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Abstract—Characterization of second order local image structure by a 6D vector (or jet) of Gaussian derivative measurements is

considered. We consider the affect on jets of a group of transformations—affine intensity-scaling, image rotation and reflection, and

their compositions—that preserve intrinsic image structure. We show how this group stratifies the jet space into a system of orbits.

Considering individual orbits as points, a 3D orbifold is defined. We propose a norm on jet space which we use to induce a metric on

the orbifold. The metric tensor shows that the orbifold is intrinsically curved. To allow visualization of the orbifold and numerical

computation with it, we present a mildly-distorting but volume-preserving embedding of it into euclidean 3-space. We call the resulting

shape, which is like a flattened lemon, the second order local-image-structure solid. As an example use of the solid, we compute the

distribution of local structures in noise and natural images. For noise images, analytical results are possible and they agree with the

empirical results. For natural images, an excess of locally 1D structure is found.

Index Terms—Scale space, image derivatives, feature analysis, noise, natural images.

Ç

1 INTRODUCTION

THIS paper is concerned with the analysis of local structure
of 2D scalar functions, especially those, such as images,

that are the result of physical measurement. The general
approach to local structure used herein is characterization by
derivatives; as compared to, for example, local Fourier
analysis [1]. The focus of the paper is indicated in Fig. 1,
which shows example image patches whose local structure is
dominated by first order structure, by second order structure
and, equally, by first and second order structure. While the
varieties of pure first and pure second order local structure
are already well-understood [2], [3], the case of mixed first
and second is not. The aim of this paper is to derive a
principled framework within which mixed first and second
order structure can be expressed and investigated.

In the remainder of this section, we establish a
mathematical framework for local image analysis (Sec-
tion 1.1), discuss the idea of transformations that leave local
structure unchanged (Section 1.2), and review previous
work in this area (Section 1.3). In Section 2, we derive the
structure of an orbifold that represents local structure, as
measured by derivatives, but with the effect of a group of
structure-preserving transformations factored out. The
orbifold is locally 3D but intrinsically curved. In Section 3
we present an embedding of the orbifold as a bounded solid
in 3D space that allows us to visualize its shape (look ahead
to Fig. 4 for a preview). In Section 4, we present, as an
example use of the orbifold and its embedding, an analysis
of the distribution of local structures present in different
types of noise and in natural images. An electronic
supplement, in the form of a Mathematica [4] notebook
contains all derivations, computations, and diagrams for the
reader who wants additional detail.

1.1 Measurement of Local Image Structure

Mathematical ideas of “local structure” are intimately tied
to the concept of derivative; formally defined by the limit
I 0ð0Þ ¼ lim"!0 "

�1 Ið"Þ � Ið0Þð Þ and, thus, inapplicable to
functions, such as images, that are the result of measure-
ment. Scale Space analysis [5], [6], [7], [8], [9], [10], [11], [12]
proposes a two-step solution to the problem of operationa-
lizing image derivative measurement. First, it defines a way
of changing the inner scale (roughly the size of the smallest
resolvable detail) of an image by convolution (denoted �) of
the image with Gaussian kernels. Gaussian kernels of scale
� 2 IRþ are defined as

G�ðxÞ :¼ 1

�
ffiffiffiffiffiffi
2�
p e

�x2

2�2 ; G�ðx; yÞ :¼ G�ðxÞG�ðyÞ:

Because of the excellent localization of the Gaussian both in
space and in frequency [13], the rescaling operation I� ¼
G� � I can be performed easily and stably even if the raw
image ðIÞ is the result of physical measurement, and so
discretely sampled [5]. The second step of the Scale Space
approach to calculating image derivatives is via the property
ðI�Þ0 ¼ G0� � I, which means that the derivative of a rescaled
image can be obtained by convolving the original image with
a derivative of Gaussian (DtG). DtGs are defined as follows:

GðuÞ� ðxÞ : ¼ du

dxu
G�ðxÞ;

Gðu;vÞ� ðx; yÞ : ¼ GðuÞ� ðxÞGðvÞ� ðyÞ; u; v 2 ZZþ:

Explicit equations for DtGs can be found using the following
formula that expresses their form as the product of a 0th order
Gaussian multiplied by a Hermite polynomial ðHuÞ [14]:

GðuÞ� ðxÞ :¼ �1

�
ffiffiffi
2
p

� �u
Hu

x

�
ffiffiffi
2
p

� �
G�ðxÞ:

The Scale Space approach thus allows the computation of
image derivatives of any order at any scale. If derivatives
across the entire image are required the convolution
formalism should be used; if derivatives are required at a
single location only, then an inner product formalism ðh j iÞ
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is more convenient. For instance, we define image derivatives
of scale �, at the origin to be

cuv :¼ ð�1Þuþv Gðu;vÞ�

��ID E
:¼ ð�1Þuþv

Z
x;y2IR

Gðu;vÞ� ðx; yÞ Iðx; yÞ:

Note that the derivative measurements cuv are dependent
on the measurement scale �, though to prevent cluttered
equations we do not indicate this with a superscript. The
inner-product formulation shows the similarity between the
DtG approach and the operation of the simple cell neurons
of area V1 of the mammalian cerebral cortex [15]. To avoid
any incorrect presumptions, we note that the DtGs are not
an orthonormal set; for example, hGð2;0Þ� jGð0;2Þ� i ¼ ð16��6Þ�1.

In this paper, we are concerned with structure up to
second order, the measurement of which requires a total of
six DtG filters (Fig. 2). The vector of derivative measure-
ments is referred to as a jet [16], [17], and we will later make
use the perspective that regards such jets as being points in
a jet space [18], [19], [20]. Formally, the second order jet at
the origin is given by ~j :¼ c00 c10 c01 c20 c11 c02ð ÞT.

1.2 Image Similarity Transforms

In geometrical problems, one typically chooses some group
of transformations and then studies structure that is invariant
to them. The group (T) that we will study here consists of the
following and their compositions: ðT1Þ translation of the
image, ðT2Þ rotation of the image, ðT3Þ reflection of the
image, ðT4Þ addition of a constant intensity, and ðT5Þ
multiplication of intensities by a positive factor. We motivate
these in turn.

