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Recently developed methods to extract the persistent angular structure (PAS) of axonal fibre bundles
from diffusion-weighted magnetic resonance imaging (MRI) data are applied to drive probabilistic
fibre tracking, designed to provide estimates of anatomical cerebral connectivity. The behaviour of
the PAS function in the presence of realistic data noise is modelled for a range of single and multiple
fibre configurations. This allows probability density functions (PDFs) to be generated that are
parametrized according to the anisotropy of individual fibre populations. The PDFs are incorporated
in a probabilistic fibre-tracking method to allow the estimation of whole-brain maps of anatomical
connection probability. These methods are applied in two exemplar experiments in the corticospinal
tract to show that it is possible to connect the entire primary motor cortex (M1) when tracing from
the cerebral peduncles, and that the reverse experiment of tracking from M1 successfully identifies
high probability connection via the pyramidal tracts. Using the extracted PAS in probabilistic fibre
tracking allows higher specificity and sensitivity than previously reported fibre tracking using
diffusion-weighted MRI in the corticospinal tract.
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1. INTRODUCTION
Probabilistic methods for determining the connectivity

between brain regions using information obtained from

diffusion-weighted MRI (DWI) have recently been

introduced (Tuch et al. 2001; Koch et al. 2002; Lazar &
Alexander 2002; Parker et al. 2002a–c, 2003; Behrens
et al. 2003; Parker & Alexander 2003a,b). These

approaches utilize probability density functions

(PDFs), defined at each point within the brain to

describe the local uncertainty in fibre orientation. Each

PDF is intended to capture the information available in

a DWI dataset concerning the distribution of likely

underlying fibre structure. Given an accurate voxel-

wise PDF it should be possible to obtain the probability

of anatomical connection, defined at the voxel scale,

between any two points within the brain. This may be

achieved using Monte Carlo approaches based on, for

example, streamlines (Behrens et al. 2002; Lazar &

Alexander 2002; Parker et al. 2002a–c, 2003) or

energy-minimization methods, such as those presented

by Tuch et al. (2000).
To date, PDFs used in probabilistic connectivity

methods have either been determined from the single

diffusion tensor model (Behrens et al. 2002; Koch et al.
2002; Lazar & Alexander 2002; Parker et al. 2002a–c,
2003), multi-tensor models (Parker & Alexander
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2003a,b), or by using q-space approximations acquired
from spatially under-sampled brain data (Tuch et al.
2000). The single tensor model of diffusion assumes
that diffusive water molecule displacements are
Gaussian distributed, which is a poor approximation
where fibres cross, diverge or have high curvature. This
can lead to overly conservative PDFs that reflect the
ambiguous fibre-orientation information available
when using the tensor or, worse, inaccurate PDFs that
assign unwarranted likelihood to spurious fibre orien-
tations. Multi-tensor methods can identify more than
onefibre populationwithin a voxel, but again require the
use of an explicit model of the multi-fibre population,
and to date have not shown the capability to distinguish
more than two fibre populations per voxel (Tuch et al.
2002; Parker & Alexander 2003a,b). Q-Space methods
such as diffusion spectrum imaging (DSI) are an
attractive option because they have the potential to
identify an unlimited spectrum of fibre populations
within a voxel (Tuch et al. 2000). However, the
requirement for a very high number of diffusion-
weighted image acquisitions makes whole-brain DSI
impractical at the resolution required for diffusion-
based connectivity mapping. At best, low-resolution
imaging or imaging over a restricted volume are the only
options, which lead to tracking errors and the potential
for missed long-range cerebral connections, respect-
ively.Newer q-spacemethods, suchas ‘qball’ (Tuch et al.
2003) and persistent angular structure (PAS)–MRI
(Jansons & Alexander 2003), overcome the excessive
data acquisition requirements of DSI by resolving
q 2005 The Royal Society



Figure 1. Fitted PAS functions in a coronal brain section overlaid on a fractional anisotropy (Pierpaoli & Basser 1996) map (note
that the PAS function is tightly focused along identified orientations). The crossing fibres at the point where callosal fibres
intersect corticospinal fibres (enlarged box) demonstrate mainly two-way crossings, but also a few three-way crossings (red
circle). Also note the well-defined single fibre populations in, for example, the corpus callosum and corticospinal tract (blue and
yellow arrows, respectively).

