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Abstract: 

At physiological oxygen concentrations ([O2]) hypoxia-inducible factor-1α (HIF-1α) is 

constantly hydroxylated and thus prepared for proteosomal degradation through the 

action of the prolyl hydroxylases (PHDs) (Jiang et al., 1996). In hypoxia, however, the 

oxygen-sensitive PHDs are inhibited and HIF-1α is stabilised. Other agents, including 

cytokines and growth factors have been shown to stabilise HIF-1α at physiological [O2] 

through different mechanisms such as activation of the phosphatidylinositol 3-kinase 

(PI3K) or mitogen-activated protein kinase pathways (Semenza, 2003). Increased 

production of reactive oxygen species (ROS) during hypoxia have also been claimed to 

stabilise HIF-1α (Chandel et al., 1998) and we have now investigated the effect of 

endogenous ROS on HIF-1α stabilisation. 

 

HIF-1α stabilisation and ROS production in human embryonic kidney (HEK 293T) 

cells were determined by immunoblotting and the use of fluorescent probes, 

respectively. γGlutamyl cysteine synthetase (γGCS) is the rate limiting enzyme of 

glutathione (GSH) biosynthesis and therefore a crucial antioxidant. We used small 

interfering RNA (siRNA) to silence this enzyme and thus impair the capacity of the 

cells to detoxify ROS.  

 

In order to determine whether mitochondria are a major source of ROS we used cells 

depleted of mitochondrial DNA (Rho0); these were characterised in vitro by monitoring 

oxygen consumption. RT-PCR was used to determine mitochondrial DNA content and 

immunoblotting to assess mitochondrial-encoded protein expression. The effects of a 

Rho0 phenotype were then assessed in relation to HIF-1α stabilisation and ROS 

production. 

 

HIF-1α is stabilised in an oxygen-dependent manner. HIF-1α stabilisation at low [O2] 

(3%), but not at 0.5% O2 is prevented by treatment with antioxidants. Silencing γGCS 

augmented free radical production in HEK 293T cells. This was associated with HIF-1α 

stabilisation at ambient [O2] (21%) and could be prevented by treatment with 

antioxidants. Rho0 cells produced less ROS than wild-type cells and did not stabilise 

HIF-1α either at low [O2] (3%) in wild-type cells or at 21% O2 in γGCS silenced cells.  

 

The data suggest that HIF-1α can be stabilised by ROS generated by the mitochondria.
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mDNA   Mitochondrial DNA 

MEF   Murine embryonic fibroblasts 

Met-GSH  Methylglutathione 

MnSOD  Manganese SOD 

mRNA   Messenger ribonucleic acid 

MRP   Multi drug resistance protein 

MOPS   3-(N-morpholino)propanesulfonic acid 

MPA   Metaphosphoric acid 

MtDNA  Mitochondrial DNA 

mTOR   Mammalian target of rapamycin 

NAC   N-acetyl-L-cysteine 

NaCl   Sodium chloride 

NAD   N-terminal activation domain  

NADH   Nicotinamide adenine dinucleotide 

NADPH  Nicotamide adenine dinucleotide phosphate 

NADPH oxidase Nicotamide adenine dinucleotide phosphate oxidase 

NaOH   Sodium hydroxide 

Neg. Ctl  Negative control 

NF-ĸB   Nuclear factor kappa B 

nNOS   Neuronal NOS 

NO   Nitric oxide 

NO+   Nitrosonium cation 

NO-   Nitroxylanion  

NO2
-   Nitrate  

NOHA   NGhydroxy-L-arginine 
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NOS   Nitric oxide synthase 

NOS2   Nitric oxide synthase 2 

NOX   NADPH oxidase 

N-terminal  NH2 -terminus 

O2
-   Superoxide 

O3   Ozone 

ODD   Oxygen dependent degradation domain 

OGC   Monocarboxylate carrier 

OH-   Hydroxyl    

O/N   Overnight 

OONO-  Peroxynitrite  

P13-kinase   Phosphoinositide 3’ kinase 

PAS   Per-arnt-sim 

PBS   Phosphate buffered saline 

PBST   Phosphate buffered saline tween 

PCR   Polymerase chain reaction 

PDGRβ  Platelet-derived growth factor β 

PDH   Pyruvate dehydrogenase 

PDK-1   Pyruvate dehydrogenase kinase 1 

PFKFB3  6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3 

PFKL   Phosphofructokinase L 

PGF    Placental growth factor 

PGK1   Phosphoglycerate kinase 1 

PHD1   Prolyl hydroxylase domain 1 

PHD2   Prolyl hydroxylase domain 2 

PHD3   Prolyl hydroxylase domain 3 

PKC   Protein kinase C 

PKM   Pyruvate kinase M 

POLγ   Polymerase γ 

Pos. Ctl  Positve control 

PPARs   Peroxisome proliferator-activated receptors), 

Prx   Peroxiredoxin 

PTK   Protein tyrosine kinase 

PTP   Protein tyrosine phosphatase 

pVHL   Von hippel-lindau protein 
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RAS   Rat sarcoma 

RCC   Renal carcinoma cell 

RD   Regulatory domain 

RNA   Ribonucleic acid 

RNAi   RNA interference  

RNS   Reactive nitrogen species 

ROS   Reactive oxygen species 

RO·    Alkoxyl 

RO2·    Peroxyl 

Rot   Rotenone  

RT-PCR  Reverse rranscription polymerase chain reaction 

s   Seconds 

Scr   Scrambled (siRNA) 

SDF1   Stromal derived factor 1 

SDH   Succinate hydrogenase 

SDS   Sodium dodecyl sulphate 

SDS-PAGE  SDS polyacrylamide gel electrophoresis 

SEITU   S-ethyl-isothiourea 

SFM   Serum free medium   

shRNA   Small hairpin ribonucleic acid 

siRNA   Small interfering ribonucleic acid 

SOD   Superoxide dismutase 

Sp1   Specificity protein 1 

sPBS   Sterile phosphate buffered saline 

TAD   Transactivation domain 

TAE    Tris acetic acid EDTA buffer 

TCA cycle  Tricarboxylic acid cycle   

TEMED  N’N’N’N’ Tetramethyletheylenediamine 

TGF-α   Transforming growth factor-α 

TGF-β3  Transforming growth factor-β3 

TMRM  Tetramethyl rhodamine methyl ester 

TNF-α   Tumour necrosis factor-α 

TPI   Triosephosphate isomerase 

Tris   Tris(hydroxymethyl)methylamine 

Trx   Thioredoxin 
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Q   coenzyme Q 

Ub   Ubiquitin 

VEGF   Vascular endothelial growth factor 

VEGFR1  VEGF receptor 1 

VLS   Visible light spectrophy  

VO2   Oxygen consumption 

WB   Western blot 

YFP   Yellow fluorescent protein  



Chapter one: Introduction 
 

 24

 

 

 

 

 

Chapter one: 

Introduction 

  



Chapter one: Introduction 
 

 25

Chapter one: Introduction 
 
1.1 General introduction 

Oxygen accounts for approximately 21% of the earth’s atmosphere. The evolutionary 

development of respiratory, cardiovascular and haematopoietic systems provides a 

means to capture oxygen from the environment and distribute it throughout the body. It 

is used as a substrate for oxidative phosphorylation amongst many other vital 

biochemical reactions. In 1938, Corneille Heymans was awarded the Nobel Prize in 

Physiology or Medicine for showing how blood pressure and oxygen content of the 

blood are sensed by the body and transmitted to the brain. It is the ability of cells to 

adapt to the changes in oxygen availability which provides one of the most essential 

mechanisms for survival.  

 

Hypoxia is used to describe reduced oxygen concentrations or availability, characterised 

by low partial pressure of oxygen (pO2). However, hypoxia is a relative term, for 

example the arterial pO2 in mammalian adults is ~ 13 kPa, and in the foetus it is ~ 5 kPa 

(Ward, 2008). Hypoxia is better defined as a situation in which oxygen becomes the 

limiting step in physiological and biological reactions and occurs in tissues when the 

oxygen supply fails to meet the demand of oxygen consuming cells. This includes 

physiological settings such as embryonic development and exercising muscle, as well as 

in pathophysiological conditions such as myocardial infarction, inflammation and solid 

tumour growth (Simon, 2006). 

 

Hypoxia is sensed and results in changes in the activity or expression of a large number 

of hypoxic-sensitive genes. However, only within the past few years have the molecular 

mechanisms underlying this fundamental response of cells to hypoxic stress started to 

be elucidated. 
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1.2 Hypoxia-inducible factor family 

1.2.1 Introduction 

Mammalian cells respond to hypoxia by activating the transcription factors named 

hypoxia-inducible factors (HIFs), which are expressed by virtually all cells of the body 

(Chandel and Budinger, 2007). The HIF protein is composed of a α- and a β-subunit 

(also known as aryl hydrocarbon nuclear receptor translocator, ARNT) and belongs to a 

large family of proteins termed basic-helix-loop-helix (bHLH). The HIF proteins also 

contain a Per-Arnt-Sim (PAS) domain (Figure 1) which has diverse functions, including 

a range of regulatory and sensory functions for oxygen tension and redox potential 

(Erbel et al., 2003). HIFs bind to hypoxia-response elements (HRE), consensus 

sequences in the promotor region of over one hundred genes (Table 1), which are 

known to activate the transcription of genes that allow the cell to respond to and survive 

the hypoxic environment. Genes such as those associated with angiogenesis in cancer, 

exercise and ischemia, as well as erythropoiesis, iron metabolism, glucose metabolism, 

cell survival, proliferation, apoptosis and motility.  

 

 

 HIF-1 gene targets 

Angiogenesis EG-VEGF, ENG, LEP, LRP1, TGF-β3, VEGF 

Erythropoiesis EPO 

Iron metabolism Transferrin, Transferrin receptor 

Glucose metabolism HK1, HK2, AMF, ENO1, GLUT1, GAPDH, 
LDHA, PFKFB3, PFKL, PGK1, PKM, TPI 

Cell survival ADM, EPO, IGF2, IGF-BP1, IGF-BP2, IGF-
BP3, NOS2, TGF-α, VEGF 

Cell proliferation Cyclin G2, GF2, GF-BP1, GF-BP2, GF-BP3, 
TGF-α, TGF-β3 

Apoptosis NIP3, NIX 

Motility AMF/GP, LRP1, TGF-α 

 

 

 

Table 1 – Genes that are transcriptionally activated by HIF-1 

A selection of target genes that are transcriptionally activated by HIF-1, including genes involved in 

angiogenesis, erythropoieses, iron metabolism, glucose metabolism, cell survival, cell proliferation, 

apoptosis and motility (Semenza, 2003). 
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There are three members of the HIF α-subunit, coded by different genes, as well as a 

number of mRNA splice variants, which have been described (Pouyssegur and Mechta-

Grigoriou, 2006). Primarily, research has focused on HIF-1α, however further research 

is now emerging on HIF-2α. HIF-1α and HIF-2α have 48% overall sequence homology, 

with the N-terminal region showing the highest similarity. HIF-3α is the least studied of 

the three isoforms, though it is known to be similar to HIF-1α and -2α in the bHLH-

PAS region. Yet it lacks structures for trans-activation (Bardos and Ashcroft, 2005) 

found in the C-terminus of HIF-1α and HIF-2α and has been shown to repress oxygen-

regulated gene expression (Makino et al., 2001). Database analyses have revealed that 

multiple alternatively spliced variants of HIF-3α exist, some of which contain the von 

Hippel-Lindau (VHL)-targeted oxygen-dependent degradation (ODD) domain that is 

also found in HIF-1α and -2α (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Schematic representation of the different HIFα subunits 

Functional domains are indicated by boxes and the locations of the amino acid residues relevant for HIF-

1α and HIF-2α regulation are marked. bHLH, basic helix-loop-helix domain; PAS, Per/ARNT/Sim 

domains; ODD, oxygen-dependent degradation domain; N-TAD, N-terminal activation domain; C-TAD, 

C-terminal activation domain; LZIP, leucine zipper (Bardos and Ashcroft, 2005). 
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The α-subunits are highly unstable in the presence of oxygen, while the β-subunit is 

constitutively present in the nucleus, regardless of oxygen tension. The inherent 

instability of HIF-α subunits results from successive post-translational hydroxylation 

and ubiquitination, leading to proteasomal degradation (Brahimi-Horn and Pouyssegur, 

2007). 

 

1.2.2 Hypoxia-inducible factor-1 

Hypoxia-inducible factor-1 (HIF-1) was first identified in human hepatoma (Hep3B) 

cells under reduced oxygen tension, and was found to be necessary for the activation of 

the erythropoietin gene enhancer, in hypoxic cells (Wang and Semenza, 1993). Since its 

discovery, HIF-1 has been identified as a heterodimeric transcription factor mediating 

responses to changes in tissue oxygenation, consisting of both α (100-120 kDa, 

dependent on hydroxylation status) and β subunits (~ 92 kDa) (Hellwig-Burgel et al., 

2005). HIF-1α expression and HIF-1 transcriptional activity increase exponentially as 

cellular oxygen concentrations decrease (Jiang et al., 1996). In vitro, HIF-1α protein 

expression progressively accumulates as the pO2 decreases to anoxia. The stability of 

HIF-1α in hypoxic conditions is caused by the inhibition of its proteasomal degradation 

(section 1.4). When HIF-1α has not been targeted for degradation, it translocates to the 

nucleus where it dimerises with HIF-1β partner and binds to site-specific HRE on target 

genes (Table 1). The binding of HIF-1 to HRE results in the induction or repression of 

over one hundred genes which are involved in a vast array of cellular functions (Table 

1). 

 

1.3 HIF-1 mediated adaptive responses to hypoxia 

1.3.1 Metabolic regulation 

Cells largely derive their metabolic energy for active processes from the hydrolysis of 

the high-energy phosphate bond of ATP. The most efficient metabolic pathway for the 

generation of ATP is through the oxidative metabolism of glucose. This process 

involves three distinct phases: glycolysis, the tricarboxylic acid (TCA) cycle (also 

known as the Krebs cycle or citric acid cycle) and oxidative phosphorylation.  
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1.3.1.1 Glycolysis 

The first stage of respiration is glycolysis, which occurs in the cell cytoplasm and 

involves the co-ordinated activity of ten enzymes in the conversion of glucose into 

pyruvate. The net ATP gain of glycolysis is two molecules of ATP per molecule of 

glucose metabolised. As well as generating this yield of ATP, glycolysis also generates 

two electron-carrying NADH equivalents which facilitate oxidative phosphorylation.  

 

During normoxic oxygen conditions (steady state), the primary metabolic function of 

glycolysis is to feed pyruvate into the TCA cycle. However, eukaryotic cells are able to 

shift the primary source of metabolic energy in situations of metabolic crisis, such as 

hypoxia. In such situations there is an increase in the rate of flux through the glycolytic 

pathway resulting in increased glycolytic ATP production, through HIF-dependent 

transcriptional up-regulation of the genes involves in glycolysis (Table 1).  

 

1.3.1.2 TCA cycle 

Each molecule of glucose that is metabolised through glycolysis results in the 

generation of two molecules of pyruvate. In the steady state, the majority of pyruvate 

generated is oxidised by pyruvate dehydrogenase (PDH) to form acetyl coenzyme A 

(AcCoA), which combines with oxaloacetic acid to form citric acid. This then enters the 

TCA cycle, located within the mitochondria where a series of enzymatic reactions result 

in the net generation of one molecule of ATP, three molecules of NADH and one 

molecule of FADH2 per molecule of pyruvate metabolised.  

 

The entry of pyruvate into the TCA cycle can be a regulated by the HIF pathway 

(Semenza, 2007). A fundamental adaptation during hypoxia is the shunting of pyruvate 

away from the mitochondria by the HIF-1-mediated activation of PDK1 (pyruvate 

dehydrogenase kinase 1) (Kim et al., 2006;Papandreou et al., 2006). PDK1 down 

regulates the activity of PDH (the enzyme responsible for converting pyruvate into 

AcCoA), causing a decrease in the pyruvate available for entry into the TCA cycle.  

 

The reduced delivery of substrate to the mitochondria for oxidative phosphorylation 

results in reduced ATP synthesis. This is compensated for by increased glucose uptake 

via glucose transporters. Conversion of pyruvate to lactate by the activity of glycolytic 

enzymes and lactate dehydrogenase A (LDHA), which are encoded by HIF-1 target 
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genes also increase ATP synthesis (Semenza et al., 1996;Ryan et al., 1998;Seagroves et 

al., 2001). 

 

1.3.1.3 Oxidative phosphorylation 

Oxidative phosphorylation is the process by which cells utilise over 20 electron-

carrying proteins. These are located within the mitochondrial electron transport chain 

(ETC) and are arranged in four polypeptide Complexes which generate the cellular 

energy necessary to generate ATP. This process utilises the NADH and FADH2 

generated during glycolysis and the TCA cycle as electron donor molecules. The 

mechanism underlying oxidative phosphorylation involves the transport of electrons 

from high energentic molecules such as NADH and FADH2 through a series of carrier 

molecules (i.e. cytochrome c and coenzyme Q) which donate the electrons to gradually 

lower energy levels.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Summary of protein subunits of the five respiratory chain complexes 

Depicted is a schematic of the five respiratory Complexes (I–V) embedded in the lipid bilayer of the inner 

mitochondrial membrane. Dissociable electron carriers cytochrome c (Cyt c) and coenzyme Q (Q) are 

also shown. Arrows (green) show the pathway of electrons from the various electron donors. Broken 

arrows (blue) show the sites of proton pumping from the matrix side to the cytosolic side by Complexes I, 

III, and IV. The red arrow shows the flow of protons through Complex V from the cytosolic side to the 

matrix coupled to the synthesis of ATP (Scarpulla, 2008). 

 

 

Complex I Complex III Complex IV Complex II Complex V 
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As a consenquence of this process, energy is released from the different redox reactions, 

part as heat and also as coupled to the generation of a proton gradient across the inner 

mitochondrial membrane which finally fuels the activity of ATP synthase (Complex V), 

promoting the phosphorylation of ADP to form ATP. Molecular oxygen acts as the final 

electron acceptor at Complex IV of the ETC (cytochrome c oxidase). This enzyme has a 

high affinity for molecular oxygen (Km < 1 μM) and is responsible for over 90% of the 

body’s oxygen consumption (Rolfe and Brown, 1997).  

 

As in the case of glycolysis and the TCA cycle, oxidative phosphorylation through the 

ETC can be regulated by gene products of the HIF pathway in conditions of hypoxia. 

This involves a subunit switch within the cytochrome c oxidase (CcO) (the oxygen-

binding subunit), in which the CcO4-1 regulatory subunit is replaced by the CcO4-2 

isoform. This is a result of HIF-1-mediated transcriptional activation of genes encoding 

CcO4-2 and LON, a mitochondrial protease that degrades CcO4-1 (Fukuda et al., 

2007). This subunit switch optimises the energy consumption in conditions of low 

oxygen (Fukuda et al., 2007) due to the higher affinity of CcO4-2 isoform towards 

oxygen. 

 

From the above hypoxic metabolic adaptations, the following conclusions can be drawn. 

The increase in glycolysis and decrease in respiration that occur in response to hypoxia 

do not represent a passive effect of substrate (O2) deprivation but instead represent an 

active response of the cell to counteract the reduced efficiency of energy generation by 

oxidative phosphorylation under hypoxic conditions. 

 

1.3.2 HIF-dependent regulation of erythropoiesis 

Acute blood loss, ascent to high altitudes and pneumonia each results in a reduction in 

blood oxygen content. The ensuing tissue hypoxia induces HIF-1 activity in cells 

throughout the body, including specialised cells in the kidney that produce 

erythropoietin (EPO), a glycoprotein hormone that is secreted into the blood and binds 

to its cognate receptor on erythroid progenitor cells, thereby stimulating their survival 

and differentiation (Gerber et al., 1997). HIF-1 has been shown to orchestrate 

erythropoiesis by co-ordinately regulating the expression of multiple genes, including 

transferrin (Rolfs et al., 1997), transferrin receptor (Tacchini et al., 1999), 

ceruloplasmin (Mukhopadhyay et al., 2000) and hepadin (Peyssonnaux et al., 2007). 



Chapter one: Introduction 
 

 32

These proteins are responsible for the intestinal uptake, tissue recycling and delivery of 

iron to the bone marrow for its use in the synthesis of haemoglobin. Erythropoiesis is 

impaired in Hif1a-/- (homozygous HIF-1α-null) embryos and erythropoietic defects in 

HIF-1α-deficient erythroid colonies could not be restored by cytokines, such as vascular 

endothelial growth factor (VEGF) or EPO (Yoon et al., 2006). 

 

1.3.3 HIF-dependent regulation of angiogenesis 

Erythropoiesis represents an adaptive response to systemic hypoxia, whereas 

angiogenesis describes the local tissue response to decreased oxygenation. As cells 

grow and proliferate, their oxygen consumption increases and HIF-1 activity is induced 

either as a result of growth factor mediated induction via phosphatidylinositol 3-kinase, 

(P13K) or mitogen-activated protein kinase (MAPK) pathways (Figure 6), or as a result 

of tissue hypoxia (Figure 4). HIF-1 activates the transcription of multiple factors 

encoding angiogenic growth factors and cytokines (Figure 3), including VEGF, stromal-

derived factor-1 (SDF1), placental growth factor (PGF), angiopoietin 1 and 2 and 

platelet-derived growth factor β (PDGRβ) (Forsythe et al., 1996;Kelly et al., 

2003;Ceradini et al., 2004;Bosch-Marce et al., 2007;Simon et al., 2008). These bind to 

cognate receptors on vascular endothelial and smooth muscle cells as well as on 

endothelial progenitor cells, mesenchymal stem cells and other bone marrow-derived 

angiogenic cells (Figure 3) leading to increased tissue vascularisation. 

 

Hypoxia-induced expression of HIF-1 provides a mechanism to ensure that every cell 

receives adequate perfusion in young and healthy animals. Ageing and diabetes impair 

angiogenesis (Figure 3) by inhibiting the induction of HIF-1 (Bosch-Marce et al., 

2007;Chang et al., 2007). However, this impairment in angiogenesis can be restored by 

HIF-1α gene therapy in ischemic muscle (Bosch-Marce et al., 2007) and wound tissue 

(Liu et al., 2008b) or by local administration of an iron chelator (desferrioxamine) that 

inhibits HIF-1α hydroxylases, into ischemic skin (Chang et al., 2007). 
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Figure 3 – Regulation of angiogenesis by HIF-1α 

Direct HIF-1 target genes are indicated in red, whereas genes that may be either direct or indirect 

(secondary) targets of HIF-1 are indicated in blue. The combination arrows/ blocked arrows indicate that 

the genes encoding angiopoietin (ANGPT) 1 and 2 may be activated or repressed by HIF-1 in response to 

hypoxia depending on the cell type. 

 

 

1.4 Oxygen-dependent regulation of HIF-1α stability  

HIF-1α mRNA is ubiquitously expressed, regardless of the level of oxygen tension. The 

regulation of HIF-1α protein levels in cells occurs at the level of protein stability. HIF-

1α protein accumulates under hypoxic conditions. At physiological oxygen 

concentrations, the HIF-1α protein is unstable with a half-life of less than 5 minutes. 

This rapid turnover is mediated via hydroxylation of prolyl and asparaginyl residues. 

 

1.4.1 Prolyl hydroxylation 

The HIF-1α prolyl hydroxylases are crucial for the intricate and finely tuned cellular 

oxygen-sensing system. Three mammalian prolyl hydroxylase enzymes have so far been 
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identified, termed PHD1, 2 and 3. Their activity relies absolutely on the availability of 

oxygen (in the form of dioxygen O2) and 2-oxoglutarate as substrates; ferrous iron 

(Fe2+) is also an important co-factor. Ascorbate is also required to reduce ferric iron 

(Fe3+) back to Fe2+, after oxidation reactions, in order for the PHD enzyme to be 

recycled (Counts et al., 1978). Hydroxylation of proline residues 402 and 564 of human 

HIF-1α (Hellwig-Burgel et al., 2005) in the ODD domain of HIF-1α mediates the 

binding of von Hippel-Lindau (VHL) complex; the substrate recognition component of 

an E3 ligase complex that targets HIF-1α for ubiquitination and proteasomal 

degradation (Pan et al., 2007). The leucine residue 574 mediates the recognition of HIF-

1α by VHL by recruiting a prolyl hydroxylase for the hydroxylation of Pro 564, but 

both Pro 402 and 564 can interact independently with VHL.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Schematic of HIF-1α destabilisation and stabilisation 

Schematic illustration of HIF-1α degradation at 21% oxygen, and stabilisation at 0.5% oxygen. In the 

presence of oxygen, PHD targets the α-subunit for proteasomal degradation. In the absence of sufficient 

substrate, the α-subunit binds to its β-subunit, translocating to the nucleus where a myriad of genes are 

either activated or suppressed. (Abbreviations: Fe2+, ferrous iron; 2-OG, 2-oxoglutarate; O2, oxygen; 

PHD, prolyl hydroxylases; VHL, von Hippel-Lindau; OH, hydroxylation; Ub, Ubiquitinated, HRE, 

hypoxic response element). 
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1.4.2 Asparaginyl hydroxylation 

Asparaginyl hydroxylation of HIF-1α occurs in the HIF-1α C-TAD, preventing trans-

activation. A yeast two-hybrid screen led to the identification of factor inhibiting HIF-1 

(FIH-1). FIH-1 is the asparaginyl hydroxylase that hydroxylates human HIF-1α at 

asparagine (Asn) 803. Hydroxylation of this specific asparagine residue prevents 

transcriptional activity through inhibiting the interaction with the transcriptional 

coactivator CBP/p300 [where CBP is CREB (cAMP-response-element-binding 

protein)- binding protein] (Brahimi-Horn et al., 2007) thus rendering the HIF-1α protein 

incapable of mediating transcriptional activation. Thus, hydroxylases confer a two-

pronged oxygen-dependent repression of the HIF pathway. In hypoxia, the repression 

imposed by PHDs and FIH is removed and the HIF pathway is activated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5 – Summary of the regulation of HIF-1α stability 

A gradient of pO2 from normoxic (left) to hypoxic/ anoxic conditions (right), highlighting the crucial 

events which occur at high pO2 verses events occurring at low pO2 (adapted from Pouyssegur et al., 

2007). 
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1.5 Oxygen-independent regulation of HIF-1α stability/ activity 

Though HIF-1α stability is most frequently associated with hypoxia, non-hypoxic 

regulation has been demonstrated. 

 

1.5.1 Pharmacological 

Iron chelators such as desferoxamine (DFX) bind free iron, such as the iron found in the 

reactive centre of the PHDs, thus are able to mimic hypoxia (Schofield and Ratcliffe, 

2005) by the reducing the availability of iron as a co-factor. Cobalt chloride (CoCl2) is 

another agent which has been used to stabilise HIF-1α in normoxic oxygen conditions 

(Chandel et al., 2001) and this may be due to competition from CoCl2 with iron. 

However, it has been claimed to ‘mimic hypoxia’ by inhibiting the interaction between 

HIF-1α and the VHL protein by direct binding to HIF-1α (Yuan et al., 2003). It has also 

been reported that transcriptional activity of erythropoitin, glycolytic enzymes and 

vascular endothelial growth factor occurs in response to CoCl2 in human heptoma cells. 

The mechanism of which was attributed to the production of reactive species generation 

via mitochondrial-independent means (Chandel et al., 1998). 

  

1.5.2 Genetic mutations 

The von Hippel–Lindau tumor suppressor protein (pVHL) is encoded by the VHL gene 

and when inactivated is associated with von Hippel–Lindau disease. Maxwell et al., 

1999 demonstrated that renal carcinoma cells (RCC) lacking VHL constitutively 

express both HIF-1α and HIF-2α as well as multiple HIF target genes. This effect is 

observed because VHL-dependent ubiquitination and proteasomal degradation of HIF-

1α and HIF-2α can no longer occur. Hypoxic regulation of HIF could be restored upon 

reintroduction of plasmids encoding the VHL polypeptide (Maxwell et al., 1999). 