1.2.1 Translation, Rotation, and Reflection

(T1, T2, and T3)

In particular imaging systems, for example, those with
space-variant resolution, prior knowledge may guide us to
treat different image locations or orientations differently.
However, for an uncommitted imaging system, we require
that our analysis of local image structure be invariant to
translation, rotation, reflection, or their combination. Trans-
lation is dealt with by choosing the point to be analyzed as
the origin of our coordinate system.

Rotation is more difficult. Consider the effect on the jet of
a rotation about the origin of angle �. The 0th order term of
the jet ðc00Þ is unaffected. The first order terms transform
according to

c10

c01

� �
! cos � sin �

� sin � cos �

� �
c10

c01

� �
and the second order terms according to

c20

c11

c02

0
@

1
A! 1

2

1þ c 2s 1� c
�s 2c s

1� c �2s 1þ c

0
@

1
A c20

c11

c02

0
@

1
A;

where s � sin 2�, c � cos 2�. So, first order structure requires
a full 2� rotation to return to the starting values, while
second order structure returns after a rotation by �.

For reflection, consider the effect on the jet of a reflection
in the line y ¼ x. Again, the 0th order term of the jet is
unaffected. The first order terms transform according to:
c10 $ c01; the second order terms according to: c20 $ c02.

1.2.2 Affine Scaling of Intensity (T4 and T5)

In this paper, we assume the most general model of intensity
values, that they are unconstrained real numbers. Different
analyses may be appropriate if it can be assumed that
intensities are nonnegative and/or not exceeding a max-
imum value [21], [22]. We require that our analysis of image
structure is unaffected by adding a constant value ð�Þ to all
intensity values. Such a change can come about, for example,
by there being a veiling glare over a scene or by a change in the
dark current of a CCD. Only the 0th order term of the jet is
effected and it simply transforms as c00 ! �þ c00.

We also require that image structure be invariant to the
multiplication of all image intensities by a nonzero, positive
factor ð�Þ. Such a change can come about by adjusting the
overall level of illumination of a scene, exposure time, or the
gain of a CCD readout mechanism. The effect on the jet is
simply that all terms are multiplied by the factor, i.e.,~j! �~j.
Note that we do not require invariance to multiplication of
intensities by a negative factor. This is because we cannot
conceive of a physical change (that we would wish to ignore!)
that could cause this. This illustrates that the transformation
group that we choose to be invariant to does not arise
inevitably from some mathematical argument, but rather is
an attempt to model the changes that arise by altering aspects
of the imaging setup rather than the scene itself.

1.3 Previous Work

The literature on image feature analysis is now substantial,
so inevitably we will only mention work that shares a
similarity in approach with that presented here. Related
work is further considered in the discussion section.

First, we mention approaches that assume that images
are like Morse functions—that is to say, infinitely-differ-
entiable functions containing only generic structure that is
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resilient to infinitesimal perturbations. The possible local
structures of such functions are documented in [3], [23] and,
further, in [24]. In brief, Morse functions may be locally
slope-like or one of three critical point types—maximum,
minimum, and saddle point. Slope points may be further
analyzed by considering the curvature of the isophote and
flowline (curve of steepest descent) through the point [25],
[26]. These curvatures are intrinsic quantities as they are
invariant to rotations of the image and monotonic transfor-
mations of the intensity.

A second type of approach is to focus, not on itemizing the
possibilities for individual points but, rather, on the distribu-
tion of types of point that occur in a given class of images [27].
The seminal reference for this is [28], in which expressions for
the joint distribution of derivative measurements for noise
images with a fixed Fourier amplitude spectrum but random
phase spectrum are derived. More recently, the joint dis-
tribution of derivatives (up to third order) of noise and
natural images has been determined [29], [30], [31], [19], as
has the second order (only) derivatives of noise and natural
images [2]. The frequency of occurrence of image patches has
also been investigated using a 3� 3 pixel representation,
modulo intensity scaling and rotation, rather than a deriva-
tive one [32].

The final family of approaches relevant to this work are
those that consider the distribution of local image patches
conditioned on the local derivative structure [33], [34], [35].
These approaches show that the underlying structure of
natural images is typically piece-wise constant even though
the derivatives of the blurred intensity are of course
continuous.

2 INTRINSIC GEOMETRY OF THE LOCAL STRUCTURE

ORBIFOLD

In this section, we derive the core results of the paper. The first
step (Section 2.1) is to choose a norm, and thus a metric, for jet
space. Next (Section 2.2), we present a nonlinear reparame-
terization of jet space that separates out coordinates that
change and not do change under the action of the transforma-
tion group. In Section 2.3, we show that the unchanging
parameters are a coordinate system for the orbifold which
results from factoring the jet space by the transformation
group. Finally, in Section 2.4, we bring the preceding sections
together to derive a metric on the orbifold.

2.1 A Norm on Jet Space

A norm ðk kÞ on jet space is a function that associates with
each element a positive number that expresses, in some
sense, the magnitude of the structure measured by the jet.
This norm will play a fundamental role in our analysis, but
we are unaware of any preexisting work that makes a
convincing case for what the norm should be; so, in the
following, we argue for a particular choice. We start by
stating some requirements that characterize the jet space
norm that we wish to specify:

R1. The norm should satisfy the standard axioms for a
seminorm.

R2. The norm should be invariant to translation, rotation, or
reflection of the image domain.

R3. The norm should be unaffected by adding a constant to
image intensities.

To generate some ideas for the definition of the jet space
norm, we first consider some standard norms on functions
rather than jets. The most commonly used norm for
functions is the L2-norm written, using the inner-product
formalism, kIk2 :¼ hIjIi

1
2. A related seminorm, insensitive to

the addition of constant values to the function (as required
by R3), is: kIk�2 :¼ ðh1jI2i � h1jIi2Þ

1
2. Another common

variant for function norms, is to evaluate the function not
over the entire domain, but only over some subregion of the
domain. For full generality, a weighting function ðwÞ can be
used to control how much different parts of the domain are
relevant to the norm, i.e., kIk�w :¼ ðhwjI2i � hwjIi2Þ

1
2. When

the weighting function is a Gaussian, this norm is a natural
choice for use in the Scale Space framework. We define the
Scale Space norm of an image ðIÞ, evaluated at the origin, at
scale �, to be: kIk� :¼ ðhG�jI2i � hG�jIi2Þ

1
2, i.e., Gaussian-

windowed local variance.
The Scale Space norm cannot be applied to jets, as a jet does

not specify an image that can be windowed, etc. Jets, in fact,
specify metamery classes of all the images that measure to
that jet [36]. There is no upper bound on the Scale Space norms
of the members of a metamery class, but there is a unique
norm minimizer. Our plan then is to define the jet space norm
as the minimum of the Scale Space norms of the elements of
the metamery class defined by the jet. Below, we prove a
theorem on the form of this norm-minimizer.