Table 1. Eigenvalues used in the simulation of noise effects on
estimated fibre orientation. (A constant value of traceZ
2100!10K6 mm2 sK1 was used for all experiments.)

FA l1 (!10K6 mm2 sK1) l2, l3 (!10K6 mm2 sK1)

0.243 900 600
0.459 1100 500
0.635 1300 400
0.770 1500 300
0.870 1700 200
0.945 1900 100
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multiple fibre orientations within a voxel using data
from the spherical acquisition schemes typical in
diffusion tensor MRI (Jones et al. 1999). Such schemes
allow routine whole-brain relatively high-resolution
data acquisition, thus creating the possibility of extract-
ing multiple fibre populations with manageable data
acquisitions. Both q ball and PAS–MRI compute
functions of the sphere that reflect the angular structure
of the particle displacement density. The peaks of these
functions provide estimates of fibre orientations.
Neither of these methods has been used in probabilistic
tracking to date. Here, we present a method for
extracting probabilistic cerebral anatomical connec-
tivity using the information provided by the PAS–MRI
method for the first time, and demonstrate its utility in
cerebral peduncle and precentral gyrus connectivity.
2. METHODS
(a) Data acquisition

Single-shot echo-planar diffusion-weighted brain data were

acquired using a GE Signa 1.5 T scanner with a standard

quadrature head coil. Sequence parameters were as follows:

cardiac gating (repetition timeZ20 cardiac cyclesw20 s), 60
Phil. Trans. R. Soc. B (2005)
axial slices, echo timeZ95 ms,NZ54 unique gradient vectors

gi, iZ1,.,N, each jgijZ22 mT mK1 with gradient-pulse

width dZ34 ms and pulse separation DZ40 ms, giving a

b-factor for the each of the Nmeasurements of 1156 s mmK2

(calculated according to Stejskal & Tanner 1965) and

jqjZgdg=2pZ3:18!104 mK1, where g is the gyromagnetic

ratio. We also acquired six measurements with a b-fac-

torw0 s mmK2. We used a 96!96 acquisition matrix,

interpolated during reconstruction to 128!128; 220 mm

field of view, generating 2.30!2.30!2.30 mm3 voxels as

acquired, which were reconstructed to 1.72!1.72!
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Figure 2. Simulated PAS-derived fibre-orientation distributions owing to randomGaussian-distributed noise plotted on the unit
sphere for a range FA. Noiseless orientation of principal direction along vertical (z) axis. Cylindrical symmetry of all tensors is
assumed. Simulation performed with a SNR of 16. (a) FAZ0.243, (b) FAZ0.459, (c) FAZ0.635, (d ) FAZ0.770, (e) FAZ
0.870 and ( f ) FAZ0.945.
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Figure 3. Distribution of deflection angle owing to noise
added at SNR of 16 for single fibre case with FAZ0.770 (see
figure 2d ).
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2.30 mm3 (Wheeler-Kingshott et al. 2002). The acquisition

time for the dataset was approximately 20 min. Eddy current

induced image distortions in the diffusion-sensitized images

were removed using affine multiscale two-dimensional regis-

tration (Symms et al. 1997).