 

1.5.3 Growth factors 

HIF-1α concentration can also increase in response to growth factor stimulation. 

However, HIF-dependent growth factor stimulation differs in two important respects 

from the increase in HIF-1α concentration in response to hypoxia. First, growth factor 

stimulation induces HIF-1α expression in a cell type-specific manner and secondly, 

growth factors stimulate the synthesis of HIF-1α via activation of the P13K or MAPK 
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pathways (Fukuda et al., 2002) (Figure 6) and this regulation is not at the level of 

protein stability. 

 

Figure 6 – Growth factor stimulation of                    
HIF-1α protein synthesis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.5.4 Metabolic intermediates 

Hydroxylation of HIF-1α is required for degradation of HIF-1α by VHL. PHDs catalyse 

HIF-1α hydroxylation using 2-oxoglutarate as a cofactor and generate succinate as an 

end product (Schofield and Ratcliffe, 2004). This mechanism indicates that increased 

levels of succinate could antagonise HIF-1α hydroxylation, leading to HIF activation. 

Indeed, this has been confirmed in cells lacking fumarate hydratase (FH) and succinate 

hydrogenase (SDH) (Pollard et al., 2005), enzymes of the TCA cycle. Loss of function 

mutations in FH and SDH lead to inherited cancer syndromes. Mutations lead to 

increased levels of both succinate and fumarate, sequential metabolites of the 

mitochondrial TCA cycle, which have been shown to inhibit PHD and to increase HIF-

1α protein levels.  

 

1.5.5 S-nitrosylation 

In murine tumours, exposure to ionising radiation stimulated the generation of NO in 

tumour associated macrophages. As a result, the HIF-1α protein is S-nitrosylated at 

Cys533 in the ODD domain, which prevents its destruction. Importantly, this 

mechanism appears to be independent of the prolyl hydroxylase-based pathway that is 

involved in oxygen-dependent regulation of HIF-1α. Selective disruption of this S-

 

 

Growth factor binding to a cognate 

receptor tyrosine kinase activates the 

phosphatidylinositol 3-kinase (PI3K) and 

mitogen-activated protein kinase 

(MAPK) pathways. The effect of growth 

factor signalling is an increase in the rate 

at which a subset of mRNAs within the 

cell (including HIF-1α mRNA) are 

translated into protein (Semenza, 2003). 
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nitrosylation significantly attenuated both radiation-induced and macrophage-induced 

activation of HIF-1α (Li et al., 2007). 

 

1.5.6 Free radicals 

Recent data has shown that free radicals play a role in the regulation of HIF-1α 

stabilisation (Klimova and Chandel, 2008). Some authors have proposed a model in 

which ROS (section 1.6) generation increases under hypoxia. As early as 1998, Chandel 

et al., reported ROS generation from the mitochondria were sufficient to trigger HIF-1α 

DNA binding activity and mRNA expression of EPO and VEGF (downstream HIF-1α 

targets) in human hepatoma cells. They later reported that during hypoxia, superoxide 

was generated at Complex III of the mitochondrial electron transport chain. This 

superoxide passes into the cytosol via anion channels where is converted to hydrogen 

peroxide (H2O2) which induces PI3K and protein phosphatase activity leading to HIF-

1α stabilisation and transcription of downstream target genes in hypoxic cells (Chandel 

et al., 2000a). Data obtained by Agani et al., 2000 demonstrated that inhibitors of the 

electron transport chain, specifically at Complex I, blocked HIF-1α expression in mice 

exposed to a hypoxic environment. These data are also supported by evidence from 

human ape xenomitochondrial cybrids (HAXC) (the introduction of mtDNA from non-

human apes into a human cells lacking mtDNA), where a decrease in HIF-1α expression 

was observed. Mitochondrial Complexes II, III, IV and V had activities 

indistinguishable from parental human or non-human primate cells. However, there was 

a 40% reduction in the activity (VMax) of the electron transport chain at Complex I 

(Agani et al., 2000), consequently there would be no ROS generated from the 

mitochondria as Complex I lies upstream of Complex III (section 1.6.2.5). 

 

Although several groups have confirmed the above data (Guzy et al., 2005;Brunelle et 

al., 2005), the generation of free radicals in hypoxia and their effect of stabilising HIF-

1α remains controversial since there is evidence to the contrary. For example, Genius 

and Fandrey, demonstrate decreased NADPH oxidase (section 1.6.2.2) ROS production 

in hypoxia (Genius and Fandrey, 2000). Another group, in 2001, demonstrated that 

HIF-1 activation does not require an active mitochondrial respiratory chain. Their data 

shows that cells without functional mitochondria (Rho0), generated by prolonged 

exposure to ethidium bromide have a normal response to hypoxia, measured at the level 

of HIF-1α stabilisation, translocation and its transcriptional activation activity. 

Furthermore, over expression of catalase (section 1.7.3), which degrades hydrogen 
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peroxide, either in the mitochondria or cytosol, fails to modify the hypoxic response, 

indicating hydrogen peroxide is not a signalling molecule in the hypoxic signalling 

cascade (Srinivas et al., 2001). 

 

Vaux et al., 2001 studied HIF-1α stabilisation and the HIF target gene, glucose-

transporter-1, in a variety of Rho0 cells or in cells which had other genetic defects in 

mitochondrial respiration. HIF induction by hypoxia was essentially normal in all cells 

tested. Hydrogen peroxide production was measured and found to be reduced in Rho0 

versus wild-type cells and further reduced by hypoxia. Furthermore, concentrations of 

rotenone that maximally inhibited respiration did not affect HIF activation by hypoxia 

(Vaux et al., 2001). These data do not support the model of ROS-induced HIF-1α 

stabilisation and indicate that a functional respiratory chain may not be necessary for the 

regulation of HIF by ROS. 

 

The demonstration of free radical generation in hypoxia, and more specifically from the 

mitochondria remains contentious, largely due to methodologies used to measure free 

radicals. The formation of ROS and RNS may be monitored using a variety of 

procedures including fluorometric and spectrophotometric methods, chemiluminescence 

and electron paramagnetic resonance (Chance et al., 1979;Pou et al., 1989;Tarpey and 

Fridovich, 2001). These methods rely on the redox properties of specific ROS and RNS, 

and therefore are prone to artefacts (or false positive results) caused by species of 

similar reactivity or by reactive intermediates produced by the probe itself (Picker and 

Fridovich, 1984;Faulkner and Fridovich, 1993;Liochev and Fridovich, 1995;Liochev 

and Fridovich, 1998). Specific inhibitory enzymes may be added to unequivocally 

identify the species (such as superoxide dismutase or catalase to eliminate superoxide or 

hydrogen peroxide, respectively) but these enzymes do not determine whether ROS are 

the primary species or rather intermediates formed in the detection reaction. For 

example, it has been reported that superoxide was produced by the enzyme glucose 

oxidase since superoxide dismutase inhibited the reduction of nitroblue tetrazolium in 

the presence of glucose, when in fact the probe was reacting with the enzymes 

prosthetic group and superoxide was formed after this reaction (al-Bekairi et al., 

1994;Liochev and Fridovich, 1995). Similar results have been demonstrated with 

luminol and lucigenin (Liochev and Fridovich, 1998). 

 



Chapter one: Introduction 
 

 40

Studies using visible light spectroscopy (VLS) have shown that generation of ROS 

occurs at low oxygen concentration ([O2]) (3% O2) in the murine monocytic cell line, 

RAW246.7 and that it is dependent on the redox state of the electron transport chain 

(Palacios-Callender et al., 2004), which is regulated by the interaction of NO on 

cytochrome c oxidase (Cooper and Giulivi, 2007). This has led to the suggestion that 

free-radical dependent stabilisation of HIF-1α is indeed a possible mechanism of HIF-

1α stabilisation, particularly in pathological conditions such as cancer which are known 

to be associated with particularly high free-radical generation (Quintero et al., 2006a). It 

also opens up the possibility of NO taking part in this regulation in situations in which 

the redox status of the oxidative-phosphorylation chain is reduced in the presence of 

enough oxygen to favour the generation of ROS. This might occur as a result of the 

relative ratio between [O2] and [NO] but not in hypoxia, where although the oxidative-

phosphorylation chain is reduced there might not be enough oxygen to allow free-

radical generation (Palacios-Callender et al., 2004). 

 

1.6 Free radicals 

1.6.1 Introduction 

Reactive oxygen species (ROS) are oxygen-derived small molecules, including oxygen 

radicals (superoxide (O2
-·), hydroxyl (·OH), peroxyl (RO2·), and alkoxyl (RO·)) and 

certain non-radicals that are either oxidising agents and/or easily converted into radicals, 

such as hypochlorous acid (HOCl), ozone (O3), singlet oxygen (1O2) and hydrogen 

peroxide (H2O2). Nitrogen-containing oxidants, such as nitric oxide (NO), are called 

reactive nitrogen species (RNS).  

 

The presence of free radicals in biological systems was discovered more than 50 years 

ago (Commoner et al., 1954). Shortly thereafter, it was hypothesised that oxygen 

radicals could be by-products formed through enzymatic reactions in vivo (Harman, 

1956). Denham Harman described free radicals as a Pandora’s box of evils that may 

account for cellular damage, mutagenesis, and cancer and could play a role in biological 

ageing. However, one beneficial function of ROS production was also realised, namely, 

the importance of ROS in host defence, highlighted by deficiency in ROS generation 

and reduced killing ability of leukocytes. Over the last few decades, however, ROS have 

been shown to play an important role as regulatory mediators in signalling processes 

(Forman and Torres, 2002;Quintero et al., 2006b;Colombo and Moncada, 2009). 
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1.6.2 Physiological sources of ROS 

1.6.2.1 Introduction 

In mammalian cells, ROS can be formed in response to toxic reagents or as products of 

O2-utilising enzymes such as those in NADPH oxidases, xanthine oxidase, NO 

synthases (NOS) and the mitochondrial respiratory chain. 

 

1.6.2.2 Nicotamide adenine dinucleotide phosphate (NADPH)-oxidases 

 

1.6.2.2.1 Introduction 

The NADPH oxidase (NOX) family are proteins that transfer electrons across biological 

membranes and have emerged as a major source of ROS in signal transduction (Brown 

and Griendling, 2009). NADPH oxidase proteins are membrane-associated, multiunit 

enzymes that catalyse the reduction of oxygen using NADPH as an electron donor, 

producing superoxide via a single electron reduction. The electron travels from NADPH 

down an electrochemical gradient first to flavin adenine dinucleotide (FAD), then 

through the NOX heme groups, and finally across the membrane to oxygen, forming 

superoxide (Figure 7). Historically, the NADPH oxidase was known as the source of 

phagocyte respiratory burst; however, in the past 15 years NOX family members and 

the ROS they produce have been identified as important contributors to many signalling 

pathways (Brown and Griendling, 2009). 

 

1.6.2.2.2 Discovery 

The first body of research to be undertaken into NOX proteins was carried out in 

neutrophils, whilst studying the respiratory burst NADPH oxidase complex (Babior et 

al., 1973). The catalytic subunit of this protein is now known as NOX2, or gp91phox. 

This phagocytic NADPH oxidase (NOX2) enzyme actively generates superoxide, and 

plays a key role in host defence. This enzyme consists of the integral membrane 

subunits gp91phox and p22phox, which form the heme-containing catalytic core of the 

enzyme termed flavocytochrome b558 (Bedard and Krause, 2007) which are dispersed 

between the cytosol and the membranes whilst inactive. The other components of the 

NADPH complex (p47phox, p67phox, p40phox and small G-protein Rac1/2) are cytosol 

proteins. The activation of phagocytes by various stimuli triggers the phosphorylation of 

the p47phox, p67phox and p40phox cytosolic components and their translocation to the 
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plasma membrane, where they interact with flavocytochrome b558. Concomitantly, Rac2 

dissociates from its RhoGDP dissociation inhibitor, which allows it to interact with 

flavocytochrome b558 to form a binding partner for p67phox. This allows transfer of 

electrons from NADPH to oxygen resulting in the rapid elevation of superoxide levels 

(Figure 7) (Kietzmann and Gorlach, 2005).  

 

During the discovery of the phagocytic NADPH oxidase in the 1980’s, a series of 

observations suggested that similar enzyme systems existed in many other cell types 

including fibroblasts, tumour cells, endothelial cells and vascular smooth muscle cells 

(Bedard and Krause, 2007). However, new NOX family members have only been 

cloned and studied in the past decade. The first homologue of NOX2 to be cloned was 

NOX1, originally described in 1999 as MOX1 (Suh et al., 1999), and by a separate 

group as NOH-1 (Banfi et al., 2000). Dual oxidase (DUOX) enzymes (longer 

homologues of NOX2) were cloned shortly after NOX1. In 2000, NOX3 was described 

as a gp91phox homologue expressed in foetal kidney and a cancer cell line (Kikuchi et 

al., 2000). NOX3 was later determined to be primarily expressed in the inner ear in 

adults (Banfi et al., 2004a) NOX4, was discovered in the kidney (Geiszt et al., 

2000;Shiose et al., 2001), and soon afterwards was described in osteoclasts (Yang et al., 

2001). NOX5 was discovered in 2001 by two different groups (Cheng et al., 2001;Banfi 

et al., 2004b). 

 

1.6.2.2.3  Structure and activation 

Structurally, all members of the NOX family contain at least six transmembrane 

domains and cytosolic FAD and NADPH binding domains. NOX1-4 lack extra 

functional domains that NOX5 and DUOX1 /2 contain (Figure 7). A number of 

regulatory subunits have been identified for the NOX isoforms. Activation can occur as 

a result of various stimuli such as angiopoietin-1, angiotensin II (AngII), insulin, 

thrombin and VEGF. These stimuli alter the activity and/or expression of the NOX 

proteins and subunits, and ultimately the amount of ROS produced. Activation 

mechanisms for NOX1-3 are similar, and involve complex formation with regulatory 

cytosolic subunits. Regulation of NOX4 is poorly understood, but may be primarily at 

the expression level (Krause, 2004). In contrast, NOX5 and the DUOXs appears to be 

activated by calcium (Ca2+) (Banfi et al., 2001;Meziane-El-Hassani et al., 2005). 
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Figure 7 – NADPH oxidase family 

NADPH oxidase (NOX2) is a multiunit enzyme system that catalyses the NADPH-dependent reduction 

of oxygen to O2
•−. NOX2 comprises a membrane-bound gp91phox/p22phox heterodimer and other subunits 

(p67phox, p47phox, p40phox and Rac), which associate with this complex in the activated enzyme. Six 

homologues (NOX1, NOX3, NOX4, NOX5, DUOX1 and DUOX2) with levels of identity with NOX2 

have been identified. NOXO1 and NOXA1, which may interact with NOX1 and NOX4, are two 

homologues of p67phox and p47phox respectively. NOX family homologues have putative NADPH- and 

flavin-binding sites, as well as functional oxidase activity that produces O2
•−. NOX5, DUOX1, and 

DUOX2 also have a Ca2+-binding site, whereas DUOX1 and DUOX2 have an additional transmembrane 

and a peroxidase-like domain. 

 

1.6.2.2.4 NOX derived ROS and the relationship of NOX to other sources of ROS  

Superoxide is the primary product of NOX enzymes. Superoxide can dismutate to a 

secondary signalling molecule intermediate; hydrogen peroxide, either spontaneously or 

enzymatically via superoxide dismutase (SOD) (section 1.7.2). As a consequence, 

superoxide must be produced in very close proximity to its target to be effective as a 

signalling molecule. Superoxide is also capable of reacting with nitric oxide, forming 

highly reactive peroxynitrite. This inactivates nitric oxide, resulting in pathological 

consequences particularly in vascular endothelial cells (1.6.4.1). Superoxide also reacts 

with iron-sulphur (FeS4) clusters within proteins, which may release ferric ions (Panov 

et al., 2005). In the case of aconitase, superoxide inactivates the enzymes, leading to 

reduced mitochondrial function (Gardner et al., 1995). Superoxide is also known to 

react with protein thiols such as cysteine residues, but it has also been demonstrated that 

the reaction rate of SOD converting superoxide to hydrogen peroxide is much faster 

than the reaction rate of biothiols (Forman et al., 2004).  
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Hydrogen peroxide is more stable than superoxide and is also capable of crossing 

biological membranes. Hydrogen peroxide formation is tightly regulated by catalase, 

glutathione and peroxiredoxins (section 1.7), which convert hydrogen peroxide to water 

and other metabolites. 

 

NADPH oxidases are not the only source of ROS-producing molecules expressed 

physiologically (see below) and there appears to be a reciprocal relationship between 

many of these sources of ROS. For example, exposure of endothelial cells to oscillatory 

shear stress leads to NOX-dependent activation of xanthine oxidase (McNally et al., 

2003), while Ang II stimulation results in mitochondrial ROS production downstream 

of NOX activation (Dikalov et al., 2008). Endothelial NOS (eNOS) uncoupling has also 

been shown to be a direct result of NOX activation (Landmesser et al., 2003). It 

therefore seems that NOX enzymes play roles as initiators and integrators of redox 

signalling via cross talk with other ROS-producing enzymes (Brown and Griendling, 

2009). 

 

1.6.2.3 Xanthine oxidoreductase 

Xanthine oxidoreductase (XOR) is a meloflavoprotein enzyme that exists in two 

interconvertible, although functionally distinct forms, namely, xanthine dehydrogenase 

(XD) and xanthine oxidase (XO). Of them, only the latter generates superoxide by the 

oxidation of hypoxanthine to uric acid using molecular oxygen as the electron acceptor 

(Puddu et al., 2008). Usually levels of XO activity are un-measurable in most cell types, 

although XO may play an important role in vascular superoxide generation in 

experimental models of type I diabetes (Forbes et al., 2008). Xanthine oxidase is also 

activated by pro-inflammatory mediators and is up-regulated by NADPH oxidase 

activation. In vitro experiments with endothelial cells have shown that incubation with 

apocynin (a NAPDH oxidase inhibitor) or disruption of gp47phox gene markedly 

decreases XO expression and activity (McNally et al., 2003). 

 

1.6.2.4 Nitric oxide synthases (NOS) 

Nitric oxide (NO) is a stable, hydrophobic, diatomic radical gas, which is both lipid and 

water-soluble. It is produced by the catalytic conversion of L-arginine to L-citrulline by 

one of three nitric oxide synthase (NOS) isoforms (Palmer et al., 1987;Bredt and 
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Snyder, 1990;Pollock et al., 1991;Stuehr et al., 1991a). Each isoform requires several 

co-factors for the reaction, including nicotinamide adenine dinucleotide phosphate 

(NADPH), tetrahydrobiopterin (BH4), flavin adenine dinucleotide (FAD), 

flavinmononucleotide (FMN), calmodulin (CaM) and O2 (Knowles and Moncada, 

1994). The catalytic reaction involves two steps. L-arginine is initially hydroxylated to 

NGhydroxy-L-arginine (NOHA; (Stuehr et al., 1991b)) followed by NOHA oxidation to 

equimolar quantities of NO and L-citrulline (Lirk et al., 2002). 

 

There are three major isoforms of NOS: neuronal NOS (nNOS), endothelial NOS 

(eNOS) and inducible NOS (iNOS). They all exist as homodimers in their active form, 

share 50–60% sequence homology and show 80–90% conservation among species 

(Forstermann and Kleinert, 1995). 

 

Endothelial-derived NO is a paracrine factor that controls vascular tone, inhibits platelet 

function, prevents adhesion of leukocytes and reduces proliferation of the intima. An 

enhanced inactivation and/or reduced synthesis of NO is seen in conjunction with risk 

factors for cardiovascular disease (section 1.6.4.1). This condition, referred to as 

endothelial dysfunction, can promote vasospasm, thrombosis, vascular inflammation 

and proliferation of vascular smooth muscle cells. Vascular oxidative stress with an 

increase in ROS contributes to mechanisms of vascular dysfunction. Oxidative stress is 

mainly caused by an imbalance between the activity of pro-oxidative enzymes and anti-

oxidative enzymes, in favor of the former. Increased ROS concentrations reduce the 

amount of bioactive NO by chemical inactivation to form toxic peroxynitrite. 

Peroxynitrite in turn can uncouple eNOS to become a dysfunctional superoxide-

generating enzyme that contributes to vascular oxidative stress. Oxidative stress and 

endothelial dysfunction can promote atherogenesis (section 1.6.4.1) (Forstermann, 

2010). 

 

Inducible NO provides a primary defense mechanism against tumour cells and 

intracellular and extracellular microorganisms in macrophages (Moncada and Higgs, 

1993). The ‘high output’ NO from iNOS is cytotoxic and cytostatic and is thus 

important in combating bacterial infections. During the course of an inflammatory 

response, stimulated macrophages produce high levels of NO that surpass physiological 

concentrations and this diffuses to target cells (e.g. bacteria, fungi or tumour cells) 

where it causes DNA damage, low density lipoprotein (LDL) oxidation, isoprostane 



Chapter one: Introduction 
 

 46

formation, tyrosine nitration and inhibits mitochondrial respiration (Guzik et al., 2003). 

NO binds with iron-sulphur centres in key enzymes involved in the target’s respiratory 

chain and DNA synthesis pathway. NO target enzymes include aconitase, which is part 

of the TCA cycle, reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase, 

which belongs to Complex I of the mitochondrial respiratory pathway, succinate 

dehydrogenase part of mitochondrial Complex II and ribonucleoside-diphosphate 

reductase, which is essential in DNA synthesis (Moncada and Higgs, 1993). The high 

NO levels are usually paralleled with the production of superoxide anion. Nitric oxide 

and oxygen combine forming peroxynitrite, which complements the cytotoxic effects of 

NO (Linares et al., 2001). Animal models and human clinical data have demonstrated 

the importance of iNOS and ‘high output’ NO in the development of septic shock, a 

heightened inflammatory response (Ochoa et al., 1991;Liu et al., 1993). 

 

1.6.2.5 Mitochondrial 

 
1.6.2.5.1 Introduction 

The mitochondria are the largest consumers of oxygen and the electron transport chain 

(ETC) is responsible for most of the ROS produced in human tissues (Chance et al., 

1979). Mitochondrial respiration accounts for approximately 90% of cellular oxygen 

uptake, and as much as 3% of the oxygen consumed is converted to ROS (Turrens, 

2003). This ROS production contributes to a range of pathologies and is also involved 

in redox signalling from the organelle to the rest of the cell (Droge, 2002;Balaban et al., 

2005). 

 

1.6.2.5.2 Sites of superoxide formation in the respiratory chain 

There are a variety of respiratory components, including flavoproteins, iron-sulphur 

clusters and ubisemiquinone that are thermodynamically capable of transferring one 

electron to oxygen. Moreover, most steps in the respiratory chain involve single-

electron reactions, which favours the reduction of oxygen. However, only a small 

proportion of mitochondrial electron carriers with the thermodynamic potential to 

reduce oxygen to superoxide do so (Murphy, 2009). 

 

Superoxide formation occurs on the outer mitochondrial membrane, in the matrix and 

on both sides of the inner mitochondrial membrane (Figure 8). Whilst the superoxide 

generated in the matrix is eliminated in that compartment by superoxide dismutase 
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(section 1.7.2), part of the superoxide produced in the intermembrane space may be 

carried to the cytoplasm via voltage-dependent anion channels (Han et al., 2003). The 

relative contribution of every site to the overall superoxide production varies from organ 

to organ and also depends on whether the mitochondria are actively respiring (State 3) 

or the respiratory chain is highly reduced (State 4) (Barja, 1999).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 – Sites of superoxide formation in the respiratory chain 

Various respiratory Complexes leak electrons to oxygen producing primarily superoxide anion (O2
−•). 

This species may reduce cytochrome c (in the intermembrane space), or may be converted to hydrogen 

peroxide (H2O2) and oxygen (in both the matrix and the intermembrane space). Increased steady state 

concentrations of O2
−• may reduce transition metals (which in turn react with H2O2 producing hydroxyl 

radicals (OH•)) or may react with nitric oxide to form peroxynitrite. Both OH• and peroxynitrite are 

strong oxidants which indiscriminately react with nucleic acids lipids and proteins (Turrens, 2003). 

 
 
The rate of superoxide formation by the respiratory chain is controlled primarily by 

mass action, increasing both when electron flow slows down (increasing the 

concentration of electron donors) and when the concentration of oxygen increases 

(Turrens et al., 1982). The energy released as electrons flow through the respiratory 

chain is converted to a proton (H+) gradient through the inner mitochondrial membrane 

(Mitchell, 1977). This gradient in turn, dissipates through the ATP synthase (Complex 

V) and is responsible for the turning of a rotor-like protein Complex required for ATP 

synthesis (Noji and Yoshida, 2001). In the absence of ADP, the movement of protons 



Chapter one: Introduction 
 

 48

through ATP synthase ceases and the proton gradient builds up causing electron flow to 

slow down and the respiratory chain to become more reduced (State 4 respiration). As a 

result, the physiological steady state concentration of superoxide formation increases 

(Boveris et al., 1972).  

 

1.6.2.5.3 Sites of nitric oxide formation in the respiratory chain 

Two separate laboratories have discovered that the mitochondrial matrix contains a 

unique form of NOS (Ghafourifar and Richter, 1997;Giulivi et al., 1998;Alvarez et al., 

2003). It appears this formation of NO in the mitochondria may have important 

consequences, as this NO binds to haem groups from cytochromes (in particular 

cytochrome c oxidase) and inhibits respiration (Poderoso et al., 1996). In turn, this may 

stimulate superoxide formation, which in turn may react with NO forming peroxynitrite, 

a strong oxidant capable of inhibiting enzymes and affecting mitochondrial integrity 

(Cassina and Radi, 1996;Radi et al., 2002). 

 

1.6.2.5.4 Mitochondrial ROS formation during hyperoxia 

Mitochondrial production of superoxide increases with oxygen concentration. The 

proportion of oxygen converted into superoxide in vitro ([O2] = 220 μM) accounts for 

approximately 1-3% of the overall oxygen consumption. In vivo, particularly in tissues 

not exposed to atmospheric oxygen, the proportion of oxygen converted to superoxide is 

likely to be smaller since the intramitochondrial oxygen concentration is between 3 and 

30 μM (Wittenberg and Wittenberg, 1989). As oxygen concentrations increase, the rate 

of mitochondrial superoxide production increases linearly (Turrens et al., 1982). 

However, the release of hydrogen peroxide from mitochondria is biphasic, increasing at 

a faster rate above 60% oxygen (Turrens et al., 1985). The slower release of hydrogen 

peroxide at lower pO2 suggests that the mitochondrial antioxidant defences (section 

1.7.2) can compensate for sudden increases in the concentration hydrogen peroxide. 

These defences become overwhelmed at higher pO2, which explains the mitochondrial 

alterations observed in the lungs of animals exposed to oxygen concentrations above 

60% (Crapo et al., 1983).  

 

Under normobaric hyperoxic conditions, the lungs are the only organs affected by ROS, 

since they are in direct contact with atmospheric oxygen. Under hyperbaric conditions, 

however, more oxygen is dissolved in the plasma, and therefore other tissues become 

exposed to a hyperoxic environment. Under these conditions, the brain is the first organ 
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to show the effects of an increased ROS formation, resulting in convulsions (Turrens, 

2003). 

 

1.6.2.5.5 Mitochondrial ROS formation during hypoxia 

The formation of ROS should decrease with hypoxia, since mitochondrial activity is 

proportional to ROS. However the paradoxical increase in oxidative stress under 

moderately hypoxic conditions (1.5% oxygen, equivalent to an oxygen concentration of 

around 16 μM) has been reported (Schumacker, 2002;Waypa and Schumacker, 2002). 