Theorem. Of all the functions that measure to a particular jet ~j

(of order N), the one that uniquely minimizes the Scale Space

norm is: P~j ¼ c00 þ
P

1�uþv�N cuv
ð2�

1
2�Þuþv
u!v! Huð x

�
ffiffi
2
p ÞHvð y

�
ffiffi
2
p Þ.

Proof. Let B : IR2 ! IR be the unknown member of the
metamery class that minimizes the Scale Space norm.
Formally, B is defined by the constraints

ðiÞ ð�1Þuþv Gðu;vÞ�

���BD E
¼ cuv for all 0 � uþ v � N; and

ðiiÞ it is a minimum of k k�:

We combine the constraints using Lagrangian multipliers

CðBÞ ¼ 1

2
kBk2

� þ
X

0�uþv�N
�uv ð�1Þuþv Gðu;vÞ�

���BD E
� cuv

� �
:

Then, we compute the variation of C, and simplify using
(by constraint (i)) that hG�jBi ¼ c00

@

@"
CðBþ "�BÞ

���
"¼0

¼ hG�jB�Bi � hG�jBihG�j�Bi
þ

X
0�uþv�N

�uvð�1ÞuþvhGðu;vÞ� j�Bi

¼ G�B�G�hG�jBi þ
X

0�uþv�N
�uvð�1ÞuþvGðu;vÞ�

����B
* +

¼ G�ðB� c00Þ þ
X

0�uþv�N
�uvð�1ÞuþvGðu;vÞ�

����B
* +

:

Constraint (ii) implies that the left-hand side of the inner
product in the expression for the variation is identically
zero. So, after rearrangement

B ¼ c00 �
X

0�uþv�N
�uvð�1ÞuþvG�1

� Gðu;vÞ� ;
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which, using the formula for DtGs in terms of Hermite
polynomials (Section 1.1), can be further simplified to

B ¼ c00 �
X

0�uþv�N
�uv

1

�
ffiffiffi
2
p

� �uþv
Hu

x

�
ffiffiffi
2
p

� �
Hv

y

�
ffiffiffi
2
p

� �
:

Finally, using the fact that Hermite polynomials are
orthogonal with respect to a Gaussian weighting function,
we can solve to find values of the Lagrangian multipliers
such that constraint (i) is satisfied, resulting in

P~j ¼ B ¼ c00 þ
X

1�uþv�N
cuv

2�
1
2�

� �uþv
u!v!

Hu
x

�
ffiffiffi
2
p

� �
Hv

y

�
ffiffiffi
2
p

� �
:

ut

Having determined P~j, the element of the metamery class
of ~j that minimizes the Scale Space norm, we can now
compute that its Scale Space norm is

kP~jk� ¼
X

1�uþv�N

�uþvcuvð Þ2

u!v!

 !1
2

:

This minimal Scale Space norm is what we define the norm of

the jet to be, i.e.,k~jk :¼ kP~jk�. The norm induces a metric in the

standard way, i.e., dð~j; ~kÞ ¼ k~j� ~kk.
So, to conclude this section by being specific, in the case

of the second order jet, the metamery class norm-minimizer
is the polynomial

P~jðx; yÞ : ¼ c00 �
1

2
�2ðc20 þ c02Þ

� �
þ ðc10xþ c01yÞ

þ 1

2
c20x

2 þ 2c11xyþ c02y
2

� 	
and the Gaussian-windowed, mean-centred L2-norm of this
polynomial and, thus, by definition the norm of the second
order jet is

k~jk :¼ �2ðc2
10 þ c2

01ÞÞ þ
1

2
�4ðc2

20 þ 2c2
11 þ c2

02Þ
� �1

2

:

This norm satisfies R1-R3 as required and by its derivation
measures “the magnitude of the structure measured by the
jet” as desired.

2.2 A Reparameterization of the Jet

Our aim is to discover the structure of jet space modulo the
transformation group T. This is difficult when using the
default coordinate system, which is based on individual
derivative measurements, as each of the coordinates are
affected by some of the transformations. What is needed is a
reparameterization of jet space such that only some of the
parameters are affected by the transformations while the rest
remain invariant. There are many reparameterizations that
thus qualify, but not all make the computations that we wish
to perform using it easy. We give below a reparameterization
that does make these computations tractable. In the
discussion (Section 5), we will explain how the major results
of the paper are independent of the reparameterization used.

The roots of the reparameterization that we have devised
can be seen in the following rearrangement of the
expression for the second order jet space norm:

k~jk ¼

�2 c2
10 þ c2

01

� 	
þ 1

4
�4 c20 þ c02ð Þ2þ 1

4
�4 ðc20 � c02Þ2 þ 4c2

11

� �� �1
2

:

The first bracketed component measures the first order
structure, which is necessarily anisotropic, the second
component measures the isotropic part of the second order
structure, and the third the anisotropic component of
second order structure. The magnitudes of each component
are invariant to rotation and reflection of the image domain,
so parameters built from these components will likewise be
invariant. In particular, we will use one parameter ðbÞ that
measures the balance between the first and third terms, and
one ðlÞ that measures the balance of the second term relative
to the sum of the first and third. The third ðaÞ measures the
angle between the two anisotropic components (i.e., the first
and third above). Again, we note that these are not the only
choices possible but they are the only combinations with
which we have been able to complete the calculations we
present later. This is discussed further in Section 5.