All subjects were scanned with the approval of the joint

National Hospital and Institute of Neurology ethics commit-

tee and gave informed, written consent. The signal-to-noise

ratio (SNR) of the non-diffusion-weighted data in white

matter in this data set is 16.
(b) Persistent angular structure

Features of a tissue’s microstructure may be inferred from the

PDF p of diffusive water molecule displacements x. In the

absence of noise and when d/D is negligible, the normalized

diffusion-weighted measurement S(q)/S(0) is the Fourier

transform of p at wavenumber q (Callaghan 1991). Assuming

no net motion (flow) of spins, p(x)Zp(Kx), so that:

SðqÞ

Sð0Þ
Z

ð
R3

pðxÞcosð2pq,xÞdx: (2.1)
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Figure 4. Simulated distributions of PAS-derived fibre orientations owing to random Gaussian-distributed noise plotted on the
unit sphere for a range of crossing fibre cases. Cylindrical symmetry of all tensors is assumed and fibres are present in equal
proportions. The simulation uses a SNR of 16. Noiseless fibre orientation: (a,b) x,y, (c,d ) x,y,z, and (e, f ) x, p/8 rotation from y.
FA values for each tensor: (a,c,e) 0.770, (b,d ) 0.459 and ( f ) 0.770 (along x), 0.635 (along p/8 rotation from y).
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Figure 5. Standard deviation in q owing to the addition of
Gaussian noise at SNR of 16 as a function of Ktrace(H).
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The PAS is the function on the sphere that, when

embedded in three-space on a sphere of radius r, has the

Fourier transform that best fits themeasurements.We collapse

the function p onto a sphere by using the approximation

pðxÞz ~pðx̂ÞrK2
dðjxjK rÞ; (2.2)

where d is temporarily redefined as the standard one-

dimensional d distribution, x̂ is a unit vector in the direction

of x, and ~p is the PAS. Substituting equation (2.2) into

equation (2.1) gives

SðqÞ

Sð0Þ
Z

ð
~pðx̂Þcosð2prq,x̂Þdx̂; (2.3)

where the integral is now over the unit sphere.

Jansons & Alexander (2003) derive a maximum-entropy

functional-form for the PAS

~pðx̂ÞZ exp l0 C
XN
jZ1

ljexpðqj,rx̂Þ

 !
; (2.4)

which is the product of NC1 waves on the sphere; the qj,

jZ1,.,N, in equation (2.4) are the non-zero wavenumbers
Phil. Trans. R. Soc. B (2005)
sampled in the acquisition. A Levenberg–Marquardt algori-

thm finds the li, iZ0,.,N, that minimize the sum of squared

errors between the N normalized measurements in a voxel

and their estimates from equation (2.3). The integral in
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Figure 6. Maps of connection probability,J, from a region of interest placed in the left cerebral peduncle, overlaid on bZ0 echo
planar image: (a) coronal, (b) sagittal, (c) axial views. Note branching of routes of connection to reach a range of cortical regions.
(d ) Cortical regions connected to left peduncle, overlaid on rendering of brain surface, viewed from left. Primary motor strip
highlighted by yellow line. Radiological viewing convention used. Logarithmic colour scale: 0.02!J!1.0.
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equation (2.3) is evaluated numerically for each qj. In general,

for PAS–MRI the qj can be any set of wavenumbers, but here,

since we use a spherical acquisition scheme, they all lie on a

single shell in q-space.

The set of maxima of the PAS function that exceed a

threshold provides the set of fibre-orientation estimates in

a voxel. Figure 1 shows the PAS function in each voxel of a

coronal section taken from a whole-brain data acquisition.
(c) Noise-based uncertainty in identified fibre