These studies show that when cells are incubated with dichlorofluorescin, a fluorescent 

probe for ROS, hypoxia increases fluorescence in cells with functioning mitochondria 

(Chandel et al., 1998). Mutants without a functioning respiratory chain do not show this 

increase in fluorescence (Chandel et al., 1998;Schroedl et al., 2002). This response is 

eliminated when cells are made severely hypoxic (Schumacker, 2002). The proposed 

increase in ROS formation during hypoxia is paradoxical, given the high affinity of 

cytochrome c oxidase for oxygen; at low pO2 any remaining oxygen should be reduced 

to water by the terminal oxidase. However, two factors may contribute to an increase in 

mitochondrial superoxide formation. Firstly, under hypoxic conditions, low 

concentrations of NO radical may still be produced since the Km for oxygen of 

mitochondrial NOS is around 30-40 μM (Alvarez et al., 2003). Secondly, NO may bind 

and inhibit cytochrome c oxidase, resulting in an increase in its Km for oxygen and an 

increased reduction of electron carriers located upstream from the terminal oxidase 

(Cooper and Davies, 2000), favouring superoxide formation at low oxygen 

concentrations (Palacios-Callender et al., 2004). 

 

In summary, it has long been recognised that ROS such as superoxide and hydrogen 

peroxide are produced in cells either as by-products during mitochondrial electron 

transport or by several oxidoreductases. Stimulated production of ROS was first 

described in phagocytic cells such as neutrophils and macrophages and was named the 

‘respiratory burst’ due to the transient consumption of oxygen (Arnold et al., 2001). The 

production of ROS has been demonstrated in a variety of cells other than phagocytes 

and several studies have implicated ROS in physiological signalling (Bejarano et al., 

2007). 
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1.6.3 Physiological function of ROS 

 

1.6.3.1 Introduction 

The balance between oxidants and antioxidants is reflected in the redox state within 

cells, and is important in the regulation of gene expression. Indeed, changes in cellular 

redox state may be integrally associated with cell differentiation, progression through 

the cell cycle and ageing processes. In some instances, ROS may act as bona fide 

second messengers. Extracellular ROS can initiate cellular signalling by activation of 

growth factor and cytokine receptors in a manner that does not require the presence of 

the receptor ligands (Hayes and Lockwood, 1987;Kadota et al., 1987;Koshio et al., 

1988;Huang et al., 1996) or via generation of lipid peroxides within cell membranes 

(Suzuki et al., 1997). A variety of stimuli lead to intracellular ROS production. Tumour 

necrosis factor-α (TNF-α) provokes a rise in hydrogen peroxide production from 

mitochondria, and other ROS, via induction of NADPH oxidase (Lo and Cruz, 

1995;Garcia-Ruiz et al., 1997). Interaction of platelet-derived growth factor (PDGF) 

and epidermal growth factor (EGF) with their receptors causes a transient increase in 

hydrogen peroxide. In the case of PDGF, this increase in hydrogen peroxide has been 

shown to be essential for growth induction.  

 

The effects of NO and RNS have been shown to parallel the effects of ROS. It is widely 

recognised that nitric oxide has beneficial physiological effects such as enhancing 

vasodilatation and inhibiting formation of platelet thrombi and, therefore, is protective 

against cardiovascular disease (Li and Forstermann, 2000).  

 

1.6.3.2 NOX derived ROS 

The NOX family of proteins has been demonstrated to be essential in normal 

physiology. Expression of NADPH oxidases is ubiquitous in mammals, though the 

individual NOX isoforms have different distributions between tissues (section 1.6.2.2). 

NOX proteins have been shown to regulate many fundamental physiological processes 

including cell growth, differentiation, apoptosis, and cytoskeleton remodelling. In 

addition, they have specialised functions, such as host defence (NOX2) (Rada et al., 

2008), otoconium formation in the inner ear (NOX3) (Krause, 2004), iodination of 
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thyroid hormone (DUOX2) (Milenkovic et al., 2007), and control of vascular tone 

(NOX2) (Cave et al., 2006).  

 

More recently, NOX proteins have been implicated in oxygen sensing. During the 

discovery of the different NOX isoforms, in vitro studies showed that NOX enzymes 

were less active in hypoxia than normoxia (Gabig et al., 1979). In vivo data has 

demonstrated the production of mitochondrial ROS in low oxygen, which activates 

HIF-1α (section 1.5.6). There is also evidence to suggest NADPH oxidase-derived ROS 

(He et al., 2002) are involved in oxygen sensing, but the mechanism is unclear.  

 

1.6.3.3 Cellular signalling 

Reactive oxygen species act through different pathways of signal transduction, making 

use of signalling molecules such as calcium, protein tryrosine phosphatases (PTPs), 

protein tyrosine kinases (PTKs) and transcription factors. 

 

1.6.3.3.1 Intracellular calcium signalling 

The cytosolic free Ca2+ concentration ([Ca2+]c) is an important intracellular messenger 

system. Usually, this concentration is kept low (100 nM) by Ca2+ pumps. In response to 

various stimuli, [Ca2+]c rises to micromolar levels, which leads to the activation of Ca2+-

dependent cellular processes. The rise in [Ca2+]c occurs through Ca2+
 influx across the 

plasma membrane and/or through Ca2+ release from intracellular stores. Oxidant 

induced inositol 1,4,5-triphosphate (IP3) release represents one component of the signal 

transduction pathway for Ca2+ release. IP3 promotes the release of Ca2+ ions from stores 

in the endoplasmic reticulum, thus activating protein kinase C (PKC), promoting its 

translocation to the plasma membrane. PKC phospholipase A2 (PLA2) is also activated 

and translocated to the plasma membrane in response to increased ([Ca2+]c. The 

products of PLA2 activity are arachidonic acid and its metabolites, which are primary 

mediators of immune and inflammatory responses.  
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1.6.3.3.2 Protein phosphatases 

Despite its toxicity, hydrogen peroxide is produced as a signalling molecule that 

oxidises critical cysteine residues of effectors such as protein tyrosine phosphatases 

(PTPs) in response to activation of cell surface receptors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 – Oxidative inactivation of protein tyrosine phosphatases by ROS 

All PTPs possess a redox-regulated cysteine, which catalyses the hydrolysis of protein phosphotyrosine 

residues by the formation of a cysteinyl-phosphate intermediate. Oxidation of this cysteine residue to 

sulfenic acid (RSOH) by H2O2 renders PTP completely inactive. Since the oxidation of PTP is reversible, 

PTPs exist in two forms; an active state with a reduced cysteine or an inactive state with an oxidised 

cysteine. Inactivation of PTP is associated with increased activation of protein tyrosine kinases (PTK) and 

mitogen-activated protein kinases (MAPK). 

 

PTPs are involved in the regulation of cell proliferation, differentiation, survival, 

metabolism, and motility by controlling the phosphorylation state of numerous signal-

transducing proteins. The catalytic domain of PTPs contains a conserved region with a 

single cysteine residue, which are susceptible to oxidative inactivation. Mutation or 

oxidation of this cysteine renders the enzymes inactive (Chiarugi and Cirri, 2003). 

Inactivation of PTP is associated with increased activation of protein tyrosine kinases 

(PTK) and mitogen-activated protein kinases (MAPK). 

 

Until recently, it had remained unclear how, even in the presence of the abundant 

detoxification enzymes peroxiredoxin (Prx) I and II (section 1.7.6), hydrogen peroxide 

can accumulate in the cytosol to a concentration sufficient for it to modify target 
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proteins. Woo et al., 2010 show that PrxI associated with membranes is transiently 

phosphorylated on tyrosine-194 and thereby inactivated both in cells stimulated via 

growth factor or immune receptors in vitro and those at the margin of healing cutaneous 

wounds in mice. The localised inactivation of PrxI allows for transient accumulation of 

hydrogen peroxide around membranes, where signalling components are concentrated, 

while preventing the toxic accumulation of hydrogen peroxide elsewhere. In contrast, 

PrxII was inactivated not by phosphorylation but rather by hyper-oxidation of its 

catalytic cysteine during sustained oxidative stress (Woo et al., 2010). 

 

1.6.3.3.3 Protein kinases 

Numerous studies (Bauskin et al., 1991;Devary et al., 1992;Abe et al., 1997;Kurata, 

2000) have found that oxidant treatment of cells produces elevations in protein 

phosphorylation and various protein kinases. The p38 mitogen-activated protein kinases 

(MAPK) are one of the most extensively studied families of protein kinases. There is 

evidence for activation of the MAPK system by NADPH oxidases, specifically NOX4 

(Brown and Griendling, 2009). This is thought to be due to the activation of signalling 

pathways upstream of ERK1/2 kinase, or it may be an indirect effect due to the 

inhibition of phosphatase activity by ROS (Figure 9) (Touyz, 2004). 

 

Another important kinase signalling pathway involves protein kinase C (PKC). PKC is 

not a single enzyme, rather PKC arises from a family of at least 12 related enzymes. The 

mechanism of activation involves lipids, calcium and PKC phosphorylation (Newton, 

1997). Reactive oxygen species have also been demonstrated to activate members of the 

PKC family (Newton, 1995;Nishizuka, 1995). Treatment of cells with hydrogen 

peroxide stimulates PKC activity (Larsson and Cerutti, 1989;Whisler et al., 1995). 

Hydrogen peroxide can induce tyrosine phosphorylation of PKC, enhancing its activity 

(Konishi et al., 1997). PKCs also contain structural motifs that are susceptible to redox 

modification. Selective oxidation within the amino-terminal domain, which contains a 

zinc-thiolate structure, can activate PKC (Gopalakrishna and Anderson, 1989). 

Conversely, oxidative modification within the carboxyl terminal domain inactivates 

PKC (Gopalakrishna and Anderson, 1989). Hence, PKC is subject to dual redox 

regulation, with lower levels of ROS stimulating its activity but higher levels inhibiting 

it (Gopalakrishna and Anderson, 1991;Jackson et al., 2002).  
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1.6.3.3.4 Transcirption factor, NF-κB  

There is experimental evidence that links NF-κB activity to cellular redox status (Li and 

Karin, 1999). NF-κB regulates the transcription of a host of genes including acute phase 

genes, cytokines and cell surface receptors (Baeuerle and Baltimore, 1996;Baeuerle and 

Henkel, 2003;Epstein et al., 2009). Hydrogen peroxide treatment of many cell types 

activates NF-κB (Schreck et al., 1991;Meyer et al., 1993;Manna et al., 1998;Wang et 

al., 1998) and in some systems antioxidants have been demonstrated to reduce or block 

NF-κB activation (Schreck et al., 1991;Meyer et al., 1993;Manna et al., 1998). 

However, hydrogen peroxide does not stimulate NF-κB activation in all cells suggesting 

that it is not a general mediator of NF-κB activation process (Anderson et al., 1994). 

Various other stimuli including pro-inflammatory cytokines and bacterial endotoxins 

have been shown to activate NF-κB (Li and Karin, 1999). It has been suggested that 

intracellular ROS levels may be involved in the stimulatory mechanism since treatment 

with these agents increases intracellular ROS levels, and antioxidant treatment can 

prevent NF-κB activation by these agents (Beg et al., 1993;Manna et al., 1998). 

 

Cells may respond to changes in environmental exposure to oxidative stress and to 

endogenous free radical production by increasing or decreasing cell proliferation, 

changing immune response or by induction of apoptotic cell death. In contrast, extreme 

levels of oxidative stress may give rise to necrotic cell death. 

 

1.6.4 Pathophysiological function of ROS 

 

1.6.4.1 Cardiovascular disease 

Oxidative stress in vascular disease (specifically a relative overproduction of ROS), 

contributes markedly to endothelial dysfunction. In the state of oxidative stress, the 

production of ROS exceeds the available antioxidant defence systems. In the case of 

NO, as a consequence, its bioavailability is reduced. A dominant mechanism reducing 

bioavailability of vascular NO related to it rapid oxidative inactivation by the ROS 

superoxide. In addition, there is evidence that persisting oxidative stress will render 

eNOS dysfunctional such that it no longer produces NO, but superoxide (Forstermann, 

2010). Risk factors for cardiovascular disease include hypertension (Li et al., 2006), 

diabetes mellitus (Hink et al., 2001), hyperchloesterlemia (Warnholtz et al., 1999) and 

atherosclerosis (Sorescu et al., 2002). These risk factors lead to a dramatic increase in 
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ROS in the vascular wall, a situation that culminates into oxidative stress. There are 

several enzymes that can potentially produce ROS in the vessel wall. Four major 

sources include NOX, xanthine oxidase, dysfunctional eNOS and enzymes of the ETC 

(section 1.6.2).  

 

Several isoforms of superoxide-producing NOX oxidases exist in vascular wall. 

Evidence for an inactivation of NOX in the vasculature has been provided in animal 

models of vascular disease such as angiotensin II-induced hypertension (Fukui et al., 

1997;Matsuno et al., 2005), genetic hypertension (Li et al., 2006), diabetes mellitus 

(Hink et al., 2001) and hyperchloesterlemia (Warnholtz et al., 1999). In atherosclerotic 

arteries, there is also evidence for increased expression of NADPH oxidase subunits 

gp91phox (NOX2) and NOX4 (Sorescu et al., 2002); angiotensin II leads to an 

overexpression of NOX1 (Matsuno et al., 2005). A confirmation of the role of NOX-

derived ROS in hypertension and atherosclerosis came from studies with genetic 

disruption of subunits of the enzyme. Knockout of p47phox subunit reduced blood 

pressure responses to angiotensin II and diminished atherogenesis in apolipoprotein E 

(apoE) -/- mice (Barry-Lane et al., 2001;Landmesser et al., 2002). 

 

Xanthine oxidase readily donates electrons to molecular oxygen, thereby producing 

superoxide. Oxypurinol, an inhibitor of XO, has been shown to reduce superoxide 

production and improve endothelium-dependent vascular relaxations to acetylcholine in 

blood vessels from hyperlipidemic animals (Ohara et al., 1993). This suggests a 

contribution of XO to endothelial dysfunction in early hyperchloesterlemia. The source 

of XO is not entirely clear, but increased levels of cholesterol have been shown to 

stimulate the release of the enzyme from the liver into the circulation. The circulating 

XO can then associate with endothelial glycosaminoglycans (White et al., 1996).  

 

Superoxide production from the mitochondria is largely generated from two locations 

within the respiratory chain. However, the amount of superoxide released from the 

mitochondria also depends on the activity of Mn-containing superoxide dismutase-2 

(SOD, section 1.7.2) located in the mitochondrial matrix. There is evidence to suggest 

that some cardiovascular diseases are associated with mitochondrial dysfunction 

(Ramachandran et al., 2002) and that mitochondrial ROS production may be linked to 

the development of early atherosclerotic lesions (Ballinger et al., 2002). Mitochondrial 
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dysfunction, arising from SOD2 deficiency, increases mitochondrial DNA (mtDNA) 

damage and accelerates atherosclerosis in apoE -/- mice (Ohashi et al., 2006). 

 

Nitric oxide synthase (NOS) enzymes contain four redox active prosthetic groups 

(FAD, FMN, heme and BH4) that, in principle, could pass electrons to oxygen (Heinzel 

et al., 1992;Masters et al., 1996;Xia et al., 1998;Pou et al., 1999). Electron transfer to 

NOS enzymes needs to be tightly controlled to prevent uncoupling of oxygen reduction 

from nitric oxide synthesis that will turn a functional NOS into a dysfunctional 

superoxide generating enzyme (Stuehr et al., 2001). Evidence for eNOS uncoupling has 

been obtained in peroxynitrite-treated rat aorta (Laursen et al., 2001), in endothelial 

cells treated with low-density lipoprotein (Pritchard, Jr. et al., 1995), and in isolated 

blood vessels from animals with pathphysiological conditions such as stroke prone 

spontaneously hypertensive rats (Kerr et al., 1999), deoxycorticosterone acetate 

(DOCA)- salt hypertension (Mollnau et al., 2002) or streptozotocin-induced diabetes 

(Hink et al., 2001).  

 

1.6.4.2 Cancer 

A hallmark of solid cancer growth is hypoxia. Unregulated cellular proliferation leads to 

formation of cellular masses that extend beyond the resting vasculature, resulting in 

oxygen and nutrient deprivation. The resulting hypoxia triggers a number of critical 

adaptations that enable cancer cell survival, including apoptosis suppression, altered 

glucose metabolism, and an angiogenic phenotype. There is also evidence to suggest 

that oxygen depletion stimulates mitochondria to increase ROS production, with 

subsequent activation of signalling pathways, such as hypoxia inducible factor (HIF)-1α 

(section 1.5.6) that promote cancer cell survival and tumour growth.  

 

Considerable interest has focused on cancers, where the involvement of ROS as 

regulators of cell proliferation and apoptosis is clearly an important factor. ROS-

mediated DNA damage has long been thought to play a role in carcinogenesis initiation 

and malignant transformation (Valko et al., 2006). Hydroxyl radicals, for example react 

with pyrimidines, purines and chromatin protein, resulting in base modifications, 

genomic instability, and alterations in gene expression. Mitochondrial DNA is a 

particularly vulnerable target because of its proximity to the ETC constituents, and is an 

important variable in carcinogenesis (Singh, 2006). Pathological sources of 

transforming ROS include chronic inflammation secondary to infections or chronic 
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chemical irritants such as tobacco smoke and asbestos (Knaapen et al., 2004). 

Transformed cells commonly lack cell cycle checkpoints and over-express oncogene 

growth factors and their tyrosine kinase receptors that drive cell proliferation, ultimately 

leading to tumour formation and chronic hypoxia (Hanahan and Weinberg, 2000).  

 

Several tyrosine kinase receptors have been shown to signal via ROS-dependent 

mechanisms (Bae et al., 1997). Both the epidermal growth factor (EGF) receptor and 

platelet-derived growth factors (PDGF) receptor signal in part through hydrogen 

peroxide generation (Figure 10). Ligand-induced receptor dimerisation activates 

phosphatidylinositol 3-kinase (PI3K), resulting in inositol 1,4,5-triphosphate (IP3) 

activation of Rac, which, in turn, activates NADPH oxidase (NOX) complex to produce 

superoxide and downstream signalling through superoxide and hydrogen peroxide. 

Hydrogen peroxide modulates signal transduction through its oxidation of the catalytic 

cysteine of protein tyrosine phosphatases, such as PTEN, preventing inactivation of 

tyrosine kinase signalling through activator protein-1 and Akt (Wang et al., 2000) 

(Figure 10). Hydrogen peroxide-mediated inhibition of protein phosphatases contributes 

to both cellular proliferation and apoptosis suppression and links oncogene over-

expression, a hallmark of cancers, with ROS-mediated signalling (Benhar et al., 2002). 

With a few as 300 malignant cells, this can drive cell proliferation beyond the carrying 

capacity of the resting vasculature, producing a hypoxic environment that switches on 

angiogenesis (Li et al., 2000). 
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Figure 10 – Tyrosine kinase signalling (in                
part) through hydrogen peroxide 

Tyrosine kinase receptor signalling is 

amplified by ROS via inhibition of PTEN, 

stimulating cell proliferation and 

suppressing apoptosis. 

 
 

 

 

There is also experimental data from Vaquero et al, 2004 demonstrating that pancreatic 

cancer cells produce ROS, which is stimulated by growth factors (Vaquero et al., 2004). 

The authors demonstrate that inhibition of ROS with antioxidants tiron and NAC or 

with the NADPH oxidase inhibitor, DPI, stimulated apoptosis. They also showed that 

inhibition of ROS with NOX4 antisense over-expression decreased ROS levels and 

stimulated apoptosis. They suggest ROS (most likely generated from NOX4), promote 

survival and act as anti-apoptotic factors in pancreatic cancer cells. Evidence from 

Quintero et al., 2006a has also demonstrated ROS generation in human head and neck 

carcinoma cells in normoxia (21% oxygen), and this was associated with the 

stabilisation of HIF-1α. Treatment with antioxidants prevented the accumulation of 

HIF-1α in these cells.  

 

1.6.4.3 Diabetes 

The hallmarks of type II diabetes include pancreatic β-cell dysfunction and insulin 

resistance. Under diabetic conditions, chronic hyperglycemia and subsequent 

augmentation of ROS deteriorate β-cell function and increase insulin resistance which 

leads to the aggravation of type II diabetes. There are several sources of ROS in cells 

(as previously described) including the ETC in mitochondria and membrane bound 

NADPH oxidase that during diabetic conditions augment ROS production. Acute 

exposure of β-cells to high glucose concentrations stimulates insulin gene expression, 

but chronic exposure has adverse effects on β-cell function. However, chronic 

hyperglycemia causes impairment of insulin biosynthesis and secretion. In the diabetic 
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state, hyperglycemia per se and subsequent ROS production decrease insulin gene 

expression and secretion and finally bring about apoptosis (Kaneto et al., 2010). 

Pancreatic β-cells are also rather vulnerable to ROS as they have a low expression of 

antioxidant enzymes such as catalase and glutathione (Lenzen et al., 1996;Tiedge et al., 

1997) thus the removal of deleterious β-cell ROS is inadequate in diabetic conditions. It 

has been shown that when β-cell-derived cell lines or rat-isolated islets were exposed to 

ROS, insulin gene promoter activity and mRNA expression were suppressed (Kaneto et 

al., 1999;Kaneto et al., 2001). 

 

While the majority of research has concentrated on cardiovascular disease and cancer, 

ROS have been implicated in an array of disorders such as diabetes, degenerative 

neurological disorders including Alzheimer’s and Parkinson’s diseases, autoimmune 

disorders including rheumatoid arthritis and eye disorders including macular 

degeneration (Droge, 2002).  

 

The effects of oxidative stress depend on the cell type, the level of oxidative stress 

experienced, and the protective mechanisms in place in that cell type. Modifications of 

redox-regulated processes may play a role in these conditions. Also the sensitivity of 

cells to oxidative stress depends largely on their intrinsic antioxidant systems, in 

particular the levels of glutathione (GSH) within the cell. 

 

1.7 Antioxidant defence systems 

1.7.1 Introduction 

Antioxidants are substances that, at relatively low concentrations, compete with other 

oxidisable substrates and thus act to significantly delay or inhibit the oxidation of these 

substances (Halliwell and Gutteridge, 1989). In biological systems, these include free 

radical scavenging enzymes such as superoxide dismutase (SOD), and abundant radical 

scavenging chemicals such as glutathione (section 1.7.7). Living cells and tissues have a 

number of mechanisms for re-establishing redox homeostasis after exposure to 

increased free radicals (ROS or RNS) (Droge, 2002). A major mechanism of redox 

homeostasis is based on the ROS-mediated induction of redox sensitive signal cascades 

that lead to increased expression of antioxidant enzymes. 
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1.7.2 Superoxide dismutase  

The formation of ROS is kept under tight control by various antioxidant systems. 

Within the mitochondria, superoxide is enzymatically converted to hydrogen peroxide 

by a family of metalloenzymes called superoxide dismutases (SOD) (Fridovich, 1995). 

Since superoxide may either reduce transition metals, which in turn can react with 

hydrogen peroxide producing hydroxyl radicals or spontaneously react with NO to 

produce peroxynitrite, it is important to maintain steady-state concentration of 

superoxide at the lowest possible level (Turrens, 2003).  

 

There are three mammalian SOD isoforms which include the copper and zinc-

containing SOD (CuZnSOD/ SOD1) (McCord and Fridovich, 1969a), the manganese-

containing SOD (MnSOD/ SOD2) (Weisiger and Fridovich, 1973), and the secreted 

extracellular SOD (ECSOD/ SOD3) (Marklund, 1982). CuZnSOD is composed of two 

identical 16 kDa subunits, each containing one Cu and one Zn atom, and is located in 

the cytosol and nucleus of all cell types (McCord and Fridovich, 1969a). The steady-

state concentration of superoxide in the mitochondrial intermembrane space is 

controlled by CuZnSOD (Okado-Matsumoto and Fridovich, 2001). MnSOD is 

composed of four identical 22 kDa Mn-containing subunits and is found in the 

mitochondrial matrix (Weisiger and Fridovich, 1973) and thus eliminates the superoxide 

formed in the matrix or on the inner side of the inner membrane. The expression of 

MnSOD is further induced by agents that cause oxidative stress, including radiation and 

hyperoxia, in a process mediated by the oxidative activation of NF-κB (Warner et al., 

1996;Tsan et al., 2001;Murley et al., 2001). ECSOD is, unlike the other isoforms, a 

glycoprotein and is composed of four 30 kDa subunits, each containing a Cu and a Zn 

atom. It is secreted by a few distinct cell types (Marklund, 1990) and is primarily 

located in the interstitial matrix of tissues and the glycocalyx of cell surfaces anchored 

to heparan sulfate proteoglycans (Marklund, 1984;Karlsson and Marklund, 1989). A 

small fraction of the ECSOD in the body is found in extracellular fluids such as plasma, 

lymph, synovial fluid, and cerebrospinal fluid (Marklund et al., 1982;Karlsson and 

Marklund, 1988). 

 

In acute and chronic inflammation, the production of superoxide is increased at a rate 

that overwhelms the capacity of the endogenous SOD enzyme defence system to 

detoxify them, resulting in superoxide-mediated cellular damage (McCord and 

Fridovich, 1969b). 
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1.7.3 Catalase 

The enzyme catalase, catalyzes the decomposition of two molecules of hydrogen 

peroxide to water and oxygen (2H2O2 → 2H2O + O2) and is exclusively localised in 

peroxisomes (Woo et al., 2010). The overall biological importance of catalase is not 

completely clear. Homozygous catalase knockout mice develop normally and show no 

abnormalities, indicating that this enzyme is not essential for animal life (Liu et al., 

2008a). Over-expression of catalase, however, has protective effects in the 

cardiovascular system such as delayed development of atherosclerosis (Yang et al., 

2004) and inhibition of angiotensis II-induced aortic wall hypertrophy (Zhang et al., 

2005). Catalase gene expression in micro-organisms is generally controlled either by 

sensors of ROS or by growth phase control mechanisms (Chelikani et al., 2004).  

 

1.7.4 Heme oxygenase 

Heme oxygenase (HO) catalyzes the first step in heme breakdown to generate equimolar 

quantities of carbon monoxide, biliverdin, and free ferrous iron. There is evidence to 

suggest that HO can protect against vascular remodelling and atherogenesis (Stocker 

and Perrella, 2006). HO is induced by oxidative stress. The proposed mechanisms by 

which HO may protect cells include its abilities to degrade the pro-oxidative heme to 

biliverdin. This gets subsequently converted to bilirubin, which has radical-scavenging 

properties. Moreover, bilirubin seems to directly inhibit functional NOX and can also 

interrupt assembly and activation of the enzyme (Jiang et al., 2006). In addition, a 

decrease in heme content caused by HO limits heme availability for maturation of the 

NOX2 subunit of NADPH oxidase, preventing assembly of a functional enzyme and in 

turn reduces cellular ROS generation (Taille et al., 2004).  

 

1.7.5 Thioredoxin  

Thioredoxin (Trx) is a multifunctional low-molecular weight protein containing an 

active thiol/disulfide site and possessing oxidoreductase activity. The major Trx 

isoforms are cytosolic TrxI and mitochondrial TrxII. Human TrxI is substantially 

localised in cytoplasm, but is also found in the cell nucleus and blood plasma. TrxII is 

primarily synthesised in the form of a precursor protein which has a N-terminal 60-

amnio acid sequences eliminated in the course of post-translational proteolysis to form 

TrxII and its transported into the mitochondria (Kalinina et al., 2008). Both TrxI and 
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TrxII can be localised not only within cells, but also in the intracellular space 

(Soderberg et al., 2000). Different cell types including tumour cells secrete TrxI (Powis 

et al., 2000), with secretion appearing not to be sensitive to oxidation (Tanudji et al., 

2003). However, the secretion process can change in the presence of various xenobiotics 

including alkylating agents (Kalinina et al., 2008). Trx has been recognised as a critical 

protective system acting via direct (antioxidant) and indirect (regulation of signal 

transduction) effects (Yamawaki et al., 2003). Trx is present in endothelial cells and 

vascular smooth muscle cells. It appears to exert most of its ROS-scavenging properties 

through Trx peroxidase, which uses endogenous thiol (SH) groups as reducing 

equivalents. Trx reduces the oxidised form of Trx peroxidase and the reduced Trx 

peroxidase scavenges ROS. 

