), and using some temporal logic operators (¢, O, Q) to reason on
such a model.

TLA has been proposed to be integrated with 7 as well, however in this case 7 is only used to
define actions specification [Lamport, 1994]. A simpler approach has been suggested by Evans
in [Evans, 1994b]. He uses a Unity like logic [Chandy & Misra, 1988] to formalize properties
on the behavior of systems; an interleaving model with atomic operation interpretation is given
but not formalized.

Our approach shows how the simplicity and conciseness of Unity logic constructs fit quite
well with the operational semantics based on CHAM.

We have been using the notations and tools described in this paper in an undergraduate
course on requirements engineering. Several student projects have been completed, and now we
are analyzing such an experience to evaluate the overall approach. The major shortcomings our
users have found concern the compiler tool: it lacks support for incremental debugging. Another
aspect we are investigating is the formal relationship between the operational semantics and
the original declarative semantics of 7Z. We are studying correctness and completeness of our
semantics with respect to the original one.

Acknowledgments. The authors would especially like to thank Paolo Ciaccia for his help-
ful comments and suggestions. Partial support for this work was provided by the Commission of
Furopean Union under ESPRIT Programme Basic Research Project 9102 (COORDINATION),
and by the Ttalian MURST 40%- Progetto “Ingegneria del Software”.

References

[Barden et al., 1994] Barden, R., Stepney, S., & Cooper, D. (1994). 7 in Practice. Prentice-Hall.

[Baumann & Lermer, 1995] Baumann, P. & Lermer, K. (1995). In: Proc. 15th Conference on Founda-
tion of Software Technology and Theoretical Computer Science, (Thiagarajan, P., ed) volume 1026 of
Lecture Notes in Computer Science pp. 62-79, Bangalore, India: Springer-Verlag, Berlin.

[Benjamin, 1989] Benjamin, M. (1989). In: Proc. 4th 7 Users Workshop (ZUM89), (Nicholls, J.; ed)
Workshops in Computing pp. 221-228, Oxford: Springer-Verlag, Berlin.

[Berry & Boudol, 1992] Berry, G. & Boudol, G. (1992). Theoretical Computer Science, 96, 217-248.

[Bloesch et al., 1995] Bloesch, A., Kazmierczak, E., Kearney, P.,; & Traynor, O. (1995). Int. Journal on
Software Engineering and Knowledge Fngineering, 5 (4), 599-618.

[Boudol, 1993] Boudol, G. (1993). Tn: A Decade of Concurrency, (deBakker, J., deRoever, W., &
Rozenberg, G., eds) volume 803 of Lecture Notes in Computer Science pp. 92-123, Springer-Verlag,

Berlin.

[Bowen & Gordon, 1994] Bowen, J. & Gordon, M. (1994). In: Proc. 8th 7 Users Workshop (ZUMY4),
(Bowen, J. & Hall, J., eds) Workshops in Computing pp. 141-167, Cambridge: Springer-Verlag, Berlin.

[Bowen & Gordon, 1995] Bowen, J. & Gordon, M. (1995). Information and Software Technology, 37
(5-6), 269-276.

[Breuer & Bowen, 1994] Breuer, P. & Bowen, J. (1994). In: Proc. 8th 7 Users Workshop (ZUMY4),
(Bowen, J. & Hall, J., eds) Workshops in Computing pp. 185-212, Cambridge: Springer-Verlag,

Berlin.
[Brien & Nicholls, 1992] Brien, S. & Nicholls, J. (1992). Programming Research Group.

[Carrington et al., 1989] Carrington, D., Duke, D.; Duke, R., King, P., Rose, G., & Smith, G. (1989).
In: Formal Description Techniques (FORTE 89) pp. 281-296, North-Holland.

[Chandy & Misra, 1988] Chandy, K. M. & Misra, J. (1988). Parallel Programming Design. Addison-
Wesley.

[Ciaccia et al., 1996] Ciaccia, P., Ciancarini, P.; & Penzo, W. (1996). Int. Journal on Software Engi-

neering and Knowledge Engineering, (to appear).

[Ciancarini, 1991] Ciancarini, P. (1991). In: Research Directions in High-Level Parallel Programming
Languages, (Banatre, J. & LeMetayer, D., eds) volume 574 of Lecture Notes in Computer Science pp.
110-125, Mont Saint-Michel, France: Springer-Verlag, Berlin.

[Ciancarini & Gaspari, 1996] Ciancarini, P. & Gaspari, M. (1996). Computer Languages, (to appear).

[Cuellar et al., 1994] Cuellar, J., Wildgruber, T., & Barnard, D. (1994). In: FMFE’94: Indusirial Benefit
of Formal Methods volume 873 of Lecture Notes in Computer Science pp. 639-658, Barcelona, Spain:
Springer-Verlag, Berlin.

[Damon & Jackson, 1996] Damon, C. & Jackson, D. (1996). In: Proc. TACAS 96, (Margaria, T. &
Steffen, B., eds) volume 1055 of Lecture Notes in Computer Science pp. 70-86, Springer-Verlag, Berlin.