orientations

The effect of noise on the PAS function in the case of single,

two or three fibre populations is modelled using MR

measurements synthesized from test functions (defined in

§2(d)) that model p in each case. To generate noisy measure-

ments, we add random complex samples drawn from

independent zero-mean Gaussian distributions of the real

and imaginary parts, each with standard deviation S(0)/16, to

the Fourier transform of the test function at each qi sampled

in the acquisition. We repeat this process to obtain a

population of noisy signal intensity estimates, with which

we estimate the PDFs for probabilistic tracking. We model

the distribution of the angle of deflection q of the estimated

fibre direction with a zero-mean normal distribution. In the

two and three fibre cases, we assume that the estimates for

each fibre are independent and identically distributed.
(d) Fibre model

The test functions we use in the simulations are mixtures of

Gaussian densities, which model the displacement density

expected in the presence of single, two and three fibre
Phil. Trans. R. Soc. B (2005)
populations (Alexander et al. 2001; Frank 2002). Thus

pðxÞZ
Xn
iZ1

aiðð4pDÞ
3detðDiÞÞ

K1exp½Kx
T
D

K1
i x=4D�; (2.5)

where Di is the ith tensor, n%3 and ai are the relative

proportions of each component
Pn

iZ1 aiZ1
� �

. The degree of

deflection of the fibre orientations identified using the PAS

algorithm about their expected direction is dependent upon

the noise level and the relative and absolute magnitudes of the

tensor eigenvalues used in the simulation. Within the

simulation we constrain the range of tensor eigenvalues

since the trace of the diffusion tensor varies little in brain

tissue. We reduce the simulation set further by assuming that

the diffusion tensors have cylindrical symmetry around the

principal axis, i.e. the three sorted eigenvalues have the

property l1R(l2Zl3). In voxels exhibiting partial volume

effects (for example, in the presence of crossing fibres),

tensors not exhibiting this symmetry may be expected;

however, as we are explicitly detecting and modelling crossing

fibre cases, we assume that all remaining single tensors are

cylindrically symmetric. We also assume that cases with two

or three non-cylindrically symmetric tensors do not occur.

Table 1 shows the sets of eigenvalues used for the simulation

together with the tensor fractional anisotropy (FA; Pierpaoli

& Basser 1996).
(e) Single fibre case

For the single cylindrically symmetric tensor simulation,

the addition of Gaussian noise generates distributions in

PAS-derived fibre orientation such as those shown in figure 2.
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If we align the z-axis along the original principal

diffusion direction, the PDF we obtain is independent of

the angle f of rotation around z and q is approximately

normally distributed with mean zero (q2½Kp=2;p=2Þ,

f2½Kp=2;p=2Þ; figure 3).
(f) Two and three fibre cases

For mixture-model test functions with nO1, the PAS

function should have n peaks, one in the direction of the

principal eigenvector of each component tensor. Examples of

the distribution of the deflection of these peaks recovered

from noisy data are shown in figure 4. The uncertainty

associated with the PAS-derived fibre orientations when

crossing fibres are present is larger than that in the single fibre

case (figure 2), as a result of the added structural information

that must be recovered from the same limited set of diffusion-

weighted images. However, the mean orientation of each fibre

is not affected by the presence of neighbouring fibre(s) at

large angular separation. Furthermore, the spread in orien-

tation of each is affected little by the relative orientation or

spread of the other(s). With these observations we assume

that the distributions of PAS-estimated fibre orientations for

each fibre may be treated independently. As in the single fibre

case, we use a Gaussian model for the distribution of the

angle of deflection.
(g) Parametrization of the fibre-orientation PDF

The PDFs that we use for fibre tracking are normal

distributions in q (figure 3). We use the trace of the Hessian

(H ) of the PAS at the peak, providing a fibre-orientation

estimate to predict the standard deviation (sq) of the normal

distribution for that fibre-orientation estimate. To calibrate

the mapping from trace(H ) to sq, we calculateH at each PAS

peak recovered from the noisy synthetic data. The values of

trace(H ) are sorted and binned into groups of 32 pairs of

trace(H ) and the corresponding value of q. We then compute

the mean value of trace(H ) and the s.d. of q within each bin.