 

1.7.6 Peroxiredoxins 

Peroxiredoxin (Prx) -I to IV belong to the 2-Cys (cysteine) Prx subfamily of Prx 

enzymes, which exist as homodimers and reduce hydrogen peroxide with the use of 

reducing equivalents provided by Trx (Rhee et al., 2005). PrxI and PrxII are localised to 

the cytosol, whereas PrxIII and PrxIV are restricted to the mitochondria and the 

endoplasmic reticulum, respectively. PrxI and PrxII are also abundant, constituting a 

total of 0.2% to 1% of soluble protein in cultured mammalian cells (Chae et al., 1999). 

Prx enzymes are efficient in eliminating low concentrations of hydrogen peroxide 

because of their low Km values for the substrate (Chae et al., 1999).  

 

1.7.7 Glutathione 

 

1.7.7.1 Introduction 

Glutathione was discovered over a century ago as an abundant thiol containing 

compound present at millimolar (mM) concentrations in cells and tissues. The central 

function of GSH in detoxification and protection against oxidants was recognised about 

50 years ago (Mills, 1957). It serves as a short-term storage form of the amino acid 

cysteine, as a nucleophile for efficient detoxification of reactive electrophiles, and as an 

antioxidant.  
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1.7.7.2 Biosynthesis, degradation and transport of GSH 

Glutathione concentrations, rates of synthesis and rates of turnover vary greatly from 

one tissue to another. This impacts on how rapidly GSH is depleted from a cell and how 

rapidly a cell can recover after a chemical insult (Potter and Tran, 1993).  

 

GSH is synthesised by two sequential, ATP-dependent reactions in the cytoplasm 

catalysed by γ-glutamylcysteine synthetase (γGCS) and glutathione synthetase 

(Krzywanski et al., 2004) (Figure 11). The majority of the biosynthetic activity resides 

in the cytoplasm with little if any activity in other organelles, including the 

mitochondria (Griffith and Meister, 1985). The degradation of GSH is mediated by a 

separate pathway which, in contrast to the synthetic pathway exhibits a discrete tissue 

distribution (Hinchman and Ballatori, 1990). The initial step in the breakdown of GSH 

involves the cleavage of the γ-glutamylpeptide bond by γ-glutamyltransferase (GGT), 

which is distinctly localised to the luminal membranes of epithelial cells such as the 

renal proximal tubule and enterocytes (Lash, 2006). 

 

Glutathione is transported out of cells by several multi-drug resistance proteins (MRP) 

(Ballatori et al., 2005) and is transported into the mitochondria by dicarboxylate carrier 

(DIC) and a monocarboxylate carrier (OGCP) (Lash, 2006). 
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Figure 11 – Biosynthesis of glutathione 

Glutathione is a powerful antioxidant defence system within mammalian cells. GSH is catalysed de novo 

in two ATP-dependent reactions. γGCS catalyses the first and rate limiting step in GSH biosynthesis. 

Reduced GSH donates electrons for the reduction of hydrogen peroxide. 
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1.7.7.3 Role of glutathione in detoxifying ROS  

The main function of GSH is to protect cells from the toxic effects of reactive oxygen 

compounds, therefore acting as an endogenous antioxidant. Glutathione effectively 

scavenges free radicals and other reactive species such as hydroxyl radicals, 

peroxynitrite and H2O2 directly and indirectly through enzymatic reactions. In such 

reactions, GSH is oxidised to form GSSG, which is then reduced to GSH by NADPH-

dependent glutathione reductase (Droge, 2002) (Figure 12). In addition, GSH maintains 

intracellular sulfhydryl-containing proteins in their reduced and active form by GSH-

dependent reduction of H2O2 and other peroxides, mediated by glutathione peroxidases. 

Or by the action of thiol-disulfide exchange reactions which are mediated by thiol 

transferases to form oxidised glutathione (GSSG) (Lash, 2006). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 12 – Oxidation and reduction of glutathione 

Schematic drawing showing the reactions of GSH thiol transferases, free radicals, GSH peroxidases and 

GSH reductase. The structures of both reduced and oxidised glutathione are also shown. (Adapted from 

(Meister, 1988). 
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1.7.7.4 Role of mitochondrial GSH in defence against oxidative damage 

In mitochondria, GSH plays a key role in the protection against oxidative damage to 

mitochondrial components. Indeed, the oxidative damage to mitochondrial DNA that 

occurs upon ageing increases with age in mitochondria from liver, kidney and brain of 

rats (Vijg, 1999). Changes in [GSH]:[GSSG] redox status would indicate that 

mitochondrial antioxidant systems could not cope with the oxidant species being 

generated. 

 

The GSH content found in the mitochondria is different, and is regulated in different 

ways, to that of cytosolic GSH, implying two separate GSH pools. As briefly mentioned 

previously, there is no synthesis of GSH in mitochondria. Rather, GSH is imported from 

the cytosol. The role of mitochondria in ageing attributed to free-radical damage of 

mitochondria function was first described in 1980 (Miquel et al., 1980). Indeed, Miquel 

and colleagues highlighted that mitochondria are important sources of free radicals in 

ageing, and that mitochondrial components are essential targets of free radical damage. 

Changes of total cellular GSH upon ageing are only modest. Interestingly, changes in 

mitochondrial GSH are much more marked. Oxidised GSH levels in mitochondria from 

the brain of old animals have been observed to be at least four times higher than those in 

young animals (de la Asuncion et al., 1996). Furthermore, changes in the redox state of 

GSH in mitochondria correlate with changes in oxidative damage of mitochondrial 

DNA. There is evidence to suggest, late onset administration of dietary antioxidants, 

such as thiol-containing compounds or vitamins C and E, prevents oxidation of GSH 

and oxidative damage to mitochondrial DNA (Pallardo et al., 1998). 

 

1.7.7.5 Disruption of the GSH system in disease 

GSH/GSSG is the most important redox couple and plays crucial roles in antioxidant 

defence, nutrient metabolism and the regulation of pathways essential for whole body 

homeostasis. GSH deficiency contributes to oxidative stress in the pathogenesis of 

many diseases. 

 

Glutamate plays a regulatory role in GSH synthesis through two mechanisms, firstly, in 

the uptake of cysteine and secondly, in the prevention of GSH inhibition of GCS. When 

extracellular glutamate concentrations are high, as in patients with advanced cancer, 

HIV infection and brain injury, cysteine uptake is competitively inhibited by glutamate, 
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resulting in a decrease in GSH synthesis (Tapiero et al., 2002), leading to increased 

oxidative stress. Glycine availability can be reduced in response to protein malnutrition, 

sepsis and inflammatory stimuli (Grimble et al., 1992). When hepatic glycine oxidation 

is enhanced in response to high levels of glycagon in diabetes (Mabrouk et al., 1998), 

this amino acid may become a limiting factor for GSH synthesis, which in turn can lead 

to an increase in oxidative stress. 

 

As well as conditions influenced by the availability of the key compounds involved in 

GSH synthesis, genetic mutations also exist which affect the metabolism of GSH. 

Humans with inborn deficiencies of γ-glutamylcysteine synthase, GSH synthetase, 

GSSG reductase or GSH peroxidases have been reported (Meister, 1988). Patients 

exhibiting such deficiencies often have defective brain function, and an increased 

sensitivity to oxidative stress leading to haemolysis (Meister, 1988). 

 

Diaz-Hernandez et al., 2007 developed an endogenous model of oxidative stress in 

neurons from rats, using RNA interference (RNAi) to selectively knock down 

glutamate-cysteine ligase (GCL) (also known as γGCS). As described above, this is the 

rate-limiting enzyme of glutathione biosynthesis. Interference with glutathione 

biosynthesis in primary neurons by RNAi induced free radical production, and 

consequently triggered neuronal apoptotic death. The results from this paper provide in 

vitro data demonstrating the importance of GSH biosynthesis in protecting cells from 

the harmful effects of excessive free radical production.   

 

In summary, glutathione plays an important role in antioxidant defence, nutrient 

metabolism and regulation of cellular events (including gene expression, DNA and 

protein synthesis, cell proliferation and apoptosis). GSH deficiency contributes to 

oxidative stress, which plays a key role in ageing and in the pathogenesis of many 

diseases (including Alzheimer disease, Parkinson’s disease, HIV, brain injury, cancer 

and diabetes) (Droge, 2002). 
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1.8 Current study 

1.8.1 Overview  

In normoxia, the hypoxia-inducible factor-1α (HIF-1α) is constantly hydroxylated and 

thus prepared for proteosomal degradation through the action of the oxygen-sensitive 

prolyl hydroxylases (PHDs) (Jiang et al., 1996). Hence, HIF-1α stabilisation is most 

frequently determined by the concentration of oxygen regulating the activity of the 

PHDs. As a consequence, in hypoxia, PHDs are inhibited and HIF-1α is stabilised. 

There is, however, as previously described in this chapter, numerous oxygen-

independent mechanisms of HIF-1α regulation. There is compelling evidence in the 

literature to suggest a role for ROS in stabilising HIF-1α. It was originally suggested 

that ROS in hypoxia were responsible for this action (Chandel et al., 2000a). However 

the data are conflicting, as both an increase and decrease in ROS in hypoxia have been 

reported in various cell types. It is therefore important to determine a definitive role for 

ROS in the stabilisation of HIF-1α. 

 

1.8.2 Study aims 

The aims of the current study were to: 

 

1. Demonstrate oxygen-dependent stabilisation of HIF-1α in human embryonic 

kidney (HEK) 293T cells 

2. Determine whether oxygen-independent mechanisms of HIF-1α stabilisation 

exist in HEK 293T cells or other cell types 

3. Validate an in vitro model which generates free radicals in normoxia and study 

the effects of endogenously generated ROS on HIF-1α stabilisation 

4. Investigate the cellular source of ROS involved in HIF-1α stabilisation  
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Chapter two: Experimental procedures 
 

2.1 Cells 

2.1.1 Human embryonic kidney 293T cells 

For part of this study human embryonic kidney (HEK 293T) cells were used. These 

cells were obtained from within the Wolfson Institute for Biomedical Research, 

University College London. HEK 293T is a cell line originally derived from human 

embryonic kidney, commonly used for both academic and industrial research (Graham 

et al., 1977). The use of human embryonic kidney cells has become one of the most 

popular ways for expression/silencing of recombinant proteins. There are a variety of 

transfection protocols to deliver/reduce recombinant genes to these cells, and for the 

technique employed in this study, HEK 293T is recommended. Cells were cultured on 

tissue culture flasks and plates (Falcon, UK). 

 

2.1.2 D890N HEK 293T cells 

HEK 293T cells stably transfected with an inducible catalytically deficient isoform of 

mitochondrial DNA POLγ (D890N) were kindly provided by Johannes Spelbrink, 

Institute of Medical Technology and Tampere University Hospital, Tampere, Finland. 

Cells were cultured on tissue culture flasks and plates (Falcon, UK). 

 

2.1.3 J774.A1 murine macrophages 

A mouse macrophage (MΦ) carcinoma cell line was also used in this study. The murine 

MΦ cell line J774.A1 was chosen because they are known to represent a good model for 

experiments evaluating inflammatory responses. Cells were maintained in suspension in 

stirrer bottles (Techne) and were obtained from ATCC (TIB-67). 

 

2.1.4 H157 human head and neck squamous cancer cells 

Human head and neck squamous cell lines (H157) were also used in some experiments. 

These cells were generously provided by Professor E.K. Parkinson, Institute of 

Dentistry, Queen Mary’s Medical and Dental School, London, UK. They were selected 

because of their high expression of nitric oxide synthases (NOS). Cells were grown in 



Chapter two: Experimental procedures 
 

 71

standard keratinocyte growth medium (KGM) which comprised α-MEM (minimal 

essential media, containing Earls Salts, L-glutamine without ribonucleosides). Other 

cell culture reagents as specified were obtained from Sigma and Invitrogen, UK. 

 

2.2 Cell culture 

2.2.1 Culturing cells from liquid nitrogen 

Cell culture medium was warmed in a water bath at 37˚C. Then an aliquot of cells were 

removed from liquid nitrogen and thawed quickly in a water bath (37˚C). The cells were 

then transferred to a 15 ml falcon tube and resuspended in 3-5 ml cell culture medium. 

For HEK (293T/ D890N) and H157, cells were then transferred to a sterile 75 cm2 

tissue culture plastic flask containing 10 ml cell culture medium; J774.A1 were 

transferred into a 250 ml stirrer bottle and placed on a magnetic platform. Cells were 

then cultured in a humidified incubator at 37˚C and 5% CO2. Media was replaced after 

24 h and cells were sub-cultured once 80-90% confluence was achieved.  

 

2.2.2 HEK 293T, HEK D890N and H157 passaging 

HEK 293T were grown and maintained in cell culture medium, DMEM (GIBCO) 

containing 10% (v/v) FCS (New Zealand origin, GIBCO) supplemented with 100 IU/L 

penicillin and 100 μg/L streptomycin (Invitrogen, UK). HEK D890N were grown and 

maintained in DMEM containing 10% (v/v) FCS (New Zealand Origin) supplemented 

with 200 μg/ml hygromycin (Invitrogen), 15 μg/ml blasticidin (Calbiochem), 50 μg/ml 

uridine (Sigma) and 1 mM pyruvate (Sigma). H157 were grown and maintained in α-

MEM containing 10% (v/v) FCS (New Zealand origin) supplemented with 100 IU/L 

penicillin and 100 μg/L streptomycin, 8 × 104 mol/L adenine, 5 μg/ml insulin, 1 × 10-10 

mol/L cholera toxin, 0.5 μg/ml hydrocortisone and 10 ng/ml epidermal growth factor. 

Typically, old medium was removed and cells rinsed with 10 ml sterile PBS (sPBS) 

then incubated with approximately 2 ml 1 × trypsin-EDTA, 37˚C for 5 min, followed by 

neutralisation using trypsin neutralising solution (TNS) purchased from Sigma, UK. 

Confirmation of cell detachment was obtained using an inverted light microscope 

(Axiovert25, Carl Zeiss, MicroImaging Inc., Hertfordshire, UK). Cells were then 

pelleted by centrifugation (800 × g, 10 min), the supernatant was removed carefully and 

the cell pellet resuspended in fresh medium. Cells were then seeded 1 in 10 into 75 cm2 

flasks in a final volume of 10 ml cell culture medium. Routinely, cell number and 
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viability were assessed using trypan blue exclusion. Equal volumes of cell suspension 

and trypan blue (Life Technologies) were mixed and a small volume (approximately 20 

μl) was transferred to a haemocytometer. Cells were counted under an inverted 

microscope with unstained cells counted as viable and blue cells counted as dead. Cells 

were used experimentally if viability was above 95%.  

 

2.2.3 Preparation of Rho0 media for H157 cells 

Uridine (purchased from Sigma) was added to double-distilled water (ddH2O) to make 

up a final concentration of 10 mg/mL, this was filtered though a 0.45 m Nalgene 

syringe filter (purchased from Fisher Scientific UK Ltd) to make a sterile stock. 

Pyruvate (purchased from Sigma) was also added to ddH2O to make a final 

concentration of 1M and then filtered though a 0.45 m Nalgene syringe filter to make a 

sterile stock. Ethidium Bromide 10 mg/mL aqueous solution (Sigma) was filtered 

though a 0.45 m Nalgene syringe filter and then added to ddH2O to make a 10 μg/mL 

sterile stock solution, which was kept in a foil covered 15 mL Falcon tube to protect it 

from light. Uridine and pyruvate stock was added to the media to give a final 

concentration of 50 μg/mL and 1 mM respectively.  

 

Rho0 cells were generated by adding ethidium bromide stock to the Rho0 media 

(complete H157 media plus uridine and pyruvate) to reach a final concentration of     

200 ng/mL. Ethidium bromide is a toxic mutagenic compound and all work with this 

reagent was carried out with appropriate protective clothing in a ventilated hood. The 

respective media was changed every 2–3 days. 

 

2.2.4 J774.A1 passaging 

J774.A1 murine macrophages were grown and maintained in cell culture medium, 

DMEM (GIBCO, UK) containing 10% (v/v) FCS (New Zealand origin, GIBCO) 

supplemented with 100 IU/L penicillin, 100 μg/L streptomycin, 25 mM D-glucose, 2 

mM L-glutamine. J774.A1 cells are grown in suspension, and are simply removed from 

culture, pelleted by centrifugation (800 × g, 10 min) and the supernatant removed before 

resuspending the cell pellet in fresh medium. Cells were then either seeded and allowed 

to adhere onto 10 cm2 tissue culture plates in a final volume of 10 ml cell culture 

medium or suspended back into an appropriate volume of media in a magnetic stirrer 
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bottle. Routinely cell number and viability were assessed using trypan blue exclusion 

(2.2.2). 

 

2.2.5 Storing cells in liquid nitrogen 

A flask of confluent cells was rinsed with 10 ml sPBS and incubated with 2 ml 1 × 

trypsin-EDTA (37˚C, 5 min). The cells were then removed with an additional 5-10 ml 

of cell culture medium to a 50 ml falcon tube and pelleted by centrifugation (800 × g, 5 

min). The supernatant was removed and discarded without disturbing the pellet and 

cells resuspended in supplemented DMEM. 10% DMSO was added to the cell 

suspension just prior to freezing. Approximately 1 ml cell suspension was then 

transferred to a 1.5 ml cryogenic vial. Cryogenic cells were then kept on ice in the 

fridge (4˚C) for 10 min; transferred to –20˚C for 2 h; and then removed to –80˚C 

overnight. Following at least 24 h incubation under this condition, vials were transferred 

to liquid nitrogen for long-term preservation of the cells. Alternatively, cryogenic cells 

were placed in a cryogenic 1˚C freezing container (Nalgene), and stored at –80˚C, until 

transferred to liquid nitrogen.  

 

2.2.6 Preparation of cell lysates 

In order to use proteomic techniques, the proteins obtained from cell lysates need to be 

solubilised. To lyse cells the medium is removed and the cells were rinsed at least twice 

with copious ice cold PBS. Then between 100-500 µl (depending on tissue culture 

plastic being used) of Novagen cytobuster protein extraction reagent (Merck Chemicals 

Ltd) containing protease inhibitors (Roche Diagnostics), was added and the lysate was 

scraped and collected. The lysate was then left on ice for 10 min, followed by 

centrifugation (13,000 × g, 15 min, 4˚C). The supernatant was then collected, and stored 

at –20˚C. 

 

2.3 Protein quantification 

2.3.1 Bicinchoninic acid (BCA) kit 

Protein concentrations were determined using the bicinchoninic acid based BCA protein 

assay kit (Pierce). Total protein was quantified by its reaction with Cu2+ reducing it to 

Cu1+ in an alkaline medium known as the biuret reaction. The colourimetric change is 
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brought about by the reaction of biocinchoninic acid with Cu1+ and the protein 

concentrations are determined based on a standard curve produced from a series of 

dilutions of known concentrations (0, 0.0625, 0.125, 0.25, 0.5, 1.0 and 2.0) using the 

purified protein bovine serum albumin.  

 

20 µl sample or standard were mixed with 180 µl working reagent (made in a 50:1 ratio 

of reagents A:B) and loaded in triplicate into wells of a 96 well plate, and incubated for 

30 min at 37˚C. Absorbance was measured at 562 nm (Molecular Devices, SpectraMax 

Plus) and was plotted of the absorbance of the standards against the protein 

concentration in µg/ml. From the equation of this standard curve the concentrations of 

the total protein of the samples was calculated. 

 

2.4 Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) 

2.4.1 Sample preparation for SDS-PAGE 

Following protein quantification by the BCA assay (2.3.1) samples were diluted 

accordingly with loading buffer (5 ×). The samples were then heated at 100˚C in a 

heating block (Grant Instruments, Cambridge, UK) for 10 min, and then centrifuged at 

10,000 × g for 1 min at 4˚C. Samples were then loaded onto the gel for separation or 

stored at –20˚C for future analysis.  

 

2.4.2 SDS-PAGE 

Protein samples were routinely analysed by SDS-PAGE. This technique separates 

proteins according to their molecular mass. Total protein were analysed by 

electrophoresis in pre-cast SDS-PAGE 4-15% Tris.HCL gradient gels (BioRAD, 

Hertfordshire, UK). The gel was placed into the BioRAD mini trans-blot cell gel tank 

system, and the comb removed. The buffer reservoir was then filled with SDS running 

buffer (section 2.16.5). Samples were electrophoresed against 15 µl of a pre-stained 

protein marker, (New England Biolabs) towards the anode at a constant voltage of 120 

V, usually for 65 min, or until the dye front reached the bottom of the gel. 
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2.5 Western blotting 

2.5.1 Western blot transfer 

Western blotting was performed using a standard transfer tank. Four pieces of Whatman 

paper (gel sized), 2 fibre pads and nitrocellulose membrane (GE Healthcare) were 

soaked in transfer buffer (section 2.16.5) (per gel). After electrophoresis, a sandwich of 

filter paper, nitrocellulose, SDS-PAGE gel and fibre pads was built up on the positive 

side of the gel holder cassette. The gel holder cassettes were placed into the electrode 

module and the tank was filled with transfer buffer. The transfer was carried out at 100 

V for 75 min at 4˚C. 

 

2.5.2 Immunoblotting (detection) 

Following transfer, the nitrocellulose membrane (GE Healthcare) was usually stained 

with 1% ponceau S solution (Sigma) to visualise transferred proteins and then washed 

three times in distilled water and finally with TBS. Membranes were then incubated in 

10% dried skimmed milk (Marvel, Premier International Food Ltd, Spalding, 

Lincolnshire, UK) in PBS/Tween 20 (20% 10 × PBS without calcium and magnesium 

(Life Technologies), 0.001% polyoxyethylenesorbitan monolaurate (Tween 20) from 

Sigma in distilled water) for 1 h at room temperature or overnight at 4˚C with constant 

shaking. The blot was then washed 5 times in PBS/Tween 20 for 5-10 min with shaking, 

followed by incubation with primary antibody at the appropriate concentration (table 

2.16.6) diluted in 1% dried skimmed milk PBS/Tween 20 with constant agitation for the 

appropriate time (table 2.16.6). Following incubation with the primary antibody the blot 

was washed 5 times in PBS/Tween 20 for 5-10 min with shaking. After sufficient 

washing the blot was then incubated with secondary antibody diluted in 1% dried 

skimmed milk in PBS/Tween 20 conjugated to HRP at 1:2000 for 1 h at room 

temperature. The membrane was then rinsed in PBS/Tween 20 (5 times, 5-10 min each 

wash) and the proteins were visualised using enhanced chemiluminescence (ECL) 

(Amersham Pharmacia). ECL reagents were mixed immediately before use, applied 

evenly over the membrane and incubated for 3 min. Excess ECL was drained off the 

membrane, which was then wrapped in Saran wrap, ensuring air bubbles were removed. 

Blots were then exposed to hyperfilm ECL in an autradiography hypercassette (GE 

Healthcare) and developed using an automated developer (Compact X4, Xograph, 

Whiltshire, UK). The images were scanned and analysed quantitatively by densitometry 
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(AlphaImager Imaging System, AlphaEase FC software version 4; AlphaInnotech, San 

Leandro, California, USA). 

 

2.6 Immunoprecipitation 

γGCS was silenced in 293T cells using siRNA against γGCS (see section 2.9.3). Protein 

A Sepharose magnetic beads (Immunoprecipitation Kit – Dynabeads Protein A, 

Invitrogen) were prepared following the manufacturer’s guidelines, and then incubated 

with anti-ubiquitin (10 µg Dako, raised in rabbit) for 10 min at room temperature. To 

immunoprecipitate HIF-1α, cell lysates (500 μg) were incubated with the bead/Ab 

complex for 2 h at room temperature on a rotating wheel. Beads were then washed four 

times in 200 μl washing buffer (provided in kit). Immunoprecipitated proteins were 

eluted by heating at 70°C for 10 min in 20 μl elution buffer (provided in kit) and 10 μl 

SDS loading buffer. Proteins were detected using antibodies raised in a different species 

to avoid cross reactivity with the immunoprecipitated complexes. 

 

2.7 Cloning γGCS siRNA sequences into pFIV-H1/U6 vector 

Molecular cloning is a technique which allows the isolation and multiplication of a 

specific DNA sequence (gene or cDNA). These DNA fragments can be amplified by 

using plasmids in vivo in bacterial cells. Plasmid vectors are bacterial extra-

chromosomal elements that allow the replication and selection of a DNA of interest. 

The pFIV-H1/U6 vector (System Biosciences, USA) was used to over-express a siRNA 

sequence against the γGCS. This vector drives the generation of dsRNA by opposing 

promoters H1 and U6. The pFIV-H1/U6 cloning vector is provided in a ready-to-ligate 

linearised form that has been digested with the BbsI restriction enzyme. The pFIV-

H1/U6 vector contains two unique 5’ overhangs which facilitate directional cloning 

with minimal self-ligation background.  

 

2.7.1 Selection of siRNA sequences 

The selection of γGCS sequences was performed on the coding domain sequence (CDS) 

of the mRNA for γGCS (Accession number NM_001498) using the RNAi consortium 

(TRE) information available on sigma.com.  
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2.7.2 Annealing of siRNA oligonucleotides 

Prior to DNA ligation, both forward and reverse γGCS primers require annealing. The 

siRNA oligonucleotides were dissolved in deionised water to reach a final concentration 

of 1 μg/μl. The annealing reaction is assembled on ice in a 50 μl total volume. Each 

reaction contained 2.5 μl sense and anti-sense siRNA oligonucleotides, 25 μl 2 × 

annealing buffer (20 mM tris, pH 7.8; 100 mM NaCl; 0.2 mM EDTA) and 20 μl 

deionised water. The reaction mixture was heated to 95˚C for 5 min in a PCR heating 

block, which was then left to cool until at room temperature. Once room temperature 

was reached, the annealed oligonucleotides were stored at –20˚C. 

 

2.7.3 Phosphorylation of template siRNA 

Each phosphorylation reaction (one per experimental siRNA template) was built on ice, 

in a 10 μl reaction volume. The reactions contained 1 μl annealed double stranded (ds) 

template oligonucleotide, 1 μl 10 × T4 polynueclotide kinase buffer, 1 μl 10 mM ATP, 

6 μl deionised water and 1 μl T4 polynucleotide kinase 10 U/μl, (New England 

Biolabs). Reactions were incubated at 37˚C for 30 min. The reaction was stopped by 

heating the mixture at 70˚C for 10 min.  

 

2.7.4 DNA ligation into pFIV-H1/U6 siRNA vector 

Ligation reactions were incubated on ice in a final volume of 10 μl for each 

phosphorylated siRNA template. Ligation reactions contained 2.5 μl linearised pFIV-

H1/U6 vector (20 ng/μl), 1 μl phosphorylated ds siRNA template DNA (product from 

2.7.3), 1 μl 10 × T4 DNA ligase buffer, 4.5 μl deionised water and 1 μl T4 DNA ligase 

diluted to 5 U/μl with 1 × reaction buffer (New England Biolabs). The reaction mixture 

was incubated at 16˚C for 2-4 h in a PCR block. The ligations were tested using 10 μl of 

the reaction to transform TOP10 E. coli.  