[Dick et al., 1989] Dick, A., Krause, P., & Cozens, J. (1989). In: Proc. fth 7 Users Workshop, (Nicholls,
J., ed) Workshops in Computing pp. 71-85, Oxford: Springer-Verlag, Berlin.

[Diller, 1990] Diller, A. (1990). Z: An Introduction to Formal Methods. Wiley.

[Doma & Nicholl, 1991] Doma, V. & Nicholl, R. (1991). In: VDM 91: Formal Software Development
Methods, (Prehn, S. & Toetenel, W., eds) volume 551 of Lecture Notes in Computer Science pp.
189-203, Noordwijkerhout: Springer-Verlag, Berlin.

[Evans, 1994a] Evans, A. (1994a). In: Proc. 8th 7 Users Workshop (ZUMY94), (Bowen, J. & Hall, T,
eds) Workshops in Computing pp. 269-281, Cambridge: Springer-Verlag, Berlin.

[Evans, 1994b] Evans, A. (1994b). In: Proc. FMFE’9 Industrial Benefits of Formal Methods, (Bertran,
M., Denvir, T., & Naftalin, M., eds) volume 873 of Lecture Notes in Computer Science pp. 366-380,
Springer-Verlag, Berlin.

[Fuchs, 1992] Fuchs, N. (1992). IEE Software Engineering Journal, 7 (5), 323-334.

[Gardiner et al., 1990] Gardiner, P., Lupton, P.; & Woodcock, J. (1990). In: Proc. 5th 7 Users Work-
shop, (Nicholls, J., ed) Workshops in Computing pp. 3—-11, Oxford: Springer-Verlag, Berlin.

[Garzotto et al., 1987] Garzotto, F., Ghezzi, C., Mandrioli, D., & Morzenti, A. (1987). In: Proc. Ist
Furopean Software Eng. Conf. (ESEC 87) volume 289 of Lecture Notes in Computer Science pp.
180-190, Springer-Verlag, Berlin.

[Hayes, 1993] Hayes, 1. (1993). Specification Case Studies. Prentice-Hall, 2 edition.
[Hayes & Jones, 1989] Hayes, I. & Jones, C. (1989). IEE Software Engineering Journal, 4 (6), 330-338.

[He, 1995] He, X. (1995). In: Proc. 7th Int. Conf. on Software Engineering and Knowledge Engineering
pp- 173-180, Rockville, Maryland: Knowledge Systems Institute.

[Inverardi & Wolf, 1995] Inverardi, P. & Wolf, A. (1995). IEEE Transactions on Software Engineering,
21 (4), 373-386.

[Jackson, 1994] Jackson, D. (1994). Tn: Proc. 2nd Int. Symp. of Formal Methods Furope (FMFE), (Naf-
talin, M., Denvir, T., & Bertran, M., eds) volume 873 of Lecture Notes in Computer Science pp.
519-531, Barcelona, Spain: Springer-Verlag, Berlin.

[Jia, 1994] Jia, X. (1994). Institute of Software Engineering.
[Kemmerer, 1985] Kemmerer, R. (1985). IEEE Transactions on Software Engineering, 11 (1), 32-43.

[Knott & Krause, 1992] Knott, R. & Krause, P. (1992). In: The Unified Computation Laboratory, (Rat-
tray, C. & Clark, R., eds) volume 35 of IMA Conference Series pp. 207-220, Oxford, UK: Clarendon

Press.

[Lamport, 1994] Lamport, L. (1994). In: Proc. 8th 7 Users Workshop (ZUMY4), (Bowen, J. & Hall, J.
eds) Workshops in Computing pp. 267-268, Cambridge: Springer-Verlag, Berlin.

[Richardson et al., 1992] Richardson, D., Aha, S., & O’Malley, T. (1992). In: Proc. 14th IEEE Int.
Conf. on Software Engineering pp. 105-118, Melbourne, Australia:.

[Saaltnik, 1989] Saaltnik, M. (1989). In: Proc. 7 User Workshop, (Nicholls, J., ed) Workshops in Com-
puting pp. 223-242, Oxford, UK: Springer-Verlag, Berlin.

[Spivey, 1988a] Spivey, J. (1988a). Understanding 7. Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press.

[Spivey, 1988b] Spivey, J. (1988b). The fuzz Manual.
[Spivey, 1992] Spivey, J. (1992). The 7 Notation. A Reference Manual. Prentice-Hall, 2 edition.

[Sterling et al., 1996] Sterling, L., Ciancarini, P., & Turnidge, T. (1996). Int. Journal on Software
FEngineering and Knowledge Engineering, 6 (1), 63-88.

[Valentine, 1995] Valentine, S. (1995). Information and Software Technology, 37 (5-6), 293-302.

[vanHee et al., 1991] vanHee, K., Somers, L., & Voorhoeve (1991). In: Proc. VDM 91: Formal Software
Development Methods, (Prehn,; S. & Toetenel, W., eds) volume 551 pp. 204-219, Springer-Verlag,

Berlin.

[Wordsworth, 1992] Wordsworth, J. (1992). Software Development with 7. Addison-Wesley.