Figure 5 shows the relationship between trace(H ) and sq,

which is close to linear on the log–log plot. While the range of

trace(H ) and sq varies according to the number of fibre

directions, the plot for each configuration approximately falls

on the same line.
(h) Streamline propagation in the multi-fibre field

A step in the streamline propagation process is defined:

XðlC1ÞZXðlÞCw ðlÞdt; (2.6)

where X(l ) is the position in R3 of the streamline at point l on

its length,w(l ) is the propagation direction at point l and dt is
the step size. We set w(l )Zym, where y1,.,yK are the fibre-

orientation estimates from thePAS function atX(l ) (as defined

on each iteration of theMonteCarlo process (below) using the

PDF interpolation scheme suggested by Behrens et al. (2003))

and m is the index jZ1,.,K, for which jyj$w(lK1)j is

largest. This formulation ensures that when fibre crossing is

detected, the PAS-derived fibre orientation closest to that of

the current streamline propagation direction is chosen for

further propagation (Blyth et al. 2003; Parker & Alexander

2003a,b). As a choice is being made between discrete

estimates of separate fibre bundle orientations derived from

the PAS PDF, the use of the maximum jyj$w(lK1)j does not

impose a strong curvature constraint on streamline propa-

gation (as is seen in some diffusion tensor tracking methods:

Poupon et al. 2000; Tuch et al. 2001; Mangin et al. 2002;

Parker et al. 2002a–c).
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(i) Monte Carlo methods and maps of connection

probability

We use the PICo probabilistic-fibre-tracking framework to

generate maps of connection probability (Parker et al.

2002a–c, 2003; Parker & Alexander 2003a,b). The method

utilizes a Monte Carlo streamline approach, sampling the

PDFs at each voxel location encountered by a streamline on

each iteration; typically 1000 iterations are taken for each

voxel within a start region (Toosy et al. 2004). The number of

occasions, m(p,N ), over N repetitions, at which each voxel p

is crossed by a streamline is used to define a map of the

probability j of connection to the start point, in a similar

fashion to that used by Koch et al. (2002):

jðpÞZ lim
N/N

jðp;NÞz
mðp;NÞ

N
: (2.7)

Maps of j are generated for each voxel within a user-

defined tracking start region. The maps from each voxel are

then combined into a connection probability union map,

which describes the maximum value of j( p) over all start

voxels.
3. RESULTS
Two complementary experiments are presented in a
healthy human volunteer’s brain to demonstrate the
effectiveness of noise-based probabilistic tracking using
PAS–MRI. In the first, the pattern of connection
probability from a region of interest covering the cross-
section of the left cerebral peduncle is defined. In the
second, the pattern of connection probability from a
region covering the extent of the left primary motor
strip is presented.

Figure 6 shows the connection probability unionmap
to the region of interest covering the cross-section of the
right cerebral peduncle. Branching of the extracted
pathway may be observed at various points, with
branches of relatively high probability to the medial
and lateral primarymotor cortex reaching the full extent
of the primary motor strip. Similar levels of connection
probability are also seen to the premotor areas, other
frontal lobe areas and the thalamus. Non-zero connec-
tion probability may also be observed via the corpus
callosum and the trans-pontine (pontocerebellar)
fibres to the contralateral hemisphere.

A map of the voxels within the peduncle tracking
start region that contribute to the connection prob-
ability union map in the precentral gyrus was generated
(not shown). This indicates that the central portion of
the peduncle has the highest connection probability to
this region.