2.7.5 Bacterial transformation 

Competent TOP10 E. coli (50 μl aliquot) were thawed on ice before 50-100 ng of 

plasmid DNA was added. The cells were incubated on ice for 30 minutes, heat shocked 

for 30 s at 42˚C (in a water bath) and then placed back on ice for 2 min. SOC broth (200 

μl) was then added to the cells and then incubated at 37°C, 220 rpm for 1 h. Then 100 μl 

of the transformed cells were then spread onto Luria-Bertani (LB) agar plates containing 

100 µg/ml ampicillin and plates were incubated overnight at 37°C. 
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2.7.6 Identification of positive clones 

Following overnight incubation at 37˚C, well-separated colonies were selected from 

each plate and grown in 2 ml LB broth with 100 μg/ml ampicillin at 37˚C for 2 h on an 

orbital shaker. After this time, 1 μl of each bacterial culture was screened for insert 

using PCR, and the remaining bacterial culture was incubated overnight. Cells were 

then pelleted and mini-prepped (2.8.1). 

 

2.7.7 Polymerase chain reaction (PCR) 

Bacterial colonies were screened using PCR. For each PCR, a master mix was made in a 

25 μl final volume. Each PCR contained dNTPs (10 mM), appropriate buffer (1 ×), Mg-
2+ (1.5 mM), PCR enzyme (2 IU) and U6 and H1 forward/ reverse primers (0.2 mM). 

Double distilled water (ddH2O) was then added to make the reaction volume up to 25 μl 

and mixed thoroughly. Reactions were started by the addition by 1 μl template (bacterial 

culture). Samples were then subject to the following PCR protocol: 95˚C, 2 minutes; 25 

cycles of: A) 95˚C, 20 seconds (denaturing), B) 58˚C, 20 seconds (annealing 

temperature), C) 68˚C, 30 seconds (extension) and finally 68˚C, 20 minutes. The PCR 

products were then resolved on a 1% agarose gel, as described below in 2.7.8. 

 

2.7.8 Agarose gel electrophoresis 

DNA samples were analysed by agarose gel electrophoresis to separate the DNA 

according to its size. A 0.8 to 1% agarose solution was made in 1 × TAE running buffer 

and dissolved by heating in the microwave. To visualise DNA, 1 × (from 10,000 × 

stock) syber safe DNA gel stain (Invitrogen) was added. Samples for electrophoresis 

were prepared in TAE loading buffer and run along with 0.5 µg/ml of a known 

molecular weight DNA ladder (New England Biolabs). Samples were then resolved at 

50 mA for 40 min to 1 h. To image the DNA the gel was visualised and photographed 

using the AlphaImager imaging system as described in 2.5.2. 

 

2.8 Plasmid purification 

2.8.1 Mini-prep (Qiagen mini-prep kit) 

Transformed TOP10 E. coli competent cells were inoculated into 2-5 ml LB broth, 

supplemented with 100 µg/ml ampicillin and incubated at 37°C overnight at 220 rpm. 
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Bacteria from 1 ml of the culture were harvested by centrifugation at 13,000 rpm in a 

Micro centrifuge (MSE) for 1 minute at 4˚C. The supernatant was then removed and 

discarded using precept disinfectant tablets. Following the manufacturers guide 

(Qiagen) the pellet was then resuspended in 250 µl Solution I (section 2.16.2) via 

vortex, lysed with 250 µl of Solution II (section 2.16.2), and incubated for 5 min at 

room temperature. 350 µl of ice cold Solution III (section 2.16.2) was then added and 

mixed by inversion to precipitate the DNA. Cell debris was pelleted by centrifugation at 

13,000 rpm for 10 min and the supernatant removed to a mini column (Qiagen). DNA 

was absorbed to the column matrix, washed and eluted to a new tube as indicated in the 

manufacturer’s handbook. 

 

2.8.2 Maxi-prep (Qiagen fast-speed kit) 

Transformed TOP10 E. coli were inoculated into 2 ml LB broth, supplemented with 100 

µg/ml ampicillin and incubated at 37°C for 8 h at 220 rpm. Then 1 ml culture was 

inoculated into 200 ml LB broth with 100 µg/ml ampicillin and incubated at 37°C 

overnight in an orbital shaker at 220 rpm. The bacteria were harvested by centrifugation 

at 6000 × g, 4°C for 30 min. Following the manufacturers guide (Qiagen), the pellet was 

resuspended via vortex in 10 ml P1 buffer (section 2.16.2) and lysed with 10 ml P2 

buffer (section 2.16.2), via gentle mixing by inversion 4-6 times and incubated for 5 

min at room temperature. Genomic DNA and membranes were precipitated by the 

addition of 10 ml chilled P3 buffer (section 2.16.2), which was mixed by inversion 4-6 

times and incubated for 10 min in a filtering column. Eluate was applied to a column 

and was then loaded onto an anionic exchange column (Qiagen tip 500) which had been 

equilibrated with 10 ml buffer QBT (section 2.16.2) before the sample was allowed to 

drip through. The column was then washed with 60 ml buffer QC (section 2.16.2) and 

the DNA eluted with 15 ml buffer QF (section 2.16.2). The DNA was then precipitated 

by the addition of 10.5 ml room temperature isopropanol, mixed and incubated at room 

temperature for 10 min. The DNA sample was then concentrated with a filter (Qiagen 

Kit), washed with 2 ml 70% (v/v) ethanol and eluted in a new tube using 1 ml elution 

buffer (QF buffer). DNA was quantified by Nanodrop ND-1000 spectrophotometer 

(NanoDrop Technologies, Inc, USA) and stored at -20˚C until required.  
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Primer Sequence Tm (ºC)
H1 5' -CTG GGA AAT CAC CAT AAA CGT GAA  - 3' 55
U6 5' -GCT TAC CGT AAC TTG AAA GTA TTT CG  - 3' 55

2.8.3 Sequencing  

100 ng/μl of each γGCS pFIV plasmid were used per sequencing reaction, with 5 pmol/ 

μl of either H1 or U6 primer.  

 

 

 

 

Sequence data was generated with ABI3730XL sequencer. Samples were cycle-

sequenced by Scientific Support Services (Wolfson Institute for Biomedical Research, 

UCL) using BigDye® 3.1 Chemistry, and standard thermal cycling conditions. Chromas 

Lite Version 2.01 sequence software was used to analyse and display each DNA 

sequence. 

 

2.9 Eukaryotic cell transformation 

2.9.1 Lipofectamine transformation  

HEK 293T cells were seeded one day prior to transfection in 2 ml HEK 293T cell 

culture medium without antibiotics to achieve ~ 90% confluence overnight. For a 6 well 

tissue culture plate, 4 μg DNA (per well) was diluted with 1 ml OptiMEM (Gibco, UK) 

serum free media without antibiotics. An additional 1 ml OptiMEM serum free media 

without antibiotics was used to dilute 40 μl Lipofectamine and this was incubated for 5 

min at room temperature. DNA and Lipofectamine solutions were then combined and 

incubated for 20-30 min at room temperature. After incubation the mixed solution was 

added to the plate containing HEK 293T cells and the culture medium, and this was 

incubated for 24 h at 37˚C. After this time the medium was then replaced with complete 

HEK T294 media. Approximately 48 h after transfection, cells are split using 1 ml 1 × 

trypsin-EDTA per well and re-seeded in a 75 cm2 tissue culture flask containing 10 ml 

HEK 293T cell culture media with antibiotic selection at 0.5 μg/ml puromycin. HEK 

293T cells were viewed for expression between 5-10 days after selection. 

 

2.9.2 Preparation of synthetic small interfering RNA (siRNA)  

For synthetic siRNA transformation experiments an RNA free environment must be 

obtained by careful washing of the working area and equipment with RNase zap 

(Sigma). Then the siRNA (AllStars Negative siRNA conjugated to Alexa Fluor 555 
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(Qiagen) and ON-TARGETplus SMARTpool siRNA against human γGCS or NADPH 

oxidase 2 (NOX2) purchased from Dharmacon RNA Technologies) requires 

reconstitution in siRNA resuspension buffer (Qiagen), at an appropriate stock 

concentration (20 μM). AllStars Negative siRNA is then heated for 1 minute at 90°C, 

followed by incubation at 37°C for 60 minutes. The γGCS/ NOX2 siRNA is simply 

mixed for 30 minutes on an orbital shaker at room temperature. After this, the 

experiment is initiated or siRNA is stored at – 80˚C in 25 μl aliquots. 

 

2.9.3 Gene silencing in 293T HEK with synthetic siRNA 

Gene specific siRNA was purchased in order to generate a knockdown of the target 

gene (either γGCS or NOX2) and non-targeting AllStars siRNA (scrambled siRNA) 

was used as a negative control (used in all experimental designs performed). At least 24 

h prior to gene silencing, 293T HEK were grown in media without antibiotics. For all 

siRNA gene- silencing experiments reverse transformation was used. This involves 

preparing the complexes inside the cell culture plastic wells prior to the addition of the 

cells contained in media (antibiotic free). Transfection of 293T HEK was performed 

using Lipofectamine RNAiMAX Transfection Reagent (Invitrogen). 5 nmol siRNA (per 

well) was diluted with 250 μl OptiMEM (Gibco, UK) serum free media without 

antibiotics. An additional 250 μl OptiMEM serum free media without antibiotics was 

used to dilute 5 μl Lipofectamine RNAiMAX and this was incubated for 5 min at room 

temperature. siRNA and Lipofectamine RNAiMAX solutions were then combined and 

incubated for 20-30 min at room temperature. During this 20-30 minute incubation 

period, cell suspensions were obtained by proteolysis with 1 × trypsin-EDTA. Cells 

were rinsed with 10 ml sterile PBS (sPBS) then incubated with approximately 2 ml 1 × 

trypsin-EDTA, 37˚C for 5 min. Insurance of cell detachment was observed under an 

inverted light microscope (Axiovert25, Carl Zeiss, MicroImaging Inc., Hertfordshire, 

UK). Cells were then pelleted by centrifugation (800 × g, 10 min), the supernatant was 

removed carefully and the cell pellet resuspended in 10 ml fresh antibiotic free media. 

Cells were checked for cell number and viability using trypan blue exclusion (section 

2.2.2). Cells were resuspended in media without antibiotics at 0.5 × 106 /ml. Once the 

20-30 minute liposome formation has ended, 500 μl siRNA complexes are added to 

each well (of a 6 well plate) and the plate is then gently rocked to ensure equal 

distribution. Then 2 ml of cell suspension (to a 6 well plate) is added to each well, 

rocked gently and incubated at 37˚C for 12 h. After this time the medium was then 
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replaced with complete HEK T294 media. Cell lysates were obtained as described in 

section 2.2.6. Following transfection, the efficiency was determined by flow cytometry. 

Cell acquisition and analysis was carried out in the CyAN flow cytometer, (Dako 

Becton-Dickinson). A minimum of 10,000 cell events was counted for each sample and 

non-staining samples were used for control. 

 

2.10 Reverse transcription polymerase chain reaction (RT-PCR) 

2.10.1 RNA isolation 

Total ribonucleic acid (RNA) was isolated from cells using TRIzol reagent (Invitrogen). 

Briefly, 4-5 × 106 cells were lysed with 1 ml TRIzol then scraped and the lysate 

removed into a 50 ml universal tube and incubated for 5 min at room temperature. 

Chloroform was then added (0.5 ml per 1 ml TRIzol) and the tube shaken for 15 s by 

hand and then incubated for 2-3 min at room temperature. The emulsion formed was 

then separated by centrifugation (5000 × g, 4˚C, 15 min). Using RNase free solutions 

and equipment (pipette tips and centrifuge tubes), the upper aqueous phase was 

removed in 0.5 ml aliquots to a 1.5 ml centrifuge tubes. To each tube 0.5 ml isopropyl 

alcohol was added and incubated for 10 min at room temperature before centrifugation 

(13,000 × g, 10 min). The RNA pellet was washed with 1 ml 70% (v/v) ethanol, by 

centrifugation at 13,000 × g, 2 min. The pellet was air-dried for approximately 5 min 

and resuspended in 500 μl dH2O. 

 

2.10.2  RNA integrity 

RNA concentration and purity were determined using a NanoDrop ND-1000 

Spectrophotometer (NanoDrop Technologies, Wilmington, USA). The concentration 

was determined by measuring absorbance at 260 nm (A260). The ratio between 260 nm 

and 280 nm, and 260 nm and 230 nm indicate the purity of the RNA. Values of 

A260/A280 ratio should be approximately 2.0 (Glasel, 1995; Manchester, 1995) and 

A260/A230 ratio should be in the range of 1.8 – 2.2 for pure RNA according to the 

manufacturer’s instructions. 
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2.10.3 cDNA synthesis  

For each sample of RNA to be analysed, 4 wells were prepared (3 positive and 1 

negative) on a standard 96-well PCR plate. To each well, the following were added: 1 

μg RNA, 1 μg OligoDT12-18 primer (Invitrogen) and RNase-free PCR grade water to 

reach a final volume of 10 μL per well. The reaction was heated to 65˚C for 5 minutes 

in a Primus 96 plus thermocycler (MWG Biotech, Milton Keynes, UK). The reaction 

mix was then placed on ice for 2-3 minutes. The following were added to each well: 4 

μL 5 × first strand buffer, 1 μL 0.1 M DL-Dithiotheitol (DTT), 2 μL 10 mM 

deoxynucleotide triphosphate (dNTP) mix and 1 μL 40 unites per μL Rnase-out (all 

from Invitrogen). 1 μL Superscript II reverse transcriptase (Invitrogen) was added to 

each of the positive control wells. 1 μL PCR grade water was added to each negative 

control well. The reaction mix plate was then incubated at 42˚C for 60 minutes, then 

70˚C for 15 minutes in a Primus 96 plus thermocycler. After this, 80 μL PCR grade 

water was added to each well, giving a total volume of 100 μL per well. Using a 

mulitchannel pipette, 10 μL from each column (of 4 wells) was transferred to a new 

optical-grade 96-well PCR plate for each gene of interest to be analysed by PCR. The 

cDNA was either used immediately for qPCR or placed at – 80˚C for long-term storage. 

 

2.10.4 Real-time quantitative PCR (qPCR) 

To reach a final reaction volume of 25 μL the following were added to each well: 12.5 

μL SYBR Green Jumpstart Taq ReadyMix (Sigma), 0.5 μL reference dye (supplied with 

SYBR Green Jumpstart Taq ReadyMix kit), 0.2 μM forward primer, 0.2 μM reverse 

primer and 1 μL PCR grade water. The Eppendorf Realplex4 Mastercycler was used to 

perform the PCR reaction. SYBR was used as the internal control and after an initial 

step of 50˚C for 2 minutes followed by 96˚C for 2 minutes the programme ran for 45 

cycles (90˚C for 15 seconds, followed by 60˚C for 20 seconds). The data was acquired 

with Eppendorf Realplex4 Mastercycler software and exported to Excel for analysis. 

Gene copy number was calculated using serial dilutions of standard DNA. Each value 

was corrected for background by subtracting the negative control. Corrected values 

were then expressed as a percentage of the control gene (either β-actin or 18S). 
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2.11 Biochemical assays 

2.11.1 Measurement of reactive oxygen species  

2.11.1.1 Using 2’-7’dichlorofluorescin (DCFH) 

To measure reactive oxygen species (ROS) the probe, 5-(and-6)-chloromethyl-2’,7’-

dicholorodihydrofluorescien diacetate, acetyl ester (CM-H2DCFDA) (Molecular probes, 

Invitrogen) was used. CM-H2DCFDA is a cell permeable indicator for reactive oxygen 

species which is retained inside the cells after cleavage of acetate moiety by esterases. 

This compound then reacts with intracellular ROS changing its fluorescent properties 

which can be quantified. Shortly before performing the experiment, the CM-H2DCFDA 

is reconstituted in 100% ethanol to make a stock concentration of 20 μM. Cells were 

then washed twice in sPBS (37°C), and incubated with the ROS indicator in phenol free 

media for 30 minutes. Due to the dye’s susceptibility to photo-oxidation, care was taken 

to avoid light exposure, and hence low light conditions were used where possible. After 

the 30 minute incubation, the media was removed and the cells washed twice in PBS. 

To measure ROS using flow cytometry, cells were collected in 1 × trypsin-EDTA, 37°C 

for 5 min and then neutralised using an equal volume of TNS. Cells were then pelleted 

by centrifugation (800 × g, 10 min), the supernatant was removed and the cell pellet was 

homogenised in approximately 1 ml PBS. Cell acquisition and analysis was carried out 

in the CyAN flow cytometer, (Dako Becton-Dickinson). A minimum of 10,000 cell 

events was counted for each sample and non-staining samples were used for control.  

 

To measure ROS using a fluorometer cells were seeded in a black-edged 96 well plate 

at 10,000 cells per well. Cells were seeded in phenol free media, in quadruple wells and 

left overnight to adhere. The following day cells washed twice in sPBS (37°C), and 

incubated with the ROS indicator in phenol free media for 30 minutes (covered with foil 

to reduce excessive light exposure). The probe was then removed and the cells washed 

twice in sPBS (37°C) before adding media containing defined treatments. Cells without 

the probe were used as negative controls to correct for background fluorescence. The 

plate was then placed in a Victor 2, 1420 Multi label counter, in a pre-warmed reading 

chamber (37˚C). Excitation and emission was measured at 488 nm and 520 nm, 

respectively (Wallac Victor 2, 1420 Multi label counter, Perkin Elmer). Sequential 

readings were taken every 10 minutes for up to 1 hour. At the end of the experiment 

protein concentration (see section 2.3) was determined to ensure equal loading of cells.  
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2.11.1.2 Using HyPer 

HyPer consists of yellow fluorescent protein (YFP) inserted into the regulatory domain 

of the prokaryotic H2O2-sensing protein, OxyR (Belousov et al., 2006). Cells were 

transfected with the plasmid carrying HyPer using Lipofectamine transfection reagent 

following the protocol previously described in section 2.9.1. HyPer-transfected cells 

exhibiting yellow florescent protein (YFP) positive staining were then selected using 

fluorescence-activated cell sorting (FACS), as the plasmid has no antibiotic selection in 

mammalian cells. FACS analysis was performed by Scientific Support Services 

(Wolfson Institute for Biomedical Research, UCL) using a MoFlow high-speed cell 

sorter. HyPer was kindly provided by Dr A Galkin, Wolfson Institute for Biomedical 

Research, UCL, London, UK. Following sorting, HyPer transfected cells were 

incubated with defined treatments and cell acquisition and analysis was carried out in 

the CyAN flow cytometer, (Dako Becton-Dickinson). A minimum of 10,000 cell events 

was counted for each sample and non-staining samples were used for control. 

 

2.11.2 Nitrite quantification  

The amount of nitric oxide (NO) was estimated by measuring nitrite (NO2
-) levels in the 

extracellular medium using the Griess reagent kit (Molecular Probes, Leiden, 

Netherlands). Total nitrite was quantified by the conversion of sulfanilic acid to a 

diazonium salt by the reaction with nitrite in acid solution. The diazonium salt is then 

coupled to N-(1-naphthyl)ethylenediamine, forming an azo dye that brings about a 

colourimetric change which is spectorophotometrically detected. Nitrite concentrations 

were determined based on a standard curve produced from a series of dilutions of 

known concentrations of NO2
-. 50 µl of sample or standard were mixed with 50 µl 

Griess reagent. Assays were performed in triplicate in a 96-well plate, and incubated for 

10 minutes in the dark at room temperature. Absorbance was measured at 540 nm and 

620 nm (Molecular Devices, SpectraMax Plus). 

 

2.11.3 Lactate quantification 

Lactate concentration was determined using a lactate oxidase-based assay (Trinity 

Biotech Ltd). Total lactate was quantified by the conversion of lactic acid to pyruvate 

and hydrogen peroxide (H2O2) by lactate oxidase. In the presence of the H2O2 formed, 

peroxidase catalyzes the oxidative condensation of the chromogen precursors to produce 
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a coloured dye with an absorption maximum at 540 nm. The increase in absorbance at 

540 nm is directly proportional to the lactate concentration in the sample. 5 µl sample 

was added to a 96 well plate in triplicate, followed by 100 µl lactate reagent. The plate 

is then shaken briefly on a shaker table and then incubated in the dark for 10 minutes. 

Absorbance was measured at 540 nm (Molecular Devices, SpectraMax Plus). 

 

2.11.4 Measurement of total glutathione 

Total cellular glutathione (GSH) was measured in HEK 293T cells using a colorimetric 

assay GSH-400 kit (Oxis Research, Portland, USA). Glutathione was measured via a 

two-step chemical reaction which first involves the formation of thioethers between 4-

chloro-1 –methyl-7-trifluromethyl-quinolinium methylsulfate (R1) and all mercaptans 

(RSH) present in the samples. The second step involves a β-elimation reaction which 

takes places under alkaline conditions, allowing for the transformation of the thioethers 

obtained from GSH into a chromophoric thione which has a maximal absorbance 

wavelength at 400 nm. Samples were collected in approximately 2 ml 1 × trypsin-

EDTA, 37°C for 5 min. Cells were then pelleted by centrifugation (800 × g, 10 min), 

the supernatant was removed and the cell pellet was homogenised in 500 µl 

Metaphosphoric acid (MPA). Cells were then centrifuged at 3000 × g for 10 minutes, 

and the clear upper aqueous layer was collected. Then both samples and standards were 

prepared in a 900 µl final volume. 50 µl solution R1 was added, mixed thoroughly, 

followed by the addition of 50 µl solution R2, and mixed thoroughly again. The samples 

were then incubated at 25°C for 10 minutes in the dark. Absorbance was measured at 

400 nm (Varian, Cary 4000 UV-Vis Spectrophotometer). 

 

2.12 Visible light spectroscopy (VLS) 

2.12.1 Principle 

The visible light spectroscopy system (VLS, Figure 13) was used to monitor 

continuously the oxygen consumption (VO2) of respiring cell and changes in the redox 

state of cytochrome aa3 in cytochrome c oxidase (CcO) during respiration towards 

anoxia (Hollis et al., 2003). The VLS system measures light absorbed by cytochromes 

aa3 in the CcO. Changes in the cytochrome redox state are determined by multi-

wavelength least squares fitting of the oxidised minus reduced cytochrome absorption 

spectra (Hollis et al., 2003). 
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Figure 13 – Schematic of VLS instrumentation 

The VLS system measures light absorbed by cytochromes aa3 in the CcO. Changes in the cytochrome 

redox state are determined by multi-wavelength least squares fitting of the oxidised minus reduced 

cytochrome absorption spectra (Hollis et al., 2003). 

 

2.12.2 Oxygen calibration and measurement corrections 

The Clark-type O2 electrode is capable of measuring a current that is proportional to the 

partial pressure of O2 (pO2) in the sample. The current is converted to a voltage and 

input to the analogue-to-digital converter, which is sampled at a rate of 2 Hz by the 

acquisition software. The software converts the measured voltage to oxygen 

concentration [O2] using values determined from the calibration procedure described 

fully by Hollis et al., 2003. The rate of O2 consumption (VO2) in the chamber is also 

calculated on-line from the differential of [O2] with respect to time, determined from a 

20-data-point fourth order polynomial (i.e. fitting over a period of 10 s). The conversion 

of the O2 electrode output to [O2] involves a two-point calibration procedure, performed 

daily in 1 ml of the medium the cells are suspended in during their subsequent 

measurement in the chamber. For full details on VLS calibration and measurement 

corrections please refer to Hollis et al., 2003. In this study, VLS calibration, 

measurement corrections, cell counting post VLS measurements and data analysis were 

performed by Miriam Palacios-Callender or/and Nanci Frakich. 
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2.12.3 VLS cell culture and protocol 

Cells were cultured in sterile 175 cm2 tissue culture plastic flasks containing 50 ml 

appropriate cell culture medium (section 2.2.2). Cell culture media was then removed 

and the cells were rinsed twice with copious sterile PBS (sPBS) containing 25 mM 

HEPES. Cells were then incubated with approximately 5 ml 1 × trypsin-EDTA, 37˚C 

for 5 min, followed by neutralisation using trypsin neutralising solution (TNS) 

purchased from Sigma, UK. Confirmation of cell detachment was obtained using an 

inverted light microscope (Axiovert25, Carl Zeiss, MicroImaging Inc., Hertfordshire, 

UK). Cells were then harvested by centrifugation (800 × g, 10 min), the supernatant was 

removed carefully and the cell pellet resuspended in medium without phenol red dye (to 

avoid interference with the optical technique) to a final concentration of 2-3 × 107 

cells/ml. Cell counting and determination of viability at this point was carried out using 

Trypan blue exclusion method. After harvesting, cells were placed into a 50 ml Falcon 

tube and incubated at 37°C in a water bath for 40-60 minutes prior to measurement, 

gently resuspending every 15-20 minutes. At the time of measurement 1 ml of cells was 

placed into the respiration chamber and kept in suspension by stirring with a magnetic 

glass bar at 750 rpm, sealing the cells from the atmosphere with the plunger. At the end 

of each experiment, the cells were collected from the chamber and placed on ice for 

further determination of cell number. 

 

2.13 Electron microscopy 

Cells for electron microscopy (EM) were adhered for 1 hour to a 4 cm2
 glass cover slip. 

Cells were then gently washed with 2 ml PBS and fixed by incubation with 3% 

paraformaldehyde, 1.5% glutamine, 100 mM sodium cacodylate buffer, 5 mM CaCl2 

and 2.5% sucrose at room temperature for 10 minutes. Cells were then visualised and 

images taken using an electron microscope by M Turmaine, Division of Biosciences, 

University College London. 

 

2.14 Immunofluorescence and confocal microscopy 

D890N HEK 293T cells were seeded at a density of 0.1 × 106 cells/ 0.8 cm2 growth area 

of a chamber cover glass (Lab-Tek, Nunc, Langenselbold, Germany) and incubated 12 h 

before confocal imagery. The medium was then removed, and the cells were rinsed 

twice with sPBS. Then 20 μg/ ml Hoechst 33342 plus 20 nM TMRM was added and 
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cells were incubated for 15 minutes in the dark. Confocal microscopic images were 

taken with Ultra VIEW ERS Live cell microscope (Perkin Elmer) with a × 63 oil 

immersion objective. The cells were kept at 37°C during the entire imaging period by a 

thermostatic chamber encasing the microscopic stage. Data acquisition and fluorescence 

analysis were carried out using Ultra VIEW software. Whole cell fluorescence was 

analysed by marking the individual cells in the field. Background fluorescence of a 

region without cells/ cell debris was subtracted from fluorescence values. 

 
The mitochondrial membrane potential (ΔΨm) of control (untreated) and induced 

(doxycycline (DC) treated) D890N HEK cells was evaluated 10 days after DC induction 

by inhibiting the respiratory chain at Complex I using 1 μM rotenone. The kinetic action 

of rotenone on ΔΨm was studied by recording the TMRM fluorescence in time-lapse 

experiments. Steady-state TMRM fluorescence was recorded for approximately 2 

minutes to obtain a stable fluorescence signal. Subsequently, rotenone was added and 

the signal was recorded for approximately 30 s. The ΔΨm was collapsed by the addition 

of 25 μM FCCP and TMRM fluorescence recorded for approximately a further 3 

minutes. 