We will write ~k ¼ z n � m l b að ÞT for a vector
composed of the new parameters and �¼ IR�IRþ� ð��; �� �
f�1; 1g�½��=2; �=2� � ½0; �=2� � ½0; �=2� for the domain of ~k.
The mapping ð~rÞ from the derivative representation ~j to the
reparameterization is given by

~k ¼
z

n

�

m

l

b

a

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

¼~r ~j
� 	
¼

c00

~j


 



tan�1 c01=c10

sgnþ tan�1 2
c2

01�c2
10ð Þc11þc10 c01 c20�c02ð Þ

c2
01
�c2

10ð Þ c02�c20ð Þþ4c10 c01 c11

� �� �

tan�1 �ðc20þc02Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 c2

10
þc2

01ð Þþ�2 ðc20�c02Þ2þ4 c2
11ð Þ

p
 !

tan�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20�c02ð Þ2þ4 c2

11

4 c2
10
þc2

01ð Þ

r� �

1
2 tan�1 2

c2
01�c2

10ð Þc11þc10 c01 c20�c02ð Þ
c2

01
�c2

10ð Þ c02�c20ð Þþ4c10 c01 c11

� �����
����

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

The values of the parameters on a typical natural image are
shown in Fig. 3. As the figure shows, they are not particularly
intuitive. Parameter z 2 IR is just a renaming of the 0th order
term from the jet. Parameter n 2 IRþis the jet space norm
defined in Section 2.2. Parameter � 2 ð��; �� gives the
direction of the gradient vector. Parameter m 2 f�1; 1g
specifies whether the acute angle from the gradient vector
to the orientation of most positive second derivative is
clockwise or counter clockwise. Note that the function sgnþ,
which give the value 1 for an argument of 0 but is otherwise
like a regular sgn function, is used to ensure thatm 2 f�1; 1g.
Parameter l 2 ½��=2; �=2�measures the balance between the
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isotropic and anisotropic parts of the local structure. Para-
meter b 2 ½0; �=2�measures the balance between the first and
second order contributions to anisotropic local structure.
Parameter a 2 ½0; �=2� measures the angle between first and
second order anisotropic components.

The mapping in the other direction, from � the domain
of the new parameters, to derivative values is given by the
function ~q

~q ~k
� �
¼

c00

c10

c01

c20

c11

c02

0
BBBBBBBB@

1
CCCCCCCCA
¼~j¼

z

��1n cos l cos b cos �

��1n cos l cos b sin �

��2n
�

sin lþ cos l sin b cos 2 ��mað Þð Þ
	

��2n cos l sin b sin 2 ��mað Þð Þ
��2n

�
sin l� cos l sin b cos 2 ��mað Þð Þ

	

0
BBBBBBBB@

1
CCCCCCCCA
:

~q is one-to-one in the interior of �, but many-to-one along
parts of the boundary. In detail,

1. if n ¼ 0, then �, m, l, b, a are irrelevant,
2. if jlj ¼ �=2, then m, b, a are irrelevant,
3. if b ¼ 0, then m, a are irrelevant, and
4. if a 2 f0; �=2g, then m is irrelevant.

In the remainder, when a parameter is irrelevant this will be
denoted with an underscore ð Þ.

2.3 The Orbit Structure of Jet Space

If we take an arbitrary point in jet space, and apply group T
to it, we obtain a subspace of jet space known as the orbit of

the point. Because the group is closed under composition of

transformations, each orbit is the orbit of any point within

it, not just the point that was chosen originally. Orbits do

not intersect, so the complete system of orbits stratifies jet

space. In the problem at hand, there are seven kinds of orbit

which we now list:

O1. These are generated by the most generic type of jet, i.e.,

those for which n > 0 ^ jlj < �=2 ^ b 2 ð0; �=2Þ ^ a 2
ð0; �=2Þ. Such jets give rise to 3D orbits because they,

being fully generic, are nontrivially changed by the three

transformations T2, T4, and T5. The orbits are the

image of IR IRþ ð��; �� f�1; 1g l b a
� 	T

under

the mapping ~q. They consist of a disjoint pair of

individually connected 3D submanifolds of jet space—one

component fromm ¼ �1 and the other fromm ¼ 1. There

is a 3D family of this type of orbit indexed by the

parameters l, b, and a.

O2. These are generated by points for which n > 0 ^ jlj <
�=2 ^ b 2 ð0; �=2Þ ^ a ¼ 0. The orbits of such points are

images of IR IRþ ½��; �� l b 0
� 	T

under the

mapping ~q. These images each consist of a connected

3D submanifold of jet space. There is a 2D family of this

type of orbit indexed by the parameters l, b.

O3. Like O2 but with a ¼ �=2.

O4.These are generated by points for whichn > 0 ^ b ¼ 0 ^ jlj
< �=2. The orbits of such points are the image of

IR IRþ ½��; �� l 0
� 	T

under the mapping ~q.

These images consist of a single connected 3D submanifold
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c00. Computation of Gaussian derivatives was performed in Mathematica using the Front-End Vision add-on [37]. The three plots at the lower left are
not discussed until Section 5—they show, left-to-right, surfaces of constant l, b, and a over the solid.



of jet space. There is a 1D family of such orbits indexed by
the parameter l.

O5. Like O4 but with b ¼ �=2.

O6. These are generated by points for whichn > 0 ^ jlj ¼ �=2.
There are exactly two orbits of this type: The images of

IR IRþ �=2
� 	T

and IR IRþ � �=2
� 	T

under the mapping ~q. Whereas orbits of type O1-O6 are
3D submanifolds of jet space, both orbits of this type are
connected 2D submanifolds of jet space. The lower
dimensionality is because the jets are unaffected by
rotation ðT2Þ.

O7. This type of orbit is generated by points for which
n ¼ 0. There is exactly one of these orbits: The image of

IR 0ð ÞT under the mapping ~q. This
image is a connected 1D submanifold of jet space.

The space of orbits is known as an orbifold, which is a

mathematical structure like a manifold but allowed to have a

few corners, cone points and punctures where the local

topology is unlike IRn ([38, chapter 13]). The manifold part of

the orbifold is composed from the O1, O2, and O3 points, the

rest is nonmanifold like. Informally, the orbifold has the

following structure: Take a cross-product of three open

intervals ðO1Þ; onto each of a pair of opposite faces glue the

product of two open intervals (O2 and O3); for each of another

pair of opposite faces collapse the face down into a line,

bringing the O2 and O3 components together, and glue to an

open interval (O4 and O5); collapse the remaining two faces

down into points (bringing along the O2-O5 components)

and glue single points ðO6Þ. Finally, there is a single point

ðO7Þ that is adjacent to every other point of the orbifold. This

topological structure is easier to grasp once a metric structure

has been imposed as we will do in the next section.