The results of an experiment using a start region of
interest defined as the extent of the left precentral gyrus
are shown in figures 7 and 8 at a range of connection
probability thresholds. Figure 7 shows coronal projec-
tions of the connection probability union map. The
highest probability connections observed are via the
corticospinal tract to the left pyramid, to the thalamus,
to the subthalamic nucleus, to the putamen, possibly to
theglobuspallidus, toWernicke’s area (see alsofigure8),
to the fornix and via the corpus callosum to the
contralateral medial motor cortex. A number of
lower probability connections are present; among the
most prominent are connections to the cerebellar
peduncles. Figure 8 shows the same connection
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probability union map in sagittal projection at the same
probability thresholds as those used in figure 7. The
highest probability connections visible are via the
pyramidal tract, to the superior parietal regions (Brod-
mann area 7), to the fornix, to the putamen and to
Wernicke’s area. The lower probability connections to
the cerebellum observed in figure 7 are again visible.
4. DISCUSSION
We have identified voxels within the brain that include
more than one fibre orientation and, by modelling the
effects of noise, we have obtained PDFs on estimates of
fibre orientation for the single, dual and triple fibre
population cases. These PDFs are characterized as
independent normal distributions in the angle of
deflection away from the initial estimate of fibre
orientation. The standard deviation of these distri-
butions is related to the trace of the Hessian of the PAS
function via an empirically derived power relationship.

Using the crossing fibre information, and the
subsequently derived noise-based fibre-orientation
PDFs, we have shown that it is possible to generate
probabilistic representations of diffusion-based voxel-
scale connectivity from user-defined start regions. This
mapping benefits from the increased information
content provided by PAS–MRI in comparison with
diffusion tensor imaging, allowing more accurate
definition of the routes and termini of connections.
We have previously shown how single- and multi-tensor
representations of the diffusion profile can also be used
to generate PDFs of fibre orientation in the presence of
crossing fibres (Parker & Alexander 2003a,b; Parker
et al. 2003; Cook et al. 2004). However, in our
experience this approach did not allow reliable identi-
fication of points in the brain showing three-way fibre
crossings. Recent work by Tuch et al. (2003) has shown
that it is possible to identify three-way crossings using
the model-free q ball method. However, the q ball
approach has been shown to require more angular
samples of the diffusion profile, higher b values and
greater SNR than PAS–MRI for reliable definition of a
given number of fibre populations in a voxel
(Alexander in press). Indeed, with the SNR used in
this work, it has been shown by simulation that the PAS
method should allow close to 100% sensitivity to
orthogonal fibre crossings. This important advantage
of the PAS–MRI method means that it is possible to
extract multiple fibre population orientations using
data such as those typically acquired in a clinical
setting. However, the q ball method has the distinct
advantage of significantly shorter computation times
than current PAS–MRI implementations (Alexander
2004). The probabilistic tractography method we
present here is straightforward to adapt for use with q
ball reconstruction (or any other multiple-fibre recon-
struction) rather than PAS–MRI (Parker & Alexander
2005).

The PAS–MRI technique displays a high degree of
robustness to data noise, leading to PDFs of fibre
orientation that show little dispersion at the levels of
diffusion anisotropy expected in white matter tracts
(figures 2 and 4). However, the noise levels in the data
mean that the reliability with which multiple fibre
Phil. Trans. R. Soc. B (2005)
populations may be resolved decreases at small
angular separations ( Jansons & Alexander 2003).
Our simulations suggest that at angular separations of
less than 45 degrees we are able to satisfactorily resolve
less than half of the test functions (data not shown).
However, even with this limitation, it is clear that we
are able to successfully resolve fibres at larger angular
separation (figure 4) and that many fibre crossings are
successfully identified in vivo (figure 1).

In this work we have focused on probabilistic
tracking after accounting for crossing fibres. We have
not explicitly attempted to account for non-Gaussian
diffusion that may occur in fibres demonstrating high
curvature or at points where fibre populations diverge.
However, in these settings jtrace(H )j of the PAS
function peak(s) is likely to be low, indicating relatively
high uncertainty in fibre orientation (figure 5) and
leading to dispersion of the probability of connection in
both the diverging fibres case and the high curvature
case. This is desirable for diverging fibre populations
but not ideal for high curvature fibres, where the
symmetry of the diffusion process currently restricts
our knowledge of the polarity of fibre orientation. Also,
we have not examined the effect of fibre populations of
unequal proportions on the PAS-derived PDFs of fibre
orientation, although the PAS function itself has been
shown to be robust to a range of possible proportions
(Alexander in press). This, and the development of
methods to deal appropriately with high curvature, will
form part of future work.