 

2.15 Data analysis and statistics  

Statistical analyses were performed using either Excel (Microsoft Office) or GraphPad 

Prism 5 software packages. Densitometric analyses were performed using AlphaEase 

FC software version 4 (AlphaInnotech). Exposed films were illuminated with 

transilluminating white light and an image was captured using a motorised lens camera 

(focal length: 8.0 ~ 48 mm, maximum aperture ratio: 1:1.2, 6x zoom) with flat field 

calibration to easily correct for non-uniformities in light gathering. The captured image 

was then analysed using FC software version 4 utilising 256 gray scale values. The 

software captures an integrated density value which is the sum of the gray levels of all 

the pixels within the boundaries of each band and then subtracts a background value 

computed as a mean of 16 lowest intensity points within the assigned boundaries. All 

data are plotted graphically as mean values, with vertical bars representing standard 

error of the mean (SEM). A Student’s t-test was used to compare differences between 

two data groups. One-way ANOVA was used to assess differences between individual 

experimental conditions when multiple comparisons were being made to a control. For 

all statistical analyses a probability (P) value, *, of <0.05 was considered significant. 
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2.16 Materials and reagents  

2.16.1 Eukaryotic cell culture 

HEK 293T cell culture medium: DMEM (41965-039), 10% (v/v) FCS, 100 IU/L 

penicillin, 100 μg/L streptomycin 

HEK 293T serum free medium (SFM): DMEM (41965-039), 100 IU/L penicillin, 100 

μg/L streptomycin 

HEK 293T phenol free medium (PFM): DMEM (21063-029), 10% (v/v) FCS, 100 

IU/L penicillin, 100 μg/L streptomycin 

D890N HEK 293T cell culture medium: DMEM (41965-039), 10% (v/v) FCS, 200 

μg/ml hygromycin, 15 μg/ml blasticidin, 50 μg/ml uridine,1 mM pyruvate  

D890N HEK 293T induction (Rho0) cell culture medium: DMEM (41965-039), 10% 

(v/v) FCS, 200 μg/ml hygromycin, 15 μg/ml blasticidin, 50 μg/ml uridine, 1 mM 

pyruvate, 250 ng/ml doxycycline 

H157 cell culture medium: α-MEM (22571-038), 10% FCS, 100 IU/L penicillin, 100 

μg/L streptomycin, 1.8 × 104 mol/L adenine, 5 μg/ml insulin, 1 × 10-10 mol/L cholera 

toxin, 0.5 μg/ml hydrocortisone and 10 ng/ml epidermal growth factor 

H157 (Rho0) cell culture medium: α-MEM (22571-038), 10% FCS, 100 IU/L 

penicillin, 100 μg/L streptomycin, 1.8 × 104 mol/L adenine, 5 μg/ml insulin, 1 × 10-10 

mol/L cholera toxin, 0.5 μg/ml hydrocortisone and 10 ng/ml epidermal growth factor, 

50 μg/ml uridine, 50 μg/ml pyruvate, 200 ng/ml ethidium bromide 

J774.A1 cell culture medium: DMEM (11960), 10% (v/v) FCS, 25 mM D-glucose, 2 

mM L-glutamine, 100 IU/L penicillin, 100 μg/L streptomycin 

 

Transfection medium: OpiMEM (31985047_464548114) 

Trypsin EDTA: 0.05% EDTA 

Cryo-buffer: 10% (v/v) dimethyl sulphoxide (DMSO), 90% (v/v) DMEM 

 

Dulbecco’s Modified Eagle Medium (DMEM) and other cell culture reagents, as 

specified, were obtained from Invitrogen, UK. Heat inactivated foetal calf serum (FCS) 

was of New Zealand Origin supplied by GIBCO (10691-145). 
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2.16.2 Bacterial cell culture and cloning 

Luria bertani (LB) broth: 1% (w/v) bacto-peptone, 0.5% (w/v) yeast extract, 0.5% 

(w/v) NaCl 

LB agar: LB broth, 1% (w/v) agar 

Qiagen mini-prep solutions: 

Solution I: 50 mM glucose, 10 mM EDTA, 25 mM Tris.HCL pH 8.0 

Solution II: 1% (w/v) SDS, 0.2 M NaOH 

Solution III: 3 M potassium acetate, 11.5% glacial acetic acid 

Qiagen maxi-prep solutions: 

Qiagen buffer P1 (resuspension buffer): 50mM Tris.HCL pH 8.0, 10mM EDTA, 100 

µg/ml RNase 

Qiagen buffer P2 (lysis buffer): 200 mM NaOH, 1% (w/v) SDS  

Qiagen buffer P3 (neutralisation buffer): 3 M potassium acetate pH 5.5 

Qiagen buffer QBT (equilibrium buffer): 750 mM NaCl, 50 mM MOPS pH 7.0, 15% 

(v/v) isopropanol, 0.15% (v/v) triton X-100  

Qiagen buffer QC (wash buffer): 1 M NaCl, 50 mM MOPS pH 7.0, 15% (v/v) 

isopropanol  

Qiagen buffer QF (elution buffer): 1.25 M NaCl, 50 mM Tris.HCL pH 8.5, 15% (v/v) 

isopropanol 
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2.16.3 Treatments 

Table 2 – Treatments used, concentrations and suppliers 

Treatment  Mode of action Concentration Supplier Cat no. 
Ascorbic acid ^ Antioxidant 1 mM Sigma A-5960 

Cobalt chloride  * HIF-1α stabiliser 300 μM Sigma C-2644 
Doxycycline * Antibiotic 250 ng/ml Sigma D9891 

Ethidium 
bromide 

* DNA replication 
inhibitor 

200 ng/ml Invitrogen 15585-011 

FCCP ¬ Un coupler of 
OXPHOS 

25 μM Sigma C2920 

Hoeschst 33342 ¬ Fluorescent nuclear 
stain 

20 μg/ml Invitrogen H3570 

Lipopolysacchar
ide 

# Bacterial endotoxin 10 ng/ml Difco 0901 

Menadione * Pro-oxidant 160 μM Sigma M2518 
MG132 * Proteasome 

inhibitor 
10 μM Sigma C2211 

Mouse IFNγ # Cytokine 10 IU/ml Insight Biotech 
Ltd 

IB-1092 

N-acetyl-L-
cysteine  

^ Antioxidant 2.5 mM  Sigma A8199 

NG-monomethy-
L-arginine  

^ NOS inhibitor 1 mM Axxora Ltd ALX-106-
001-G001 

S-ethyl 
isothiourea 

# iNOS inhibitor 500 μM Caymen Chemical 1071-37-0 

Rotenone ¬ Complex I inhibitor 1 μM Sigma R8875 
TMRM ¬ Mitochondrial 

membrane potential 
fluorescent marker 

20 nM Invitrogen T668 

 

* Concentration detemined through dose response curves performed during thesis 

Concentration from published literature: ^ (Quitero et al., 2006a), # (Garedew and Moncada, 2008) and ¬ 

(Garedew et al., 2010) 

 

2.16.4 Hypoxic chamber 

Some of the experiments described were carried out at different oxygen concentrations. 

Hypoxia was achieved by incubation of cells at 37°C in an oxygen-controlled hypoxic 

chamber (Coy Laboratory Products Inc, Ann Arbor, Michigan). Oxygen concentrations 

were maintained using a 5% CO2/Nitrogen 200 BAR compressed gas cylinder (BOC 

Limited, Surrey). 
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2.16.5 Electrophoresis 

SDS running buffer (1 ×): 50 mM Tris Base, 0.384 M glycine, 0.1% SDS in distilled 

water 

SDS loading buffer (2 ×): 4 % SDS, 20% glycerol, 1.5 M Tris.HCL pH 6.8, 10% β-

mercaptoethanol up to 10 ml dH2O, bromophenol blue 

Transfer buffer: 25 mM Tris Base, 192 mM glycine, 20% methanol, made up to 1 litre 

with distilled water 

Tris acetate EDTA (TAE) buffer (50 ×): 2 M Tris, 25 mM sodium acetate, 50 mM 

EDTA pH 7.6 

TAE loading buffer: 200 mM Tris, 25 mM sodium acetate, 5 mM EDTA pH 7.6, 80% 

glycerol, bromophenol blue 

 

Western blot transfer membrane nitrocellulose was obtained from Amersham 

Biosciences, UK. Enhanced chemiluminescence (ECL) detection reagents were 

obtained from Pierce, UK and Hyperfilm ECL film was obtained from Amersham 

Biosciences, UK. Protein quantification was performed using bicinchoninic acid (BCA) 

kit, obtained from Sigma, UK.  

 

2.16.6 Antibodies 

Table 3 – Antibodies used, working dilutions, suppliers and targets 

 

 

 

 

 

Antigen Clone Supplier Cat no. Dilution Incubation 
time 

α-tubulin Monoclonal Abcam Ab7291 1:10,000 30 min 
CcO Monoclonal BD Biosciences 556433 1:5000 O/N 
γGCS Polyclonal Santa Cruz Biotechnolgy Sc-28965 1:1000 O/N 
HIF-1α Monoclonal BD Biosciences 610958 1:2000 O/N 
Hydroxyated 
HIF-1α 

Polyclonal CoValab P564 1:2000 O/N 

Mouse IgG Polyclonal Dako P0260 1: 2000 1 hour 
NOX-2 Polyclonal Millipore 07-024 1:2000 O/N 
Ubiquitin Polyclonal Dako Z0458 10 μg 2 hours 
Rabbit IgG Polyclonal Vector Laboratories P1-1000 1:2000 1 hour 
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2.16.7  Primers 

Table 4 – Human primers used for real-time qPCR 

 
Gene Direction Sequence 5’ to 3’ 
18S Forward 

Reverse 

CGC CGC TAG AGG TGA AAT TC 

TTG GCA AAT GCT TTC GCT C 

Catalase Forward 

Reverse 

CAA AAT GCT TCA GGG CCG 

TAA TTG GGT CCC AGG CGA 

COX1 Forward 

Reverse 

ATT TAG CTG ACT CGC CAC ACT CCA 

TAG GCC GAG AAA GTG TTG TGG GAA 

β-actin Forward 

Reverse 

TGT GCC ATC TAC GAG GGG TAT GC 

GGT ACA TGG TGG TGC CGC CAG ACA 

γGCS  Forward 

Reverse 

GCA CAT CTA CCA CGC CGT C 

CCA CCT CATCGC CCC AC 

HIF-1α Forward 

Reverse 

CCA GTT ACG TTC CTT CGA TCA GT 

TTT GAG GAC TTG CGC TTT CA 

MnSOD Forward 

Reverse 

GGT GGT GGT CAT ATC AAT CAT AGC 

GCT TCC AGC AAC TCC CCT TT 

NfKB Forward 

Reverse 

CGA GCT CCG GAG CAG TGA CA 

GTA AAG CTG AGT TTG CGG AAG G 

NOX1 Forward 

Reverse 

TTC ACC AAT TCC CAG GAT TGA AGT GGA TGG TC 

GAC CTG TCA CGA TGT CAG TGG CCT TGT CAA 

NOX2 Forward 

Reverse 

GTC ACA CCC TTC GCA TCC ATT CTC AAG TCA GT 

CTG AGA CTC ATC CCA GCC AGT GAG GTA G 

NOX4 Forward 

Reverse 

CTG GAG GAG CTG GCT CGC CAA CGA AG 

GTG ATC ATG AGG AAT AGC ACC ACC ACC ATG CAG 

NOX5 Forward 

Reverse 

GTC GCT CTG CTG CTG CTG CTC CTC T 

TGA TGG TGA AGG GGT GCC ACT CAT AGC 

NrF2 Forward 

Reverse 

AAA CCA GTG GAT CTG CCA AC 

GAC CGG GAA TAT CAG GAA CA 

Thioredoxin Forward 

Reverse 

TGG TGT GGG CCT TGC AA 

TCA AGG AAT ATC ACG TTG GAA TAC TT 
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Chapter three: Mechanisms of HIF-1α stabilisation 
 

3.1 Introduction 

At physiological [O2] hypoxia-inducible factor-1α (HIF-1α) is constantly hydroxylated 

and thus prepared for proteosomal degradation through the action of the prolyl 

hydroxylases (PHDs) (Jiang et al., 1996). In hypoxia however, the oxygen-sensitive 

PHDs are inhibited and HIF-1α is stabilised. Other agents, including cytokines and 

growth factors have been shown to stabilise HIF-1α at physiological [O2] through 

different mechanisms such as activation of the phosphatidylinositol 3-kinase (PI3K) or 

mitogen-activated protein kinase pathways (Semenza, 2003) (see introduction 1.5.3). 

Increased production of reactive oxygen species (ROS) at low [O2] have also been 

claimed to stabilise HIF-1α (Chandel et al., 1998). 

 

Studies described in this chapter investigate the hypothesis that free radicals stabilise 

HIF-1α both in normoxia and low oxygen conditions. This was evaluated by examining 

the effect of pro-oxidant agents and antioxidants on HIF-1α protein expression. 
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3.2 Oxygen-dependent stabilisation of HIF-1α 

3.2.1 Response of HIF-1α to decreasing oxygen 

To verify that HIF-1α becomes stable when cells are exposed to decreasing oxygen 

concentrations, HEK 293T cells were incubated at 21%, 3% or 0.5% oxygen for 24 

hours. Low [O2] (3% oxygen) and hypoxic oxygen conditions (0.5% oxygen) were 

achieved in a humidified variable aerobic workstation. Cell lysates were prepared, 

separated by SDS-PAGE and analysed by Western blot. α-tubulin served as a loading 

control. Figure 14 shows that incubation of cells at decreasing oxygen concentrations 

for 24 hours results in oxygen-dependent stabilisation of HIF-1α. HIF-1α stabilisation 

increased significantly as the oxygen concentrations decreased from 21% to 3% and 

from 3% to 0.5%. 

 

3.2.2 Effect of cobalt chloride on HIF-1α stabilisation  

Cobalt chloride (CoCl2) has been reported to result in HIF-1α stabilisation in normoxic 

oxygen conditions (Chandel et al., 2001). Thus we decided to utilise this agent as a 

positive control for the detection of HIF-1α. To determine the optimal concentration of 

CoCl2 in which to study HIF-1α stabilisation, cells were incubated with different 

concentrations of CoCl2 for 4 hours at 21% oxygen. Figure 15 shows that the 

stabilisation of HIF-1α with CoCl2 was dose-dependent, with the most significant 

stabilisation occurring at 160 μM CoCl2. 

 

3.2.3 Time course of HIF-1α stabilisation 

The next objective was to study the kinetics of HIF-1α stabilisation. Cells were 

incubated at 3% or 0.5% oxygen for 1, 2, 4 and 24 hours and compared to cells 

incubated at 21% oxygen for 4 h in the presence of CoCl2. Figure 16 shows that the 

most efficient stabilisation of HIF-1α was achieved after 4 h incubation with CoCl2 at 

21% O2 (24 h incubation did not have a greater effect; data not shown). Stabilisation of 

HIF-1α in hypoxia (0.5% oxygen) was time-dependent with the maximum effect 

observed at 4 h, similar to CoCl2. On the other hand a modest, time-dependent 

stabilisation could be observed at 3% [O2]. This was time-dependent with the maximum 

effect achieved at 24 h. 
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Figure 14 – HIF-1α stabilisation increases as the oxygen concentration decreases 

HEK 293T cells were incubated at 21%, 3% or 0.5% oxygen (O2) for 24 h. Cell lysates were subject to 

SDS-PAGE and analysed by Western blot with an anti-HIF-1α antibody (A) and quantified by 

densitometry (B). The corresponding densitometry values were normalised with α-tubulin and results are 

shown relative to 21% oxygen control. The values represent the mean + SEM from 5 independent 

experiments; * represents a significant difference (p < 0.05) from 21% O2 control values and ^ represents 

a significant difference (p < 0.05) from 3% O2. One representative blot is shown. 

(A) 

(B) 
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Figure 15 – HIF-1α stabilisation under increasing concentrations of CoCl2 

Cells were incubated at 21% oxygen for 4 h with different concentrations of cobalt chloride (CoCl2, -160 

µM). Protein expression was analysed by Western blot (A) and quantified by densitometry (B). The 

corresponding densitometry values were normalised with α-tubulin and are shown relative to control. The 

values represent the mean + SEM from 3 independent experiments; * p < 0.05 versus control. One 

representative blot is shown. 
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Figure 16 – Kinetics of HIF-1α stabilisation at 3% and 0.5% oxygen 

Cells were incubated at 21%, 3% and 0.5% oxygen for 1-24 h. Cobalt chloride (CoCl2, 160 μM) served as 

a positive control. Protein expression was analysed by Western blot (A) and quantified by densitometry 

(B). The corresponding densitometry values were normalised with α-tubulin and results are shown 

relative to 21% oxygen control. The values represent the mean + SEM from 3 independent experiments; * 

p < 0.05. One representative blot is shown. 
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3.3 Oxygen-independent stabilisation of HIF-1α  

3.3.1 Optimisation of 2’-7’-dicholorodihydrofluorescin (DCFH) to measure ROS 

in HEK 293T cells 

In order to study the stabilisation of HIF-1α by pro-oxidant agents, first the ability of 

these compounds to produce ROS was evaluated. 2’-7’-dicholorodihydrofluorescin 

(DCFH) is widely used to measure oxidative stress in cells. However, artefacts caused 

by auto-oxidation of the probe can lead to false positive results (Picker and Fridovich, 

1984;Faulkner and Fridovich, 1993;Liochev and Fridovich, 1995;Liochev and 

Fridovich, 1998). For this reason, experiments were initially performed to determine the 

fluorescence that can be attributed to ROS production. In order to distinguish between 

reactive intermediates produced by the probe and actual free radical formation, 

menadione (2-methyl-1,4-naphthoquinone; vitamin K3) was used as positive control 

due its association with the excessive generation of ROS such as superoxide, singlet 

oxygen, and hydrogen peroxide (Chung et al., 1999). Cells were treated either with 

antioxidants to suppress ROS-derived fluorescence or with menadione to induce ROS. 

Two treatment groups were studied. Samples were either incubated with the treatments 

in the presence of DCFH (30 minutes) or the treatments were added immediately 

following the 30-minute DCFH incubation. To establish the level of background 

fluorescence originating from the probe, DCFH was also incubated in the absence or 

presence of cells.  

 

There was no significant difference in DCF fluorescence when treatments are incubated 

with DCFH or post-DCFH incubation (Figure 17). There is also no significant 

difference between DCF fluorescence in cell negative treated groups and cell positive 

treated groups, suggesting in these cells, DCFH does not undergo auto-oxidation.  

 

To determine the limit of detection of DCFH, cells were treated with menadione for 30 

minutes (0-500 μM) and fluorescence was measured with excitation at 490 nm and 

emission at 520 nm. The results shown in Figure 18 demonstrate a clear dose-response 

effect of DCF fluorescence towards menadione-derived ROS. The lowest concentration 

of menadione required to detect DCF fluorescence is 40 μM. The first significant 

increase in DCF fluorescence is observed with 80 μM menadione. 
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Figure 17 – DCF fluorescence in the absence and presence of cells 

To establish the level of background fluorescence originating from auto-oxidation of the probe, 20 μM 

DCFH was incubated in the absence or presence of cells for 30 minutes. Cells were also treated with 

antioxidants (NAC 2.5 mM plus ascorbic acid 1 mM) or menadione 160 μM in the presence of DCFH or 

post-DCFH incubation. ROS was then measured using a fluorometer with excitation and emission 

measured at 490 nm and 520 nm, respectively. The values represent the mean + SEM from 3 independent 

experiments; * represents a significant difference (p < 0.05) from all corresponding treatment groups. 
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Figure 18 – DCF fluorescence dose response  

Cells were treated with 0-500 μM menadione for 1 h and fluorescence analysed using a cytometer. Data 

represent the mean + SEM from 3 independent experiments, * represents a significant difference (p < 

0.05) from control, and ^ represents a significant difference from 80 μM menadione. 
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3.3.2 Effect of menadione on HIF-1α stabilisation 

We next examined whether menadione, under the same conditions that induced ROS in 

cells (1 h, 0-160 μM, Figure 18) affects HIF-1α stabilisation. Menadione produced a 

concentration-dependent increase in HIF-1α stabilisation, with the most significant 

increase seen with 160 µM menadione (Figure 19), which corresponds to the highest 

ROS fluorescence in Figure 18. Cells were also treated with 160 µM menadione for 

shorter incubation periods (10-60 minutes) (incubation for longer than 1 h resulted in 

cell death). Stabilisation of HIF-1α was time-dependent, with the most significant 

increase observed at 60 minutes (Figure 20). 
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Figure 19 – Menadione induced HIF-1α expression in HEK 293T cells 

Cells were incubated at 21% oxygen for 1 h with menadione (0-160 µM). Protein expression was 

analysed by Western blot (A) and quantified by densitometry (B). The corresponding densitometry values 

were normalised with α-tubulin and are shown relative to control. The values represent + SEM from 3 

independent experiments; * p < 0.05 versus control. One representative blot is shown.  
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Figure 20 – Effect of menadione on HIF-1α stabilisation  

Cells were incubated at 21% oxygen for up to 1 h with 160 μM menadione (0-60 minutes). Protein 

expression was analysed by Western blot (A) and quantified by densitometry (B). The corresponding 

densitometry values were normalised with α-tubulin and are shown relative to control. The values 

represent + SEM from 3 independent experiments; * p < 0.05 versus control. One representative blot is 

shown. 
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3.3.3 Effect of antioxidants on HIF-1α stabilisation following treatment with 

menadione 

Since treatment with menadione resulted in both ROS production and HIF-1α 

stabilisation, experiments were conducted using antioxidants to investigate the possible 

role of reactive oxygen species in menadione-induced HIF-1α stabilisation. Cells were 

treated with 160 µM menadione for 1 h in the presence or absence of an antioxidant 

(AO) mix, N-Acetyl-L-cysteine (NAC) at 2.5 mM plus ascorbic acid at 1 mM. Figure 

21 shows menadione-induced HIF-1α stabilisation was reversed by treatment with 

antioxidants. 

 

3.3.4 Synergism between menadione and hypoxia on HIF-1α stabilisation 

Treatment with menadione (160 µM, 60 minutes) revealed an increase in ROS 

production and HIF-1α stabilisation which can be prevented by antioxidants. This result 

provides a connection between menadione and ROS production, and ROS production 

and HIF-1α stabilisation. Since the aim of my investigations was to establish, if any, a 

role of ROS in hypoxic HIF-1α stabilisation the effect of menadione in hypoxia (0.5% 

oxygen) was evaluated. Stabilisation of HIF-1α in hypoxia was significantly increased 

after 1 h incubation with menadione (Figure 22), and this effect was similar to that 

observed at 21% O2 after CoCl2 treatment (Figure 22). 
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Figure 21 – Effect of antioxidants on menadione-induced HIF-1α stabilisation 

Cells were incubated at 21% oxygen for 1 h with 160 µM menadione in the presence or absence of 

antioxidants (AO; NAC 2.5 mM plus ascorbic acid 1 mM). Protein expression was analysed by Western 

blot (A) and quantified by densitometry (B). The corresponding densitometry values were normalised 

with α-tubulin and are shown relative to control. The values represent + SEM from 3 independent 

experiments; * p < 0.05 versus menadione alone treated cells. One representative blot is shown. 
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Figure 22 – Effect of menadione on HIF-1α stabilisation in hypoxia 

Cells were incubated at 21% and 0.5% oxygen for 2 h in the presence or absence of 160 µM menadione 

(Mena) for 1 h. Cobalt chloride (CoCl2, 160 μM) served as a positive control. Protein expression was 

analysed by Western blot (A) and quantified by densitometry (B). The corresponding densitometry values 

were normalised with α-tubulin and are shown relative to control. The values represent + SEM from 3 

independent experiments; * p < 0.05 versus control. One representative blot is shown. 
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3.3.5  Effect of antioxidants on HIF-1α stabilisation following treatment with 

cobalt chloride 

Since treatment with CoCl2 induces ROS (Chandel et al., 1998) and our own data has 

shown CoCl2-induced HIF-1α stabilisation, (Figure 15) experiments were conducted 

using antioxidants to investigate the possible role of reactive oxygen species. Cells were 

treated with 160 µM CoCl2 for 4 h in the presence or absence of an AO mix. Figure 23 

shows that CoCl2-induced HIF-1α stabilisation was reversed by treatment with 

antioxidants. 

 

3.3.6 Synergism between CoCl2 and hypoxia on HIF-1α stabilisation 

Treatment with CoCl2 (160 µM, 4 h) demonstrated an increase in HIF-1α stabilisation at 

ambient [O2], the effect of CoCl2 in hypoxia (0.5% oxygen) was assessed, to further 

investigate the potential role for ROS-mediated HIF-1α stabilisation in hypoxia, as done 

in section 3.3.4. CoCl2
 increased HIF-1α stabilisation in a dose-dependent manner 

(Figure 24). 
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Figure 23 – Effect of antioxidants on CoCl2-induced HIF-1α stabilisation 

Cells were incubated at 21% oxygen for 4 h with cobalt chloride (CoCl2, 160 µM) in the presence or 

absence of antioxidants (AO; NAC 2.5 mM plus ascorbic acid 1 mM). Protein expression was analysed 

by Western blot (A) and quantified by densitometry (B). The corresponding densitometry values were 

normalised with α-tubulin and are shown relative to control. The values represent the mean + SEM from 

3 independent experiments; * p < 0.05 versus CoCl2 treatment. One representative blot is shown. 
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Figure 24 – Effect of CoCl2 on HIF-1α stabilisation in hypoxia  

Cells were incubated at 21% and 0.5% oxygen for 4 h. Cells at 0.5% oxygen were incubated with 

different concentrations of cobalt chloride (CoCl2, 0-160 µM). Protein expression was analysed by 

Western blot (A) and quantified by densitometry (B). The corresponding densitometry values were 

normalised with α-tubulin and are shown relative to control. The values represent the mean + SEM from 

3 independent experiments; * p < 0.05. One representative blot is shown. 
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3.4 Antioxidants destabilise HIF-1α at 3% oxygen 

3.4.1 Modulation of HIF-1α by antioxidants in HEK 293T cells 

To investigate whether ROS are involved in the stabilisation of HIF-1α at low [O2] we 

incubated cells at 3% and 0.5% oxygen for 24 h and 2 h respectively. This was done in 

the presence or absence of antioxidants (AO, NAC plus ascorbic acid) for 4 h and 

samples prepared. Figure 25 shows that HIF-1α stabilisation was reversed by 

antioxidant treatment at 3% O2, with no effect at 0.5% O2. 

3.4.2 Effect of S-methylglutathione on HIF-1α stabilisation 

Next we examined the effect of methylglutathione (a glutathione donor) on HIF-1α 

stabilisation at 3% oxygen only. As previous data (Figure 25) demonstrated that at this 

oxygen concentration, HIF-1α stabilisation could be prevented using antioxidants. A 

methylated form of glutathione was used as an alternative to NAC plus ascorbic acid as 

it enhances cell permeability. Cells were incubated at 3% oxygen for 24, treated with 

methylglutathione (0-100 µM) for the final 4 h and HIF-1α protein stabilisation was 

determined. Methylglutathione produced a dose-dependent decrease in HIF-1α 

stabilisation with the maximal effect observed at 50 µM (Figure 26). 