2.4 Deriving the Metric Tensor

We can use the metric on jet space to induce a metric on the
orbifold. The obvious way to do this is to define the distance
between two orbits as their closest distance in jet space.
However, this approach fails to define a metric of use or
interest. This is because transformation T5 ensures that all
orbits contain jets with norms arbitrarily close to zero and so
the distance between any pair of orbits according to this
approach would be zero. To circumvent this, we instead focus
on the spherical subspace of jet space that consists of jets with
unit norm.

The unit-norm spherical subspace intersects all orbits
apart from the single O7 orbit, which corresponds to
vanishing first and second order structure. Setting aside this
exceptional point, we can then define the distance between
two orbits as the length of the shortest path, on the unit-
norm sphere, that starts on one orbit and ends on the other.
In the remainder of this section, we use this definition to
determine the metric tensor of the orbifold. This metric
tensor describes the distances between infinitesimally close
orbits. In theory, the geodesic structure of the orbifold could
be determined from the metric tensor and, so, a general
formula for the distance between arbitrary orbits could be
determined, but we do not do this in this paper.

The norm we derived in Section 2.1 gives rise to
an inner product structure on the jet space. Let ~a¼
ða00 a10 a01 a20 a11 a02ÞT and ~b¼ðb00 b10 b01 b20 b11 b02ÞT

be two jets expressed in the derivative coordinate system.

The inner product between the two jets is

~a �~b :¼ �2ða10 b10 þ a01 b01Þ þ
1

2
�4ða20 b20 þ 2a11 b11 þ a02 b02Þ:

Suppose now that both jets are on the unit-norm sphere, i.e.,

k~ak ¼ k~bk ¼ 1. The distance-squared between them, mea-

sured along the surface of the unit norm sphere, is thus

d2ð~a; ~bÞ ¼ ðcos�1ð~a �~bÞÞ2. If the two jets are sufficiently close,

then this distance-squared is approximately d2ð~a;~bÞ 	
2ð1�~a �~bÞ; this will be used below to calculate the distance

between a jet and a perturbation of it.

Consider a pair of nearby orbits of the general O1 type,

indexed by the parameters hl; b; ai and hlþ �; bþ 	; aþ �i.
The intersections of these orbits with the unit-norm sphere are

the sets ~qðIR; 1; ð��; ��; f�1; 1g; l; b; aÞ and ~qðIR; 1; ð��; ��;
f�1; 1g; lþ �; bþ 	; aþ �Þ, respectively. Consider the point
~fðl; b; aÞ ¼~qð0; 1; 0; 1; l; b; aÞ from the first intersection and the

family of points ~gðl; b; a;�; 	; �; �Þ ¼~qð0; 1; �; 1; lþ �; bþ
	; aþ �Þ from the second. The distance-squared, along the

surface of the unit-norm sphere, between ~f and~g is denoted:

hðl; b; a;�; 	; �; �Þ ¼ d2ð~fðl; b; aÞ;~gðl; b; a;�; 	; �; �ÞÞ.
Now, we define functions 1) !ðl; b; a;�; 	; �Þ that selects

the value of � that minimizes h (i.e., @h
@�

��
�¼!¼ 0, @2h

@�2

���
�¼!

> 0)

and 2) t that gives the value of h at this minimum, i.e.,

tðl; b; a; �; 	; �Þ ¼ h l; b; a; �; 	; �;!ðl; b; a; �; 	; �Þð Þ.
To determine the metric tensor of the orbifold, we

calculate the second derivatives of t with respect to �, 	, �,

evaluate these at � ¼ 	 ¼ � ¼ 0, and simplify. We have

used the symbolic mathematics functionality of Mathema-

tica to do this (see electronic supplement), making use of

1. all the definitions given above,
2. the definition of ~q,
3. the distance-squared approximation for nearby jets,
4. that by definition !ðl; b; a; 0; 0; 0Þ ¼ 0, and
5. derivatives of ! obtained using the implicit function

theorem.

At the end of the simplification one obtains

@2t

@�2

����
�¼	¼�¼0

¼ 2;
@2t

@	2

����
�¼	¼�¼0

¼ 2 cos2 l;

@2t

@�2

����
�¼	¼�¼0

¼ 4 cos2 l sin2 2b

5� 3 cos 2b

@2t

@�@	

����
�¼	¼�¼0

¼ @2t

@�@�

����
�¼	¼�¼0

¼ @2t

@	@�

����
�¼	¼�¼0

¼ 0:

So, the metric tensor, with respect to the indexing of orbits

by hl; b; ai, is

g ¼ diag 1; cos2 l;
2 cos2 l sin2 2b

5� 3 cos 2b

� �
:

Or, written as a line element

ds2 ¼ dl2 þ cos2 l db2 þ 2 sin2 2b

5� 3 cos 2b
da2

� �
:
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The argument above determined the metric tensor for an
orbit of the most general type O1, i.e., hl; b; ai 2 ð��=2; �=2Þ �
ð0; �=2Þ � ð0; �=2Þ. If we assume (as seems reasonable) that
the metric tensor is continuous over the entire orbifold, we
can extend the applicability of the derived equations for the
metric tensor to orbits of O2-O6, i.e., hl; b; ai 2 ½��=2; �=2� �
½0; �=2� � ½0; �=2�. The definition does not extend to the single
orbit of type O7, as this orbit is disconnected from the rest of
the orbifold.

3 AN EMBEDDING INTO EUCLIDEAN SPACE

In Section 2, we developed a coordinate system ðhl; b; aiÞ for
the orbifold and determined the metric tensor of the space
relative to that coordinate system. To further understand the
intrinsic shape of the orbifold, we can calculate the scalar
curvature of the space. This quantity is computed from the
metric tensor but yields a value which is independent of the
coordinate system (like the Gaussian curvature of surfaces)
[39]. We compute (using Mathematica and a package devoted
to general relativity calculations) that


scalar ¼ 6þ 96 sec2 l

ð5� 3 cos 2bÞ2
:

We observe that the scalar curvature varies in value
dependent on l and b. The minimum of the curvature is

scalar ¼ 15

2 at l ¼ 0, b ¼ �=2, while the maximum is þ1 at
jlj ¼ �=2.