We have presented two complimentary experiments
to demonstrate the utility of probabilistic fibre tracking
using PAS–MRI. We have shown that the connections
that pass via the cerebral peduncle may be recon-
structed, and that these reconstructions to a large
degree match what is expected from known anatomy.
In particular, it is encouraging that the entire primary
motor area is identified along the length of the
precentral gyrus and showing marked lateral branch-
ing, as required to connect the mouth, face, eye and
finger cortical areas. Although faithful reconstruction
of this, the largest fibre tract of the brain, seems a trivial
requirement for diffusion imaging-based fibre tracking,
it has been shown consistently until now that the lateral
motor areas are ‘invisible’ to fibre tracking from the
cerebral peduncles (Clark et al. 2003; Hagemann et al.
2003; Hendler et al. 2003; Parker et al. 2003;
Watts et al. 2003; Barrick & Clark 2004; Kuo et al.
2004; Lazar et al. 2004). The ability of PAS–MRI to
extract multiple fibre populations at points in the
corona radiata where it crosses the corpus callosum
and the superior longitudinal fasciculus (figure 1),
and the use of probabilistic fibre tracking are the key
elements of this work that allow us to connect these
lateral areas.

Other areas that are connected with high probability
from the cerebral peduncle are the premotor areas, a
number of other frontal lobe regions, some parietal
lobe regions and the cerebellar peduncles. While the
connections to the premotor area, the cerebellum and
the sensory parietal regions are to be expected, the
connections apparent in figure 6d to the ventrolateral
frontal lobe in the vicinity of Broca’s area are, to the
best of our knowledge, unexpected. The thalamic
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Figure 7. Coronal projections of left motor strip connectivity at different thresholds. Logarithmic colour scale: (a) 0.0!J!1.0,
(b) 0.027!J!1.0, (c) 0.074!J!1.0 and (d ) 0.20!J!1.0. Major apparent connections identified include: (i) thalamus,
(ii) subthalamic nucleus, (iii) globus pallidus, (iv) putamen and (v) Wernike’s area (see figure 8).
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connectivity observed from the cerebral peduncle
in figure 6a is possibly due to partial volume of
the corticospinal tracts with cerebellar pathways; it is
possible that this is due to some overlap of the peduncle
start region with the superior cerebellar peduncle,
which could also contribute to the contralateral
apparent connectivity. However, this could also arise
from a partial volume effect with pathways entering the
thalamus from the cerebral cortex.

The second experiment we present (figures 7 and 8)
demonstrates two key points. First, that the probabil-
istic tracking process produces conjugate results—that
is, that a tracking process from point A that reaches
point B has a conjugate result that reaches point A from
point B. This can be seen in the fact that the tracking
from the cerebral peduncle connects to the entire
primary motor area (figure 6d ), and that the entire
motor area, when used as a start region, connects via
the peduncle (figures 7 and 8). A further experiment
(results not shown), testing each motor cortex start-
region component voxel separately for connection via
the peduncle, indicated non-zero probability along the
entire length of the motor cortex. The second key point
is the high level of complexity of other identified
connections from the motor cortex, including connec-
tions to the basal ganglia, parietal and frontal lobes.
Thalamic connectivity from the motor strip appears,
within the constraints of the resolution of the diffusion-
weighted data, to be to the ventrolateral nucleus, the
ventroposterolateral nucleus or the ventroposterome-
dial nucleus. Further connections are apparent to the
Phil. Trans. R. Soc. B (2005)
subthalamic nucleus (or possibly the substantia nigra)
and the putamen. Each of these connections are,
as expected, from known basal ganglia connectivity
(Woolsley et al. 2003).