Chapter three: Mechanisms of HIF-1α stabilisation 

 115

[O2] 

Contro
l 2

CoCl

24
 h

 C
tl

24
 h

 A
O

2 
h C

tl

2 
h A

O

0

5

10

15

20

25

3% O2 0.5% O221% O2

ns*

R
el

at
iv

e 
V

al
u

e 
to

 2
1%

 O
2

C
o

n
tr

o
l

 

 

 

 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 

 

 

Figure 25 – Effect of antioxidants on HIF-1α stabilisation  

Cells were incubated at 3% and 0.5% oxygen for 24 h or 2 h respectively, with or without antioxidants 

(AO; 2.5 mM NAC plus 1 mM ascorbic acid). Cobalt chloride (CoCl2, 160 μM) severed as a positive 

control. Protein expression was analysed by Western blot (A) and quantified by densitometry (B). The 

corresponding densitometry values were normalised with α-tubulin and are shown relative to control. The 

values represent + SEM from 3 independent experiments; * p < 0.05 versus 3% control. (ns, not 

significant). One representative blot is shown. 
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Figure 26 – Effect of S-methylgluathione on HIF-1α stabilisation 

Cells were incubated at 21% and 3% oxygen for 4 h with or without methylgluathione (Met.GSH, -100 

µM). Cobalt chloride (CoCl2, 160 μM) served as a positive control. Protein expression was analysed by 

Western blot (A) and quantified by densitometry (B). The corresponding densitometry values were 

normalised with α-tubulin and are shown relative to control. The values represent + SEM from 3 

independent experiments; * p < 0.05 versus 3% control. One representative blot is shown. 
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3.5 Modulation of HIF-1α in human head and neck squamous 

carcinoma cells 

HIF-1α activates the transcription of genes that are involved in crucial aspects of cancer 

biology including angiogenesis, cell survival, glucose metabolism and invasion 

(Semenza, 2003). The stabilisation of HIF-1α in cancer has a number of origins that 

allows it to engage in transcriptional activity at normoxic [O2], including hypoxia 

(Wang and Semenza, 1993), genetic mutations (Maxwell et al., 1999) and an increase in 

TCA cycle intermediates succinate and fumarate (Koivunen et al., 2007). More recently 

it has also been suggested that the accumulation of ROS leads to the impairment of HIF-

1α degradation (Gerald et al., 2004). Experiments from our own group have previously 

demonstrated that NO was involved in the stabilisation of HIF-1α in head and neck 

squamous carcinoma (H157) cells and this was attributed to the high expression of NOS 

in these cells (Quintero et al., 2006a). 

 

3.5.1 NOS-dependent stabilisation of HIF-1α in cancer cells at 3% oxygen 

In order to confirm this data, cells were incubated at 3% and 0.5% oxygen and treated 

with either L-NMMA (a non-specific nitric oxide synthase (NOS) inhibitor) or 

antioxidants. Cell lysates were prepared using the protocol described in 3.2 and samples 

prepared in the same way. Figure 27 shows that at 3% oxygen both L-NNMA and 

antioxidants significantly inhibit HIF-1α stabilisation. Stabilisation of HIF-1α at 0.5% 

oxygen is not affected by treatment with L-NNMA or antioxidants.  

 

3.5.2 Effect of antioxidants on HIF-1α stabilisation in cancer cells at 21% oxygen 

In non-cancerous cells, HIF-1α stabilisation is prevented in normoxic conditions by 

proteasomal degradation. However, H157 cancerous cells stabilise HIF-1α in normoxia 

(Quintero et al., 2006a). Therefore, experiments using H157 carcinoma cells at 21% 

oxygen, treated with either L-NMMA or antioxidants were performed to decrease levels 

of ROS or NO and to investigate the effect on HIF-1α stabilisation. Figure 28 shows 

that whereas treatment with antioxidants significantly inhibited HIF-1α stabilisation,   

L-NMMA had no effect on HIF-1α stabilisation at 21% oxygen. 
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Figure 27 – Modulation of HIF-1α stabilisation in H157 cells at 3% oxygen 

H157 carcinoma cells were incubated at 3% and 0.5% oxygen for 4 h with or without antioxidants (AO; 

2.5 mM NAC plus 1 mM ascorbic acid) or 1 mM L-NMMA (non-specific NOS inhibitor). Protein 

expression was analysed by Western blot (A) and quantified by densitometry (B). The corresponding 

densitometry values were normalised with α-tubulin and are shown relative to 3% oxygen control. The 

values represent + SEM from 3 independent experiments; * p < 0.05 versus 3% control. One 

representative blot is shown. 
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Figure 28 – Modulation of HIF-1α stabilisation in H157 cells at 21% oxygen 

H157 carcinoma cells were incubated at 21% oxygen with or without antioxidants (AO; 2.5 mM NAC 

plus 1 mM ascorbic acid) or 1 mM L-NMMA (a non-specific NOS inhibitor). Protein expression was 

analysed by Western blot (A) and quantified by densitometry (B). The corresponding densitometry values 

were normalised with α-tubulin and are shown relative to control. The values represent + SEM from 3 

independent experiments; * p < 0.05 versus control. One representative blot is shown. 
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3.6 Stabilisation of HIF-1α in activated murine macrophages 

Peyssonnaux et al, 2005 reported that bacterial infection and inflammation led to the 

stabilisation of HIF-1α in macrophages (MΦ) in a hypoxia-independent mechanism. As 

it is known that MΦ produce high concentrations of NO upon activation (Stuehr and 

Nathan, 1989;Garedew and Moncada, 2008) experiments were designed to study the 

effect of NO on HIF-1α stabilisation in normoxia. 

 

3.6.1 NO-dependent stabilisation of HIF-1α in J774.A1 MΦ 

J774.A1 macrophages (MΦ) were seeded on tissue culture plastic for 24 h prior to 

activation with interferon (IFN)γ (10 U/ml) and lipopolysaccharide (LPS, 10 ng/ml). 

One set of cells was co-treated with the NOS inhibitor S-ethyl isothiourea (SEITU, 500 

µM). Non-activated cells were used as controls. At different time points (0, 1.5, 3, 6 and 

12 h) cell lysates for activated and non-activated J774.A1 MΦ were prepared and HIF-

1α protein expression was determined by Western blot. In parallel, lactate and nitrite 

accumulation were also determined, as markers for glycolytic and iNOS activity 

respectively. 

 

Lactate accumulation increased in a time-dependent manner in both groups following 

activation (Figure 29, (A)). Figure 29 (B) shows there was a significant increase in 

nitrite accumulation 6 h after activation compared to control, with SEITU treated cells 

showing no increase in nitrite accumulation over the whole time course. Figure 30 

shows that HIF-1α protein transiently stabilises within 1.5 h following activation. By    

3 h, HIF-1α protein reverts back to the concentration of non-activated controls. 

However, after 6 h MΦ activation, HIF-1α protein concentrations increased, and 

continued to do so until the final 12 h time point (Figure 30) Co-treatment with SEITU 

had no effect on the early transient stabilisation of HIF-1α but prevented its 

accumulation at the latter time points (Figure 30). 
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Figure 29 – Time course of lactate and nitrite accumulation in activated MΦ  

MΦ were activated with LPS (10 ng/ml) and IFNγ (10 U/ml). A subset of cells was also co-treated with 

SEITU (500 μM). Lactate (A) and nitrite (B) accumulation in the cell culture medium was determined by 

chemiluminescence. The values represent + SEM from 3 independent experiments, * p < 0.05 versus 

control. 
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Figure 30 – Effect of MΦ activation on the stabilisation of HIF-1α  

MΦ were plated and non-activated (control), activated with a positive control cobalt chloride (CoCl2, 160 

μM), or activated with LPS (10 ng/ml) and IFNγ (10 U/ml). A subset of the latter cells was also co-treated 

with SEITU (500 μM). Cells were incubated for 12 h at 21% oxygen, lysed and subject to SDS-PAGE. 

Protein expression was analysed by Western blot and quantified by densitometry. The corresponding 

densitometry values were normalised with α-tubulin and are shown relative to CoCl2 treated non-

activated MΦ control cells. The values represent + SEM from 3 independent experiments, * p < 0.05 

versus non-activated control MΦ cells.  
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3.6.2 The effect of antioxidants on HIF-1α stabilisation in J774.A1 MΦ 

To investigate whether ROS were involved in the early (1.5 h) stabilisation of HIF1-α, 

MΦ were seeded and activated as described above, with a subset of cells treated with 

antioxidants. HIF-1α protein stabilisation, lactate and nitrate accumulation was 

determined.  

 

Lactate accumulation increased in a time-dependent manner in both groups following 

activation (Figure 31, (A)). Figure 31 (B) shows there was an increase in nitrite 

accumulation 6 h after activation compared to control, with antioxidant treated cells 

showing a similar increase in nitrite accumulation over the whole time course. Figure 32 

shows HIF-1α stabilisation was significantly inhibited by antioxidants at 1.5 h post-

activation but there was no effect in the latter time points. 
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Figure 31 – Time course of lactate and nitrite accumulation in activated MΦ  

MΦ were activated with LPS (10 ng/ml) and IFNγ (10 U/ml). A subset of cells was also co-treated with 

antioxidants (AO; 2.5 mM NAC plus 1 mM ascorbic acid). Lactate (A) and nitrite (B) accumulation in the 

cell culture medium was determined by chemiluminescence. The values represent + SEM from 3 

independent experiments, ns, not significant.  
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Figure 32 – Effect of antioxidants on HIF-1α stabilisation in activated MΦ  

MΦ were plated and non-activated (control), activated with a positive control cobalt chloride (CoCl2, 160 

μM), or activated with LPS (10 ng/ml) and IFNγ (10 U/ml). A subset of cells were also co-treated with 

antioxidants (AO; 2.5 mM NAC plus 1 mM ascorbic acid). Cells were incubated for 12 h at 21% oxygen, 

lysed and subject to SDS-PAGE. Protein expression was analysed by Western blot and quantified by 

densitometry. The corresponding densitometry values were normalised with α-tubulin and are shown 

relative to CoCl2 treated non-activated MΦ control cells. The values represent + SEM from 3 independent 

experiments, * p < 0.05 versus activated MΦ at 1.5 h.  
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3.7 Summary of key results 

Decreasing [O2] causes HIF-1α stabilisation in HEK 293T cells. In these cells we also 

observed menadione- and CoCl2-induced HIF-1α stabilisation at ambient [O2] in a 

concentration-dependent manner. Accordingly, antioxidants and L-NMMA prevented 

HIF-1α stabilisation at 3% oxygen both in HEK 293T cells and head and neck 

carcinoma cells. Activation of MΦ led to HIF-1α stabilisation in a biphasic manner, 

with early stabilisation attributed to ROS and late stabilisation to NO. 
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Chapter four: ROS-dependent HIF-1α stabilisation in 

normoxia 

4.1 Introduction 

Findings in chapter three indicate that HIF-1α stabilisation can be mediated by reactive 

oxygen species (ROS). We therefore set out to investigate the effect of endogenous 

ROS on HIF-1α stabilisation. Studies described in this chapter explore the hypothesis 

that endogenous ROS stabilise HIF-α at ambient oxygen concentrations (21%). Diaz-

Hernandez et al., 2007 demonstrate that impairment in glutathione (GSH) biosynthesis 

induces free radical production in primary cortical neurons. γGlutamyl cysteine 

synthetase (γGCS) is the rate limiting enzyme of glutathione (GSH) biosynthesis and is 

therefore a crucial antioxidant. Silencing γGCS using small interfering RNA (siRNA) 

promoted hydroethidine (HE) fluorescence (a marker for ROS) which was prevented by 

tempol (100μM) and enhanced by H2O2 (500μM) (Diaz-Hernandez et al., 2007). We 

therefore implemented the same strategy to further investigate the effect of endogenous 

ROS production on HIF-1α stabilisation in HEK 293T cells. 
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4.2 Expression vector pFIV and cloning of γGCS constructs 

Short double-stranded RNAs can be used to silence genes in mammalian cells (Fire et 

al., 1998). Template siRNAs can be cloned into a siRNA expression vector (such as 

pFIV), transfected and subsequently expressed in cells. This method of gene silencing 

by endogenous expression of siRNA effectors aims to provide long term silencing of the 

target gene, with a stable knockdown phenotype for functional evaluation studies. The 

expression vector pFIV (Figure 33) was obtained from System Biosciences, USA with 

the intention to silence γGCS in HEK 293T cells.  

 

  

 

 
 
 
 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 33 – Plasmid map of pFIV cloning and expression vector 

Sequence features of pFIV: CMV-5’ LTR 1-415, CMV promoter 1394-1745, puromycin-resistant marker 

1753-2352, H1 RNA promoter 3051-3141, U6 RNA promotor 3194-3436, ampicillin resistant gene 5103-

5963 (System Biosciences, USA). 
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Five different human γGCS sequences were selected using Sigma Aldrich predictor 

software (Figure 34). Confirmation of the cloning was done by sequencing (Figure 36) 

in house by Scientific Support Services, Wolfson Institute for Biomedical Research, 

UCL.  

 

 

 

 

 

 

 

 

 

 

Figure 34 – Diagram of CDS sequence of γGCS and table of individual sequences 

CDS sequence of human γGCS (3717 bp) showing the sites of each sequence used to generate siRNA 

against human γGCS. Each of the five different sequences is shown in the table.  

 

The plasmid was then transformed into bacterial cells and the ampicillin resistant 

colonies selected for screening by PCR. PCR, with primers flanking the plasmid 

location sites was used to confirm cloned fragment sizes. The result yielded from the 

screening of the γGCS products was successful, as it showed the expected fragment 

sizes (190 bp) (Figure 35). With the results obtained from the screening and sequencing, 

attempts were made to achieve a successful knock-down/silencing of γGCS in HEK 

293T cells. 

 Selected γGCS Sequences 
1 5’ ATCCATGTAAATATGATCCGG 3’ 
2 5’ TAGTTATTGTTCTTCAATGGC 3’ 
3 5’ AAATCCAATTTGTAGGAAAGG 3’ 
4 5’ AAGGTAAGAGTTCAGAATTGG 3’ 
5 5’ AATGTCTGACACATAGCCTCG 3’ 
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Figure 35 – Screening of γGCS cloning products 

Expression of five γGCS constructs in duplicate (a and b). Products of expected size were obtained for all 

γGCS constructs (except 4b) of approximately 190 base pairs. Human cDNA was used for a positive 

control (lane +). Template DNA was omitted for negative control (lane -). PCR products were subjected 

to electrophoresis on a 1% agarose gel. 
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Figure 36 – Sequencing data for plasmid DNA containing γGCS cloning products 

Sequence data generated with ABI3730XL sequencer. 100 ng/μl of each γGCS pFIV plasmid (1-5) was 

used per sequencing reaction. Samples were cycle-sequenced using BigDye® 3.1 Chemistry, and 

standard thermal cycling conditions. Chromas Lite Version 2.01 sequence scanner software was used to 

analyse and display each DNA sequence. 
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4.3 Silencing of γGCS in HEK 293T cells 

To test the functionality of the γGCS siRNA, HEK 293T cells were transfected with the 

plasmid and efficiency of the knock-down was assessed by measuring protein levels as 

well as cellular GSH content. 

 

4.3.1 Inhibition of γGCS protein in HEK 293T cells 

Cells were transformed using Lipofectamine transfection reagent as described in 

experimental procedures section 2.9.1. A sub-set of cells was also co-transfected with a 

construct expressing the green fluorescent protein (GFP) marker, to ascertain a positive 

visual transfection in these cells (Figure 37).  

 

Following transfection, cells were grown until confluence was reached. Since the pFIV 

plasmid carried a puromycin-resistant maker, transfected cells could be selected using 

media containing the appropriate antibiotic. Therefore to determine the optimal 

antibiotic concentration in which to maintain transfected cells, cells were grown in 

selection media containing 0-4 μg/ml puromycin. Cell viability was quantified using 

trypan blue exclusion. Figure 38 shows puromycin concentrations of less than 0.2 μg/ml 

resulted in 90-100% viable cells. At 0.5 μg/ml puromycin 50% of cells were viable, and 

concentrations above 1 μg/ml killed all cells. All further transfected cells were 

maintained in selection media containing 0.5 μg/ml puromycin. Once the optimal 

selection media had been ascertained and resistant cells begun to grow, cells were used 

experimentally for up to 4 weeks.  

 

γGCS protein expression was determined via Western blot on cell lysates. Figure 39 

shows γGCS protein to be reduced by 80% with construct 1 and 4, 95% with construct 2 

and 60% with construct 5 when compared to control cells. Construct number two 

consistently showed the greatest reduction and was therefore used for all future 

silencing experiments with γGCS pFIV siRNA. However, cells for which γGCS had 

been silenced were inherently unstable thus puromycin resistance was no longer a valid 

tool for selection.  
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Figure 37 – Co-transfection of GFP with pFIV γGCS siRNA 

Cells co-transfected with GFP and γGCS construct sequence #2 to obtain visual confirmation of positive 

cell transfection. Phase contrast image (A), cells transfected with GFP (B), as shown by visible green 

fluorescence.  
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Figure 38 – Puromycin dose-response 

Cells were grown in selection media containing 0-4 μg/ml puromycin. Cell viability was quantified using 

trypan blue exclusion. The values represent the mean + SEM from 3 independent experiments; * 

represents a significant difference (p < 0.05) from control. 
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Figure 39 – Transfection with γGCS siRNA decreases γGCS protein levels 

Cells were transfected with different γGCS siRNA constructs. Cell lysates were subject to SDS-PAGE 

and analysed by Western blot with an anti-γGCS antibody (A) and quantified by densitometry (B). The 

corresponding densitometry values were normalised with α-tubulin and results are shown relative to 

control. The values represent the mean + SEM from 3 independent experiments; * represents a significant 

difference (p < 0.05) from control. One representative blot is shown.  
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4.3.2 Inhibiting γGCS protein expression decreases cellular glutathione 

The next series of experiments were performed to investigate the functional 

consequence of γGCS protein knock-down. Firstly, measurements of GSH were made.  

 

Cells were transfected using the protocol described in 4.3.1. Scrambled (non-specific) 

control plasmid was used as a control in all experiments. Total cellular GSH was 

measured using a colorimetric assay GSH-400 kit (Oxis Research, refer to experimental 

procedures, 2.11.4). Figure 40 shows approximately a 40% decrease of GSH in cells 

transfected with γGCS pFIV siRNA, compared to both control (untreated) and 

scrambled control cells. 
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Figure 40 – Decreased glutathione in cells transfected with siRNA against γGCS 

Cells were either transfected with siRNA against γGCS or treated with scrambled non-specific siRNA 

control sequence. Samples were analysed for GSH content using a GSH-400 kit (Oxis Research). Data 

was normalised to control. The values represent the mean + SEM from 3 independent experiments; * 

represents a significant difference (p < 0.05) from control. 
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4.3.3 Silencing γGCS increases cellular reactive oxygen species generation 

Experiments were then carried out to determine whether a decrease in GSH caused an 

effect on reactive oxygen species (ROS) generation in these cells.  

 

To measure ROS, cells previously transfected with γGCS were seeded in a black-edged 

96 well plate (Costa 3603) in phenol-free media, in quadruple wells and left overnight 

to adhere. Black plates were used to lower background fluorescence and to reduce cross 

talk between independent wells. γGCS silencing doubled DCF fluorescence (Figure 41). 
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Figure 41 – Increased DCF fluorescence in cells transfected with γGCS siRNA  

Cells were either transfected with siRNA against γGCS or treated with scrambled non-specific siRNA 

control sequence. Samples were analysed for ROS generation using 20 μM DCFH. Data was normalised 

to control. The values represent the mean + SEM from 3 independent experiments; * represents a 

significant difference (p < 0.05) from control. 
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4.3.4 Effect of γGCS knock-down on HIF-1α stabilisation at 21% oxygen 

Scrambled and γGCS transfected cells were treated with antioxidants (AO, NAC and 

ascorbic acid) for 4 h, sample lysates prepared and HIF-1α protein stabilisation was 

assessed by Western blot. Figure 42 shows cells transfected with a scrambled control do 

not stabilise HIF-1α. Silencing of γGCS stabilises HIF-1α in normoxia, yet this is 

prevented by treatment with AO.  
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Figure 42 – HIF-1α stabilisation in cells transfected with siRNA against γGCS at 21% oxygen 

Cells were either transfected with siRNA against γGCS or treated with scrambled non-specific siRNA 

control sequence. Cobalt chloride (CoCl2, 160 μM) served as a positive control. Cell lysates were subject 

to SDS-PAGE and analysed by Western blot (A) and quantified by densitometry (B). The corresponding 

densitometry values were normalised with α-tubulin and expressed as a percentage to cells incubated with 

CoCl2. The values represent the mean + SEM from 3 independent experiments; * represents a significant 

difference (p < 0.05) from control, and ^ represents a significant difference from γGCS-transfected cells 

treated with AO. 
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4.4 Alternative strategy to promote a pro-oxidant environment 

Due to the difficulties incurred in maintaining a stable knock-down of γGCS protein 

expression whilst using the pFIV expression vector, we decided to develop a method in 

which these restrictions could be controlled. This was achieved by employing 

synthetically generated siRNA with anti-sense homology against γGCS. 

 

4.4.1 Validation of ON-TARGETplus SMARTpool siRNA against human γGCS 

In order to determine the time point in which to study the highest efficiency of siRNA 

silencing, cells were transfected with a scrambled, negative control siRNA (conjugated 

to Alexa Fluor 555) over a 72 h time course, and transfection efficiency determined. 

Maximum fluorescence was observed between 12 and 24 h post silencing (Figure 43). 

Next we determined mRNA, protein and GSH levels in cells transfected with siRNA 

against γGCS. Silencing γGCS causes a temporary decrease in γGCS protein (Figure 

44) and mRNA expression (Figure 45), which is associated with changes in GSH 

concentration (Figure 45). Transfection with scrambled siRNA had no effect (Figure 

44), remaining undistinguishable from control. There was also no difference in mRNA 

and GSH concentration in scrambled transfected cells (data not shown).  
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Figure 43 – Transfection efficiency of siRNA in HEK 293T cells 

Cells were treated with a negative control siRNA conjugated to Alexa Fluor 555 over a 72 h time course. 

Cell suspensions were made and fluorescence analysed using a Flow Cytometer (A). The data represent 

the mean + SEM from 3 independent experiments; * represents a significant difference (p < 0.05) from 0 

h (B). ns represents no significant difference from 0 h (B). One representative experiment is shown. 
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Figure 44 – Time course of γGCS protein expression in cells transfected with siRNA against γGCS 

Cells were either transfected with siRNA against γGCS or treated with scrambled non-specific siRNA 

control sequence. Cell lysates were subjected to SDS-PAGE and analysed by Western blot (A) and 

quantified by densitometry (B). The corresponding densitometry values were normalised with α-tubulin 

and results are shown relative to control (0 h). Values are expressed as the mean + SEM from 3 

independent experiments; * represents a significant difference (p < 0.05) from the scrambled control. 
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Figure 45 – Time course of γGCS mRNA expression and GSH concentration in cells transfected with 

siRNA against γGCS 

Cells were either transfected with siRNA against γGCS or treated with scrambled non-specific siRNA 

control sequence over 72 h. Samples were analysed for GSH content (blue line). Data was normalised to 0 

h control and expressed as a percentage of control (A) and nmol GSH/ mg protein (B). Total RNA was 

obtained from cells, reverse transcribed into cDNA and mRNA copy numbers of γGCS were quantified 

by quantitative reverse transcriptase PCR and normalised against β-actin (bars) and expressed as a 

percentage of control (A).  The values represent the mean + SEM from 3 independent experiments; * 

represents a significant difference (p < 0.05) from control (0 h). 
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4.4.2 Effect of ON-TARGETplus SMARTpool γGCS silencing in HEK 293T cells 

on reactive oxygen species generation 

 

4.4.2.1 Detected using 2’-7’dichlorofluorescin (DCFH), a cell permanent 

indicator for reactive oxygen species 

Since γGCS silencing led to a decrease in glutathione after 24 h, experiments were done 

to measure ROS in these cells. Reactive oxygen species generation was determined 24 h 

post-silencing using 20 μM DCFH. Excitation and emission were measured at 490 nm 

and 520 nm, respectively. Silencing γGCS caused a two-fold increase in DCF 

fluorescence compared to the controls (untreated and scrambled) (Figure 46). 

 

4.4.2.2 Detected using a genetically encoded fluorescent indicator for hydrogen 

peroxide 

Using oxidant sensitive dyes such as DCFH to monitor ROS production has been met 

with contention as the use of these dyes in cells is problematic concerning sensitivity, 

specificity and auto-oxidation (Tampo et al., 2003). However, more recently a 

genetically encoded fluorescent indicator for intracellular hydrogen peroxide (H2O2) has 

been created to detect H2O2 inside living cells in real-time. The HyPer probe consists of 

yellow fluorescent protein (YFP) inserted into the regulatory domain of the prokaryotic 

H2O2-sensing protein, OxyR (Belousov et al., 2006). To further validate and compare 

the observed increase in DCF fluorescence, (Figure 46, indicative of ROS generation) 

the HyPer probe was used in γGCS transfected cells.  
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To characterise the sensitivity of HyPer in HEK 293T cells, cells were transfected with 

the plasmid carrying HyPer using Lipofectamine transfection reagent. HyPer-

transfected cells exhibiting YFP positive staining were then selected using fluorescence-

activated cell sorting (FACS), as the plasmid has no antibiotic selection in mammalian 

cells. Transfected cells were then treated with H2O2 (0-160 μM) and fluorescence 

detected immediately. The fluorescence of HyPer was detected by flow cytometry 

analysis at 488 nm. The HyPer probe exhibits a basal level of fluorescence intensity 

(approximately 40 a.u.) (Figure 47). Concentrations as low as 10 μM H2O2 led to 

increases in HyPer fluorescence, which was saturated at approximately 60 μM. This 

result shows that the HyPer probe can detect H2O2 in HEK 293T cells.  

 

To determine whether HyPer fluorescence following treatment with H2O2 was sensitive 

to antioxidants, HyPer-transfected cells were treated with 60 μM H2O2, followed by a 

bolus dose of NAC (1, 2 or 4 mM) immediately after the addition of H2O2. HyPer-

transfected cells demonstrate basal fluorescence intensity, as seen in Figure 47 and the 

addition of 60 μM H2O2 increases about 2.5 fold. Treatment with NAC caused a 

significant decrease in HyPer fluorescence. 4 mM NAC returned the fluorescence 

intensity back to that of the untreated control (Figure 48). 

 

Following the determination of HyPer sensitivity towards H2O2 and antioxidants, 

silencing experiments were performed using γGCS siRNA. Small interfering RNA was 

prepared, and plated into a 6 well plate. Sorted HyPer cells were then seeded on top in 

phenol-free, low serum media and left overnight to adhere. The fluorescence of HyPer 

24 h post γGCS silencing was detected by flow cytometry analysis. HyPer-transfected 

cells show basal fluorescence intensity as seen in the previous two figures. The 

fluorescence intensity increases significantly in γGCS-silenced cells and antioxidant 

treatment (NAC, 4 mM) immediately prior to analysis prevents this increase (Figure 

49). 

 

Similarly to the data collected using DCFH, the results obtained using the HyPer probe 

show that γGCS-silenced cells have exactly a 2-fold increase in ROS generation 

compared to control cells. 
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Figure 46 – Increased reactive oxygen species in cells transfected with siRNA against γGCS 

Cells were either transfected with siRNA against γGCS or treated with scrambled non-specific siRNA 

control sequence. Samples were analysed for ROS using 20 μM DCFH. Data was normalised to control. 

The values represent the mean + SEM from 3 independent experiments; * represents a significant 

difference (p < 0.05) from control. 
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Figure 47 – Sensitivity of HyPer towards exogenously added H2O2  

Cells were transfected with HyPer and selected using fluorescence-activated cell sorting (FACS). Cell 

suspensions were made, treated with 0-160 μM H2O2 (shown in log scale of [H2O2], (A)) and 

fluorescence analysed immediately using a Flow Cytometer. Data represent the mean + SEM from 3 

independent experiments (B). 
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Figure 48 – Effect of NAC on H2O2-induced fluorescence in HEK 293T cells 

Cells were transfected with HyPer and selected using fluorescence-activated cell sorting (FACS). Cell 

suspensions were made, and then treated with 60 μM H2O2 followed by an immediate bolus dose of NAC 

(1, 2 or 4 mM) and fluorescence analysed using a Flow Cytometer. The values represent the mean + SEM 

from 3 independent experiments; * represents a significant difference (p < 0.05) from H2O2 treatment 

alone.  
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Figure 49 – HyPer fluorescence intensity in cells silenced with siRNA against γGCS 

Cells were transfected with HyPer and selected using fluorescence-activated cell sorting (FACS). Cells 

were then silenced with siRNA against γGCS for 24 h and treated with a bolus shot of NAC (4 mM) 

immediately prior to analysis. Cell suspensions were made and fluorescence analysed using a CyAN Flow 

Cytometer (DAKO). The values represent the mean + SEM from 3 independent experiments; * represents 

a significant difference (p < 0.05) from HyPer γGCS silenced cells.  
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4.4.3 Effect of γGCS silencing on HIF-1α mRNA and protein expression at 21% 

oxygen 

Since the use of synthetic siRNA against γGCS in HEK 293T cells decreased GSH and 

increased ROS in agreement with the data shown using pFIV expression vector, HIF-1α 

mRNA and protein were determined. Silencing γGCS causes a significant increase in 

HIF-1α mRNA gene expression (Figure 50) and protein stabilisation (Figure 51) 24 h 

post-silencing.  