The pattern of scalar curvature shows that the orbifold
does not have the intrinsic geometry of some region of
euclidean 3-space. This is inconvenient as it prevents the
simplest approaches to visualizing its shape. Instead, we are

forced to find an embedding [40] of the orbifold into
euclidean 3-space. Fortunately, since the hl; b; ai coordinate
system led to a diagonal metric tensor, finding an
embedding is not difficult. For instance,

~�
l
b
a

0
@

1
A

0
@

1
A ¼

b� �
4

� 	
cosl

a� �
4

� 	 ffiffiffi
2
p

cosl sin2bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�3 cos2b
p

�l

0
BB@

1
CCA
xyz

:

We show this embedding of the orbifold into IR3 in Fig. 4,
which shows that the embedded orbifold is a convex solid,
shaped like a flattened lemon. We refer to it as the second-
order local-image-structure solid (or solid for short). The
interior of the solid corresponds to orbits of type O1, the
front and back surfaces to O2 and O3, the sharp edge with
the purple point to O4, the other sharp edge to O5, and the
sharp vertices to O6.

The embedding is not isometric as this is not possible, but
it has been constructed so that it preserves intrinsic volumes.
To demonstrate this, one shows the equality of 1) the
intrinsic volume of the infinitesimal subvolume of the
orbifold picked out by½l; lþ �l� � ½b; bþ �b� � ½a; aþ �a� and
2) the euclidean volume of the embedding of this sub-
volume. The intrinsic volume is computed from the metric
tensor by

ffiffiffiffiffi
jgj

p
�l �b �a ¼

ffiffiffi
2
p

cos2 l sin 2bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�3 cos 2b
p �l �b �a. The em-

bedded volume is given by the scalar triple product @~�
@l �

ð@~�@b �
@~�
@aÞ@l @b @a which yields the same value.

To quantify the distortion of the embedding, we consider
the embedding of infinitesimal spheres in the orbifold. Since
the embedding is volume-preserving but not isometric, these
project into ellipsoids of the same volume as the spheres. The

GRIFFIN: THE SECOND ORDER LOCAL-IMAGE-STRUCTURE SOLID 1361

Fig. 4. Shows the second-order local-image-structure solid, which is the embedding of the orbifold into IR3 using the mapping ~�. The four surface-
rendered panels show different views of the solid. The density plots show examples of local structure, with the connectors showing where they map
to in the solid; the local structure at bottom-right, without a connector, corresponds to the center of the solid. The shape of the solid is roughly that of
a lemon, flattened perpendicular to the main axis of symmetry to produce two sharp edges. Notice though that the two sharp edges are not the same
shape (right-most view). The sharp vertices of the solid at its top and bottom correspond to umbilic points. The sharp colored edge marks the locus of
local forms that have vanishing first order structure. The locus runs from the maximum umbilic point (blue) at top, through to a ridge shape (orange),
a balanced saddle [3] (brown), a rut (green), to the minimum umbilic point (blue) at bottom. The purple point on the other sharp edge corresponds to
vanishing second order structure. The pink arc, which travels over the smooth faces of the solid, marks local structure which is effectively 1D. The
arc is on the surface of the solid, because the surface corresponds to local structure where the angular first and second order components of the
local structure are at 0
 or 90
, which is a necessary condition for local structure to be 1D. The plots were rendered using Mathematica and an add-
on package for the tubular curves.



distortion of the embedding can be well quantified by
considering the eccentricity (largest over smallest diameter)
of the ellipsoids. Eccentricities are never degenerate and
range from 1 at the center of the solid up to 5.4 at the two
vertices. Using numerical integration, we have computed that
the median eccentricity is 1.3 and the mean is 1.46.

4 DISTRIBUTION OF LOCAL STRUCTURES IN IMAGES

We expect that there are many ways in which the orbifold
and the solid can be used to understand local image
structure. As an example, we consider the density of different
second order local forms in natural images and in noise
images. The types of noise we consider are those generated
using a fixed Fourier amplitude spectrum but a random
phase spectrum. In particular, we consider blue noise which
has an amplitude spectrum proportional to frequency
ð F Nb½ �ð!Þk k / j!jÞ, white noise which has constant ampli-
tude spectrum ð F ½Nw�ð!Þk k ¼ c > 0Þ, and pink noise which
has an amplitude spectrum inversely proportional to
frequency ðjjF ½Np�ð!Þjj ¼ j!j�1Þ. Blue noise has found uses
in generating dithering patterns for half-tone printing [41],
[42]. White noise is also known as Gaussian noise, as it can be
produced by generating an independent random Gaussian
variable at each domain location. Pink noise is also known as
one-over-f noise, and has been studied because its amplitude
spectra is typical of natural images [43].

4.1 Noise

From Longuet-Higgin’s results [28], we know that for noise
defined by a fixed power spectrum and random phases the
distribution of local forms across jet space will be a
multidimensional normal distribution ðP ð~jÞd~j ¼ 2��j j�

1
2

e�
1
2
~jT��1~jd~jÞ, with a covariance matrix ð�Þ depending on the

power spectrum. We calculate (see electronic supplement)
that the covariance matrices for blue ð�bÞ, white ð�wÞ, and
pink ð�pÞ noise are