An unexpected finding in the tracking from the
precentral gyrus is apparent connectivity to Wernicke’s
area, but a lack of connection to Broca’s area, which is
understood to have direct primary motor input. The
Wernicke’s connectivity may be owing to partial
volume contamination as the corona radiata crosses
the arcuate fasciculus in the centrum semiovale. The
lack of connection to Broca’s area presumably indicates
a threshold in sensitivity for our method. Another
unexpected connection is to the fornix, which may be
seen clearly on figure 7. This appears to be due to
partial volume mixing of this pathway with the corpus
callosum at the midline.

Although the results we present are largely encoura-
ging for the sensitivity and specificity of fibre tracking
using DWI, there are still some limitations to the
technique. It is clear from figures 6–8 that false positive
and false negative connections are present in the
results. The most significant of these are the contra-
lateral pyramidal tract and corpus callosum involve-
ment in the cerebral peduncle experiment (figure 6)
and the Wernicke’s area/middle temporal gyrus and
fornix involvement in the precentral gyrus experiment
(figures 7 and 8). None of these structures is likely to be
connected anatomically to their respective start
regions, yet the diffusion-weighted data, even using
the PAS–MRI reconstruction, leads us to identify these
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Figure 8. Sagittal projections of left motor strip connectivity at different thresholds. Logarithmic colour scale: (a) 0.0!J!1.0,
(b) 0.027!J!1.0, (c) 0.074!J!1.0 and (d ) 0.20!J!1.0. Major apparent connections identified include: (i) fornix,
(ii) putamen (see figure 7), (iii) Wernike’s area/middle temporal gyrus and (iv) superior parietal lobe.

Multi-fibre probabilistic tracking G. J. M. Parker & D. C. Alexander 901
as non-zero probability connections. It is likely that two
major factors contribute to these errors. First, current
understanding of the relationship between the observed
diffusion-weighted signal, acquired at the voxel scale,
and the characteristics of fibre bundle populations is
incomplete. For example, although we are able to
estimate the dominant diffusion orientations in an
imaging voxel, we do not know with confidence how
the observed diffusion profile is affected by axonal
packing, the distribution of axonal diameters or the
degree of myelination in a given fibre bundle. It is
therefore currently impossible to estimate the density of
connections between regions, and we may be more or
less sensitive to some axonal configurations than
others. Second, diffusion-weighted data acquisitions
are at a relatively coarse spatial scale. Partial volume
effects are unavoidable, and this leads to non-trivial
problems in interpreting the diffusion-weighted signal.
Although considerable improvements, including devel-
opments such as PAS–MRI, have been made in recent
years in untangling the fibre orientation information
present within a voxel, there are still certain fibre
configurations that cannot currently be resolved
satisfactorily. For example, if a number of fibre bundles
converge to pass through a region of small cross-
sectional area (as happens most obviously as the
corticospinal tracts converge from the corona radiata
to the pyramids) it becomes difficult to resolve the
trajectories of the component bundles. When using
probabilistic tracking methods, such situations tend to
lead to dispersed patterns of low confidence connec-
tions downstream of the ‘bottleneck’ (see, for example,
the cerebellar connections in the precentral gyrus
experiment; figure 7). These limitations serve to
remind us that the connection probability we define is
one based on an interpretation of DWI data, rather
Phil. Trans. R. Soc. B (2005)
than an exact model of fibre tract structure. However,
we are confident that future improved understanding of
the relationship between fibre bundle structure and
the diffusion-weighted signal, coupled with higher
spatial resolution data acquisitions, will steadily
increase the accuracy of probabilistic fibre-tracking
results, allowing increasingly more sophisticated exper-
iments to be carried out with this unique non-invasive
method for mapping cerebral connections.

We are grateful to Dr Olga Ciccarelli and Dr Claudia
Wheeler-Kingshott at the Institute of Neurology, London,
for acquiring and making the data available.
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