�b ¼
1

16��8

4�2 0 0 0 0

0 4�2 0 0 0

0 0 9 0 3

0 0 0 3 0

0 0 3 0 9

0
BBBBBB@

1
CCCCCCA
;

�w ¼
1

16��6

2�2 0 0 0 0

0 2�2 0 0 0

0 0 3 0 1

0 0 0 1 0

0 0 1 0 3

0
BBBBBB@

1
CCCCCCA
;

�p ¼
1

32��4

4�2 0 0 0 0

0 4�2 0 0 0

0 0 3 0 1

0 0 0 1 0

0 0 1 0 3

0
BBBBBB@

1
CCCCCCA
:

The first step in deriving the density over the orbifold is
to change variables from ~j to hn; �; l; b; ai. This is done
using the mapping ~r (Section 2.2) and ignoring the z and
m parameters. The determinant of the Jacobian of this

map is 2n4��8 cos3 l sin 2b. The parameters n and � can
then be integrated out. Finally, the densities need to be
corrected so that they are relative to the metric of the
orbifold rather than relative to hl; b; ai. This is done by
dividing by

ffiffiffiffiffi
jgj

p
¼

ffiffiffi
2
p

cos2 l sin 2bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�3 cos 2b
p . The resulting den-

sities are

Pbðl; b; aÞ ¼
576 cos l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 3 cos 2b
p

� 11� 2 cos 2b cos2 lþ 3 cos 2lð Þ
5
2

;

Pwðl; b; aÞ ¼
48 cos l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 6 cos 2b
p

� 5� cos 2bþ 2 cos 2l sin2 b
� 	5

2

;

Ppðl; b; aÞ ¼
192 cos l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 3 cos 2b
p

� 9� 6 cos 2b cos2 lþ cos 2lð Þ
5
2

:

The patterns of these densities arrayed across the local
structure solid are shown in Fig. 5. Since the orbifold
embedding that defines the solid is volume-preserving, the
structure of the density (i.e., the iso-density contours and
critical points) as displayed on the solid is a faithful
reproduction of the structure of the density across the
orbifold. From the figure, the general trend is clear—there is
a reduction in mostly second order local forms and an
increase in mostly first order local forms as one moves from
blue to white to pink noise. This reflects the visual
differences between the different types of noise.

4.2 Natural Images

To study the distribution of structures in natural images, we
compute a histogram over the structure solid. But first, to
confirm that our methods for doing this are correct, we
computed such histograms for the three types of noise and
compared them to the analytically-derived results described
in Section 4.1.

Noise images were generated, derivatives were computed
at a scale of � ¼ 4, and the jets at 3� 107 random points were
used to populate histograms over the shape solid. The
histograms of the solid used a system of cubic bins each of
size 0:053 (in xyz space). A matrix of 32� 64� 22 such bins
completely contains the solid. Of these 45,056 bins, 24 percent
are completely filled and 11 percent are partially filled. The
volume of partially-filled bins was computed by numerical
integration so that counts could correctly be turned into
densities. The resulting histograms are shown in Fig. 5
(bottom row). Visually, they are an excellent match to the
analytical densities shown above them. To quantify these
matches, we have computed that 1) the Jensen-Shannon
divergences [44] between the empirical and ideal distribu-
tions are approximately 0.006 for all three types of noise,
while the angles between the square-rooted empirical and
ideal densities treated as vectors (related to the Bhattacharyya
distance [45]) are all approximately 5
.

Having validated our technique for histogram computa-
tion we now apply it to natural images. For this purpose, we
used 20 images from a calibrated natural image collection
[46]. As we have described previously [35], only images
without saturation and blur were used and the images were
perturbed to remove quantization plateaus. Jets were
extracted as per the noise images, but with the additional
precaution of not extracting jets within 7� of the image
border. The total number of samples collected was 3� 107.
We also repeated this exercise at the coarser scale � ¼ 8.

1362 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 8, AUGUST 2007



We found that the distributions at the two scales examined

were effectively identical (Jensen-Shannon divergence =

0.004, Bhattacharyya angle = 4
) confirming previous find-

ings [19], [47], [36], [35], [32], [48], [49], [50] of approximate

scale-invariance in natural images. By examining cross-

sections through the histograms we discovered that there

was a diffuse clustering of density around the locus of

effectively 1D local forms. This is illustrated in Fig. 6. To

quantify the degree of the clustering, we offer the following:

50 percent of the density is in 20 percent of the solid close to

the locally 1D forms and 10 percent of the density is in

1.7 percent of the solid close to the locally 1D forms. For

comparison, we looked at pink noise (which has a similar

power spectrum to natural images [50]) using the same

analysis. For pink noise, we find slightly less clustering, and

around the pure first order form rather than the locally

1D forms (see Fig. 6). The figures for pink noise are: 50 percent

of the density is in 25 percent of the solid and 10 percent of the

density is in 3.5 percent of the solid.

5 DISCUSSION

In this section, we discuss the various choices we have made
in the derivation of the orbifold and solid and consider
whether our results are independent of them (Sections 5.1,
5.2, and 5.3), the zero-scale limit (Section 5.4), and previous
work on the distribution of local forms in natural images
(Section 5.5).

5.1 The Norm

The orbifold metric is induced by the jet space norm. Since no

prior literature exists on the choice of jet space norm, in order

to proceed, we were forced to argue for a particular choice in

this paper. The choice of jet space norm is likely to have

implications for other issues in DtG type analyses, so we are

nervous of having made an error on this fundamental issue.

We urge the reader to evaluate the argument for the choice of

norm in its own right and not simply to accept it because we

have gone on to make use of it. We do note two features of our

choice that recommend its use. First, is that its expression

k~jkN� ¼ ð
P

1�uþv�N
ð�uþvcuvÞ2

u!v! Þ
1
2 is pleasingly simple. Second is

that, in the limit as the jet order goes to infinity, the jet space

GRIFFIN: THE SECOND ORDER LOCAL-IMAGE-STRUCTURE SOLID 1363

Fig. 5. The figure shows from the analysis of the three types of noise studied in this section. The columns concern, from left-to-right, blue, white, and

pink noise. The top row shows examples of the noise. The central row shows a cross-section through the second order local structure solid, with the

analytically-derived density of local forms for that type of noise. These cross-sections are rotated relative to Fig. 4 so that the colored edge (pure

second order structure) is along the top. The bottom row shows empirical densities based on 3� 107 samples.

Fig. 6. The figure shows iso-density contours of the histogram of local forms for natural images and pink noise. The left panel of each pair shows the

iso-density surface that surrounds 50 percent of the total histogram density; the right panels 10 percent of the density.



norm tends to the windowed variance of the image which is

convenient as the statistics of windowed variance can readily

be determined [51].

5.2 The Reparameterization

In Section 2.2, we chose a reparameterization of jet space.

The choice was made with two aims in mind: 1) that three

components of the new coordinate system should be

invariant to the transformation group and 2) that calcula-

tion of the metric tensor relative to these three coordinates

(Section 2.3) should be tractable. The reparameterization

chosen was sufficient to meet both these aims, but we make

no claim that it is uniquely so. In particular, there are

several obvious possibilities for a reparameterization based

on differential invariants more well-known than l, b, and a.

In Fig. 7, we show the coordinates that would have arisen

had we used some of these possibilities. This figure should

be looked at in conjunction with Fig. 3 in which equivalent

diagrams are shown for the parameters l, b, and a.
The three left-most panels of Fig. 7 show differential

invariants based on a gauge coordinate system aligned with
the first order structure; where the w-direction is along the
gradient and the v-direction is normal to that [52]. These
invariants have attracted attention because two of them
(isophote and flowline curvature) have an intuitive inter-
pretation in terms of the geometry of the blurred image [53],
[54], [55]. The right-most panel shows the foliation of the
solid by surfaces of constant shape index—Koenderink and
van Doorn’s well-motivated differential invariant for
describing pure second order structure [56]. A natural
partner for the shape index is the Laplacean phase, shown
in the fourth panel; this has an interpretation in terms of the
local slope of the iso-surface in scale space [57].

There is no reason why the coordinates shown in Fig. 7
should not be used for the reparameterization, we simply
report our experience that we were unable to simplify the
maths when we did so. It is important to understand however
that the important aspects of our results do not depend on the
coordinate system used. While the expression for the metric

tensor is relative to a particular coordinate system (as they
always are), the following results are not coordinate system
relative:

1. varying scalar curvature,
2. volume-preservation of the embedding,
3. degree of distortion of the embedding, and
4. the distributions of structures in noise and natural

images.

5.3 The Embedding

In Section 3, we presented an embedding of the orbifold
into euclidean 3-space. The embedding respects the intrinsic
geometry of the orbifold in that it is volume-preserving.
This is a useful property as it means that when we display
densities across the solid (as in Figs. 5 and 6) the pattern of
iso-density surfaces and critical points is the same as in the
orbifold itself. The embedding does however distort the
metric of the orbifold and since we make no claim that it
does so minimally, must be regarded as ad hoc and
potentially misleading. However, our results on the
densities of local forms in natural and noise images have
shown that the parts of the solid where distortion is greatest
(the top and bottom vertices) are where the density is
always low. This is like maps of the globe constructed so
that the greatest metrical distortions occur where the
population and geography is sparse.

5.4 The Zero-Scale Limit

It is of interest to consider the zero-scale limit of the jet and
orbifold. In the zero-limit, the elements of the jet are the
standard infinitesimal derivatives of the image since
lim�#0 G

ðu;vÞ
� ¼ �ðu;vÞ. Of course, such infinitesimal derivatives

may not exist or be infinite (which is one of the motivations
for working with nonzero scale derivatives in the first place
as they do always exist) [12], but even if we assume that the
underlying zero-scale image is smooth enough (e.g., Morse)
so that they do exist and are finite, then the results we obtain
are a little surprising. Consider the expression for the jet
space norm

~j


 

 :¼ � c2

10 þ c2
01 þ �2 c2

20 þ 2c2
11 þ c2

02

� 	� 	1
2:
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Fig. 7. Shows (top) iso-value surfaces of various differential invariants. From left-to-right: edge phase, flowline curvature, isophote curvature,

Laplacean phase, and shape index. The bottom panels show the invariants calculated for the image shown in Fig. 3.



In the limit, as scale goes to zero, the jet values cuv (which

depend on the scale of measurement) will tend to the standard

derivatives of the underlying image, which by assumption

exist and are finite. Therefore, in the zero-scale limit, the jet

norm will be zero because of the leading � factor. This makes

sense as the jet space norm is defined to approximate

windowed variance. We can prevent the norm going to zero

by instead considering��1k~jk, but then in the limit the norm is

sensitive to the first order derivatives only. As a consequence

of this, if we follow through the analysis to derive the

distribution of structures over the solid for infinitesimal

derivatives we find that almost all the weight of the

distribution will be in a delta spike at the pure first order

location (i.e., the purple point in Fig. 4), while the almost-

negligible remainder of the distribution is arranged along the

pure second order structure locus (the multicolored arc in

Fig. 4). This shows that infinitesimal-scale local structure does

not exist in mixed first/second order form as it does for

nonzero scale structure which accords well with the analysis

of Morse functions reviewed in Section 1.3.

5.5 Previous Work on the Distribution of
Local Forms

We can compare our results on the distribution of local

structures to previous similar results. Longuet-Higgins [28]

showed that the joint distribution of derivatives of noise

defined by its power spectrum is a multinormal distribution,

but gave no results on the distribution after extrinsic aspects

of the structure had been factored out. Koenderink and van

Doorn [2] gave analytical and numerical results for the

distribution of pure second order structures in noise and

natural images after the same group that we have considered

had been factored out. They noted that all the classes of

image he looked at showed an excess of structure with close

to parabolic curvature. The distributions they determined

are marginal distributions of the ones we have presented. We

have shown that our results are precisely compatible with

theirs (see the Appendix, which can be found at http://

computer.org/tpami/archives.htm). In the case of natural

images, we can interpret their observation of an excess of

parabolically curved points as a consequence of the more

general finding of an excess of locally-1D points. Pedersen

et al. [29], [31], [19], [30], has numerically computed the

distribution of local structures defined up to third order,

modulo intensity scaling and translation (but not rotation or

reflection), for noise and natural images. Because the

distribution they obtained was across a 7D space, they were

not able to visualize it, but they did show for natural images

that there was a significant clustering of density around the

jets for blurred, displaced straight step edges. This is fully

consistent with our finding of an excess of locally-

1D structures in natural images.

6 CONCLUDING REMARKS

The results we have presented are specific to the Gaussian
Derivative model of local visual processing. As we hope to
have shown, one of the advantages of this model is the

simplicity with which sophisticated results can be obtained,

and the breadth of results that can be accommodated within

this single framework. We claim that this is because,

uniquely among such models, the Gaussian derivative

framework is a principled generalization of the differential

calculus which is surely the acme of local analysis.
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