 

The effect of antioxidant treatment on γGCS-silenced cells was then evaluated. Figure 

52 shows cells transfected with siRNA against γGCS, stabilise HIF-1α at 21% oxygen. 

Treatment with antioxidants (either NAC alone or a combination of NAC and ascorbic 

acid) significantly prevents HIF-1α stabilisation. 
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Figure 50 – HIF-1α mRNA expression in cells transfected with siRNA against γGCS 

Cells were either transfected with siRNA against γGCS or treated with scrambled non-specific siRNA 

control sequence for 24 h. Total RNA was obtained from cells and reverse transcribed into cDNA. mRNA 

copy numbers of HIF-1α were quantified by quantitative reverse transcriptase PCR and normalised 

against β-actin and expressed relative to control. The values represent the mean + SEM from 3 

independent experiments; * represents a significant difference (p < 0.05) from control.  

 
 
 
 
 
 
 
 
 
 



Chapter four: ROS-dependent HIF-1α stabilisation in normoxia 

 155

Contro
l 2

CoCl

Scr
am

ble
d 2

4 
h

GCS S
ile

nci
ng 1

2 
h

 GCS S
ile

nci
ng 2

4 
h



0

20

40

60

80

100

**

R
el

at
iv

e 
V

al
u

e 
to

 C
o

C
l 2

 (
%

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 51 – HIF-1α protein stabilisation in cells transfected with siRNA against γGCS 

Cells were either transfected with siRNA against γGCS or treated with scrambled non-specific siRNA 

(Scr). Cobalt chloride (CoCl2, 160 μM) served as a positive control. Cell lysates were subject to SDS-

PAGE and analysed by Western blot (A) and quantified by densitometry (B). The corresponding 

densitometry values were normalised with α-tubulin and results are shown as a percentage to CoCl2 

treated cells. The values represent the mean + SEM from 3 independent experiments; * represents a 

significant difference (p < 0.05) from scrambled control. One representative blot is shown. 
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Figure 52 – Effect of antioxidants on HIF-1α stabilisation in cells transfected with siRNA against γGCS 

Cells were either transfected with siRNA against γGCS or treated with scrambled non-specific siRNA 

(Src) for 24 h, and treated with NAC (2.5 mM) alone or NAC (2.5 mM) and ascorbic acid (1 mM) for the 

final 4 h. Cobalt chloride (CoCl2, 160 μM) served as a positive control. Cell lysates were subject to SDS-

PAGE and analysed by Western blot (A) and quantified by densitometry (B). The corresponding 

densitometry values were normalised with α-tubulin and results are shown as a percentage to CoCl2 

treated cells. The values represent the mean + SEM from 3 independent experiments; * represents a 

significant difference (p < 0.05) from γGCS-silenced cells. One representative blot is shown. 
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4.4.4 Effect of γGCS silencing on other antioxidant systems and oxidant sensitive 

genes 

Next we investigated whether knocking-down γGCS and the associated increase in 

cellular ROS production had consequences for the expression of antioxidant genes. The 

results showed a 2- to 3-fold increase in the expression of catalase, manganese 

superoxide dismutase (MnSOD), nuclear factor-like 2 (Nrf2) and thioredoxin (Figure 

53). Since ROS production has been linked to the activation of NF-ĸB (Palacios-

Callender et al., 2004), a nuclear transcription factor, mRNA levels of NF-ĸB were also 

examined. The data show that there was a significant increase in mRNA expression in 

γGCS knock-down cells compared with control cells (Figure 54). 
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Figure 53 – Antioxidant mRNA expression in cells transfected with siRNA against γGCS 

Cells were transfected with siRNA against γGCS for 24 h. Total RNA was obtained from cells, reverse 

transcribed into cDNA and mRNA copy numbers of catalase, manganese superoxide dismutase 

(MnSOD), nuclear factor-like 2 (Nrf2) and thioredoxin were quantified by quantitative reverse 

transcriptase PCR and normalised against β-actin and expressed relative to control (0 h un-transfected 

cells). The values represent the mean + SEM from 3 independent experiments; * represents a significant 

difference (p < 0.05) from control (0 h un-transfected cells).  
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Figure 54 – NF-ĸB mRNA expression in cells transfected with siRNA against γGCS 

Cells were transfected with siRNA against γGCS for 24 h. Total RNA was obtained from cells, reverse 

transcribed into cDNA and mRNA copy numbers of NF-ĸB were quantified by quantitative reverse 

transcriptase PCR and normalised against β-actin and expressed relative to control. The values represent 

the mean + SEM from 3 independent experiments; * represents a significant difference (p < 0.05) from 

control. 
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4.5  Mechanism by which ROS stabilise HIF-1α in normoxia 

A number of mediators have been described to affect the HIF system including hypoxia 

(Wang and Semenza, 1993), NO (Quintero et al., 2006a), ROS ((Klimova and Chandel, 

2008), growth factors (Fukuda et al., 2002) and genetic mutations (Maxwell et al., 

1999). There are numerous potential mechanisms of these mediators, resulting in either 

the accumulation of HIF-1α or increased HIF-1 activity. These include inhibition of 

PHDs by Fe2+ chelation or activation of PI3K (Brune and Zhou, 2007), S-nitrosylation 

of HIF-1α (Li et al., 2007), inhibition of PHDs by reducing antioxidants, or direct 

oxidation of catalytic Fe2+ (Gerald et al., 2004) and NF-ĸB activation and HIF-1α 

mRNA up-regulation (Blouin et al., 2004;Frede et al., 2006;Jantsch et al., 2008).  

 

4.5.1 Detection of hydroxylated and ubiquitinated HIF-1α  

Since γGCS silencing stabilises HIF-1α at 21% oxygen, experiments underwent to 

investigate the potential mechanism of this stabilisation. At 21% oxygen, PHDs 

normally target HIF-1α for hydroxylation, which in turn mediates ubiquitination and 

proteosomal degradation. To test whether the PHDs were functioning, HEK 293T cells 

were treated with the proteosomal inhibitor MG132 (0-10 μM, 2 h). Cell lysates were 

prepared, separated by SDS-PAGE and analysed by Western blot. An antibody which 

specifically recognises hydroxylated HIF-1α was used during immunodetection. 

 

There is an accumulation of HIF-1α protein in MG132 treated cells, which is absent in 

untreated cells (Figure 55. Moreover, hydroxylated HIF-1α is detected in cells treated 

with 10 μM MG132 (Figure 55). Next, we investigated whether cells treated with 

siRNA against γGCS, which stabilise HIF-1α at 21% oxygen, have been targeted for 

hydroxylation by the PHDs. Figure 56 shows γGCS siRNA transfected HIF-1α have 

been hydroxylated. 

 

Given that HIF-1α is hydroxylated in γGCS siRNA transfected cells, we next tested 

whether HIF-1α was ubiquitinated by preparing IP with anti-ubiquitin. Figure 57 shows 

HIF-1α ubiquitination in cells treated with γGCS siRNA, at a level similar to control. 
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Figure 55 – HEK 293T cells treated with proteasomal inhibitor MG132  

Cells were treated with MG132 (0-100 μM) for 2 h at 21% oxygen. Cell lysates were subject to SDS-

PAGE and analysed by Western blot (A) and quantified by densitometry (B) HIF-1α (white bars) and 

hydroxylated HIF-1α (grey bars). The corresponding densitometry values were normalised with α-tubulin 

and results are shown relative to control. The values represent the mean + SEM from 3 independent 

experiments; * represents a significant difference (p < 0.05) from control. One representative blot is 

shown. 
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Figure 56 – Detection of hydroxylated HIF-1α in cells transfected with siRNA against γGCS 

Cells were either transfected with siRNA against γGCS for 24 h or treated with MG132 (10 μM, 2 h) at 

21% oxygen. Cell lysates were subject to SDS-PAGE and analysed by Western blot (A) and quantified by 

densitometry (B) HIF-1α (white bars) and hydroxylated HIF-1α (grey bars). The corresponding 

densitometry values were normalised with α-tubulin and results are shown relative to control. The values 

represent the mean + SEM from 3 independent experiments; * represents a significant difference (p < 

0.05) from control. One representative blot is shown. 
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Figure 57 – HIF-1α is targeted for ubiquitination in cells transfected with siRNA against γGCS  

HIF-1α protein was immunoprecipitated with an ubiquitin antibody from lysates of cells transfected with 

siRNA against γGCS or a non-specific control sequence (Scr) for 24 h. For controls, CoCl2 was used as a 

positive control for HIF-1α and to verify the stringency of immunoprecipitation, experiments included 

samples where immunoprecipitating antibody was omitted (Neg. Ctl). The immunoprecipitated proteins 

were subjected to Western blotting and detected with anti-HIF-1α. One representative blot is shown from 

3 independent experiments. 

   Ctl           Scr         γGCS     CoCl2    Neg. Ctl     

HIF-1α 
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4.6  Summary of key results 

γGlutamyl Cysteine Synthetase (γGCS), the rate limiting enzyme of GSH biosynthesis 

was successfully silenced in HEK 293T cells via two siRNA strategies. Silencing γGCS 

caused a significant decrease in cellular GSH thereby impairing the capacity of the cells 

to detoxify endogenously generated ROS, resulting in an increase in ROS. HIF-1α was 

stabilised at ambient [O2] in γGCS-silenced cells and this effect could be prevented by 

treatment with antioxidants. HIF-1α appears to remain hydroxylated and ubiquitinated 

in γGCS siRNA transfected cells. 
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Chapter five: Investigation into the origin of reactive oxygen 

species involved in HIF-1α stabilisation 

5.1 Introduction 

The findings presented in chapter four demonstrate ROS-induced HIF-1α stabilisation at 

ambient oxygen concentration. However, these data do not provide information 

concerning the possible origin of ROS contributing towards this normoxic stabilisation 

of HIF-1α. Therefore, experiments were conducted to establish the possible source of 

ROS involved in the stabilisation of HIF-1α in the γGCS silencing model, and to study 

the potential role of ROS in HIF-1α stabilisation at low [O2].  

 

HIF-1α stabilisation by free radicals has been previously demonstrated (Schroedl et al., 

2002;Wellman et al., 2003;Mansfield et al., 2005;Quintero et al., 2006a) yet the origin 

of free radical required for this effect remain controversial. Originally Chandel et al, 

(1998) reported that ROS generated by the mitochondria were able to trigger binding of 

HIF-1α to DNA and mRNA expression of erythropoietin (EPO) and vascular 

endothelial growth factor (VEGF) (downstream HIF-1α targets) in human hepatoma 

(Hep3B) cells. However, the generation of free radicals in hypoxia and their effect of 

stabilising HIF-1α remain contentious. 

 

Experiments were therefore conducted using the previously validated γGCS-silencing 

model to explore the hypothesis that ROS generated from the mitochondria stabilise 

HIF-1α. Initially, experiments were designed to characterise a genetic model in which to 

study the effects of HIF-1α stabilisation in cells with non-functional mitochondria 

(Rho0) and subsequently establish the consequence on ROS production. Alternative 

sources of ROS-induced HIF-1α stabilisation were also investigated.  
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5.2 Characterisation of mutated form of DNA polymerase gamma 

From the 5 isoforms (alpha, beta, gamma, delta, and epsilon) of DNA polymerase in 

human cells, DNA polymerase gamma (POLγ) is solely responsible for the replication 

of mitochondrial DNA (mtDNA). Studies by Wanrooij et al., 2007 showed the effects 

of expressing various catalytically deficient mutants of DNA POLγ. This led to a sharp 

decrease in mtDNA replication and a progressive decline in mtDNA copy number 

(Wanrooij et al., 2007). We investigated the consequence of the expression of mutated 

DNA POLγ on cellular ROS production and HIF-1α stabilisation.  

 

5.2.1 Effect of DNA POLγ mutation on respiration (VO2) and cytochrome aa3 

content 

HEK 293T cells stably transfected with an inducible catalytically deficient isoform of 

mitochondrial DNA POLγ (D890N) were kindly provided by Johannes Spelbrink, 

Institute of Medical Technology and Tampere University Hospital, Tampere, Finland. 

The expression of this mutated isoform is under the control of an inducible promoter 

that can be activated by the incubation of cells with doxycycline (DC). Cells were 

treated with DC (0-1500 ng/ml) for 0, 5 and 10 days and placed in the respiration 

chamber of the visible light spectroscopy (VLS) system (experimental procedures 

section 2.12) to monitor oxygen consumption (VO2) and redox changes in cytochrome 

aa3 of cytochrome c oxidase (CcO) during cellular respiration towards anoxia.  

 

Studies of the VO2 showed that control cells respire at ~ 15 μM O2/min/107cells. 

Incubation with DC led to both dose- and time-dependent decrease in VO2. After 5 

days, VO2 dropped by ~ 50% at concentration > 250 ng/ml. After 10 days, VO2 was 

decreased by incubation with DC as low as 50 ng/ml. At concentrations > 250 ng/ml, 

VO2 dropped to as little as 1 μM O2/min/107cells (Figure 58, A). The corresponding 

changes in the redox state of aa3 in terms of absolute concentration changes were also 

monitored (Figure 58, B). Incubation with DC (50-1500 ng/ml) for 5 days caused a 

significant reduction (> 50%) of cytochrome aa3. Incubation with DC (50-1500 ng/ml) 

for 10 days caused an even greater reduction of cytochrome aa3 to almost undetectable 

levels at concentrations > 250 ng/ml. Figure 58 shows incubation with 250 ng/ml DC 

caused the earliest significant response in mitochondrial functionality (VO2). Therefore 

all further experiments were performed using 250 ng/ml DC for 10 days.  
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5.2.2 Effect of DNA POLγ mutation on mtDNA content 

Next, mitochondrial DNA content was determined following a 10-day time course using 

250 ng/ml DC. Mitochondrial DNA was normalised to nuclear DNA and is represented 

in Figure 59 relative to non-induced cells. Figure 59 shows an early and steep decrease 

in mitochondrial DNA, with an EC50 of 8.9 hours. Mitochondrial DNA decreases by 

90% after 1 day DC incubation and remains at this level throughout the time course. 

 

5.2.3 Effect of DNA POLγ mutation on cytochrome c oxidase protein expression 

Following the previous results demonstrating functional defects in induced D890N and 

the loss of mitochondrial DNA, cytochrome c oxidase (CcO) protein expression was 

determined via Western blot. Cells were incubated with 250 ng/ml DC for 3, 5 and 10 

days and lysates prepared. Figure 60 shows non-induced cells to have a detectable level 

of CcO, which is not significantly affected after incubation with DC for 3 days. 

However, after 5 days incubation with DC, CcO protein concentration begins to decline, 

until at 10 days the protein is significantly reduced. 
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Figure 58 – Cellular respiration and cytochrome aa3 concentration monitored by VLS in DC treated cells 

D890N cells were incubated with 0-1500 ng/ml doxycycline (DC) for 5 or 10 days. Values of oxygen 

consumption (VO2) (A) and changes in the redox state of cytrochromes aa3 (B) were measured from 

intact cells during respiration towards anoxia using the VLS system. The values represent the mean + 

SEM from 3 independent experiments; * represents a significant difference (p < 0.05) from untreated 

cells (for 10 days incubation) and ^ represents a significant difference (p < 0.05) from untreated cells (for 

5 days incubation). 
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Figure 59 – Mitochondrial DNA content in induced D890N cells 

MtDNA copy number was determined by real time PCR of COX1 using 18S as a nuclear standard. The 

data shown represents the copy numbers for cells following doxycycline (DC) induction (250 ng/ml) for 

up to 10 days. The values represent the mean + SEM from 3 independent experiments; * represents a 

significant difference (p < 0.05) from untreated cells. 
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Figure 60 – Effect of DC treatment on cytochrome c oxidase protein expression 

Cells were treated with 250 ng/ml doxycycline (DC, 0-10 days). Cell lysates were subject to SDS-PAGE 

and analysed by Western blot (A) and quantified by densitometry (B). The corresponding densitometry 

values were normalised with α-tubulin and results are shown relative to control. The values represent the 

mean + SEM from 3 independent experiments; * represents a significant difference (p < 0.05) from 

control. One representative blot is shown. 
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5.2.4 Effect of DNA POLγ mutation on mitochondrial morphology 

We next examined whether the morphology of mitochondria were affected following 

DC induction (250 ng/ml, 10 days). Electron microscopy images of control cells show 

the structure of the mitochondria, with clearly identifiable cristae space (folding of the 

inner membrane) (Figure 61 (A), indicated by arrows). The structure of the 

mitochondria is still visible in induced cells, but the cristae are no longer uniform, and 

in some cases have been completely lost (Figure 61 (B), indicated by arrows).  

 

5.2.5 Mitochondrial membrane potential in induced D890N cells 

Next we investigated whether the membrane potential (ΔΨm) was maintained in induced 

cells, and to see if electrons are passed through the electron transport chain. After DC 

induction, cells were treated with rotenone (1 μM) to inhibit Complex I of the 

respiratory chain; followed by treatment with p-trifluoromethoxy carbonyl cyanide 

phenyl hydrazone (FCCP, 25 μM), an uncoupler of mitochondrial oxidative 

phosphorylation, while recording ΔΨm using time-lapse confocal microscopy.  

 

Treatment with rotenone causes the ΔΨm of control cells, as measured by tetramethyl 

rhodamine methyl ester (TMRM, 20 nM) fluorescence to be significantly reduced 

(Figure 62 (B); rotenone (Rot) addition). FCCP completely collapses ΔΨm. The ΔΨm of 

induced D890N cells is not affected by the addition of rotenone, but collapses 

completely upon treatment with FCCP (Figure 62 (D)).  
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Figure 61 – Electron microscopy of D890N control and induced cells 

Electron microscopy images of control (A) or induced ((B) 250 ng/ml DC, 10 days) D890N cells. Arrows 

depict mitochondrial structure, with cristae (A) or without cristae (B). (n = 3) One representative image 

for each is shown.  

(A) D890N Control (B) D890N Induced 
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Figure 62 – Mitochondrial membrane potential in control and induced D890N cells 

Control and induced (250 ng/ml DC, 10 days) D890N cells were treated with rotenone (1 μM) (Rot) 

followed by FCCP (25 μM), and TMRM fluorescence in whole-cells was monitored as an indicator of 

ΔΨm (B and D). FCCP completely abolished the TMRM fluorescence in control and induced cells. The 

values represent the mean + SEM from 3 independent experiments. One representative confocal image 

and trace of control (A) and DC induced (B) cells is shown, stained with 20 nM TMRM to indicate ΔΨm 

(red) and counterstained with 2 mg/ml Hoechst 33342 to identify the nuclei (blue). 
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5.3 Effect of DNA POLγ mutation on HIF-1α stabilisation  

Following the induction and characterisation of a Rho0 phenotype, defined as non-

respiring cells with no mitochondrial DNA, experiments proceeded to investigate the 

implications of Rho0 cells on ROS production and HIF-1α stabilisation.  

 

5.3.1 ROS production decreases in D890N Rho0 cells at ambient oxygen 

D890N HEK 293T cells were incubated with DC (250 ng/ml) for 9 days. Induced and 

control cells were then seeded in a black-edged 96 well plate in phenol free media, in 

quadruple wells and left overnight to adhere. Small interfering RNA against γGCS was 

also prepared, plated into the same 96 well plate and cells (control and induced) seeded 

on top. Reactive oxygen species generation was determined 24 h post silencing (10 day 

DC incubation) using 20 μM DCFH in the absence or presence of antioxidants.  

 

Figure 63 shows that there was a significant increase in DCF fluorescence in γGCS 

siRNA transfected cells compared to non-induced D890N cells. DCF fluorescence in 

induced D890N Rho0 cells was significantly less than non-induced cells and incubation 

with antioxidants had no effect. DCF fluorescence in induced D890N Rho0 cells 

transfected with siRNA against γGCS was also significantly less than non-induced cells 

and incubation with antioxidants had no effect. There was no difference observed 

between the DCF fluorescence of D890N Rho0 cells and D890N Rho0 cells transfected 

with γGCS siRNA. 

 

5.3.2 Loss of ROS in D890N Rho0 cells at low [O2] 

D890N cells were incubated with DC (250 ng/ml) for 10 days. Cells were then 

incubated at ambient (21%) or low [O2] (3%) concentration for 4 hours. Reactive 

oxygen species generation was determined using 20 μM DCFH and cells fixed with 

70% ethanol. The fluorescence of DCF was detected by flow cytometry. 

 

Figure 64 shows that there was a significant increase in DCF fluorescence at 3% oxygen 

in control D890N cells. However, this increase in DCF fluorescence was not observed 

in D890N Rho0 cells at 3% oxygen.  
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Figure 63 – Decrease in DCF fluorescence in Rho0 cells at 21% oxygen 

Cells were incubated with doxycycline (250 ng/ml) for 10 days. Cells were then treated with antioxidants 

(NAC 2.5 mM plus ascorbic acid 1 mM) for 4 h. Samples were analysed for ROS production using 20 

μM DCFH. Data was normalised to non-induced control data. The values represent the mean + SEM from 

3 independent experiments; * represents a significant difference (p < 0.05) from non-induced control. 
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Figure 64 – Decrease in DCF fluorescence in Rho0 cells in low [O2] 

Cells were incubated with doxycycline (250 ng/ml) for 10 days. Samples were analysed for ROS 

production using 20 μM DCFH. Fluorescence was analysed using a flow cytometer. Data was normalised 

to non-induced control data. The values represent the mean + SEM from 3 independent experiments; * 

represents a significant difference (p < 0.05) from non-induced control. 
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5.3.3 Inhibition of HIF-1α stabilisation in D890N Rho0 cells 

HIF-1α protein stabilisation was determined at 21% and 3% oxygen in Rho0 cells (250 

ng/ml, 10 days) and in Rho0 cells following transfection with γGCS siRNA. HIF-1α 

stabilisation was also determined in Rho0 cells at 0.5% oxygen.  

 

Figure 65 shows a significant increase in HIF-1α stabilisation in non-induced cells 

transfected with γGCS siRNA at 21% oxygen. However, silencing γGCS in Rhoo cells 

at 21% oxygen does not result in HIF-1α stabilisation. At 3% oxygen, HIF-1α is 

stabilised, and this stabilisation is significantly increased in γGCS siRNA transfected 

cells. However, HIF-1α stabilisation is prevented at 3% oxygen in Rhoo cells. HIF-1α 

stabilisation is not significantly different in γGCS siRNA transfected Rhoo cells at 3% 

oxygen. HIF-1α stabilisation is not altered in Rhoo cells at 0.5% oxygen.  
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Figure 65 – HIF-1α stabilisation in Rho0 cells and its sensitivity towards γGCS silencing 

Rho0 cells were transfected with siRNA against γGCS at 21% and 3% oxygen. Cell lysates were subject 

to SDS-PAGE and analysed by Western blot (A) and quantified by densitometry (B). The corresponding 

densitometry values were normalised with α-tubulin and results are shown as a percentage of the 0.5% 

oxygen control. The values represent the mean + SEM from 3 independent experiments; * represents a 

significant difference (p < 0.05). One representative blot is shown. 
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5.4 Role of mitochondrial ROS in HIF-1α stabilisation in human head 

and neck squamous carcinoma cells 

5.4.1 Effect of inhibiting a mitochondrial gene and protein expression on HIF-1α 

stabilisation 

Previous data had shown HIF-1α stabilisation in human head and neck squamous 

carcinoma (H157) cells at 21% oxygen, which can be prevented by incubation with 

antioxidants (Chapter 3, Figure 15), suggesting a role for ROS in this process. In order 

to establish if mitochondria were the source of ROS production, H157 cells were treated 

with ethidium bromide (EtBr) (0-500 ng/ml) for 7 days at 21% oxygen. Ethidium 

bromide was used since it is known to prevent the replication of mitochondrial DNA but 

not genomic DNA at low doses (Zylber et al., 1969;Nass, 1970;Nass, 1972). HIF-1α 

and COXI (a mitochondrial encoded gene) mRNA was determined. Figure 66 (A) 

shows HIF-1α mRNA is reduced in a dose-dependent manner, with a significant 

reduction observed at 200 ng/ml. Figure 66 (B) shows COXI mRNA is significantly 

reduced with all EtBr concentrations tested. 

 

Since HIF-1α mRNA was significantly reduced using 200 ng/ml EtBr, cells were then 

incubated with this concentration of EtBr for 0, 2, 5, 7 and 10 days at 21% oxygen. HIF-

1α and COX1 mRNA were determined. Figure 67 (A and B) shows HIF-1α and COXI 

mRNA to be significantly reduced from as early as 2 days after incubation with EtBr 

and over the entire experimental period. 

 

Figure 68 shows that HIF-1α is present at 21% oxygen in H157 cells, and incubation 

with EtBr results in loss of HIF-1α stabilisation in these cells. Cytochrome c oxidase is 

also detectable in these cells at 21% oxygen. Incubation with EtBr after 2 days causes 

complete loss of this protein, and this loss is maintained until the final collection at 10 

days.  
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Figure 66 – Dose response of HIF-1α and COX1 mRNA following EtBr treatment 

Cells were treated with ethidium bromide (0-500 ng/ml) for 7 days. Total RNA was obtained from cells, 

reverse transcribed into cDNA and mRNA copy numbers of HIF-1α (A) and COX1 (B) were quantified 

by quantitative reverse transcriptase PCR and normalised against β-actin and expressed relative to 

control. The values represent the mean + SEM from 3 independent experiments; * represents a significant 

difference (p < 0.05) from control.  
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Figure 67 – Time course of HIF-1α and COX1 mRNA after 200 ng/ml EtBr 

Cells were treated with 200 ng/ml ethidium bromide (EtBr) (0-10 days). Total RNA was obtained from 

cells, reverse transcribed into cDNA and mRNA copy numbers of HIF-1α (A) and COX1 (B) were 

quantified by quantitative reverse transcriptase PCR and normalised against β-actin and expressed relative 

to control. The values represent the mean + SEM from 3 independent experiments; * represents a 

significant difference (p < 0.05) from control.  
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Figure 68 – Effect of Ethidium bromide on HIF-1α and CcO protein expression 

Cells were treated with 200 ng/ml ethidium bromide (EtBr) for up to 10 days. Cell lysates were subject to 

SDS-PAGE and analysed by Western blot (A) and quantified by densitometry (B). The corresponding 

densitometry values were normalised with α-tubulin and results are shown relative to control. The values 

represent the mean + SEM from 3 independent experiments; * represents a significant difference (p < 

0.05) from HIF-1α control and ^ represents a significant difference (p < 0.05) from CcO control. One 

representative blot is shown. 
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5.4.2 Effect of ethidium bromide on respiration in H157 cells 

Cells were incubated with 200 ng/ml EtBr for 10 days and placed in the respiration 

chamber of the VLS system to monitor VO2 during cellular respiration to anoxia. 

Studies of the VO2 showed that control cells respire at ~ 18 μM O2/min/107cells. Cells 

treated with ethidium bromide respire at ~ 12 μM O2/min/107cells (Figure 69).  
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Figure 69 – Effect of Ethidium bromide on VO2 in H157 cancerous cells 

HI157 cells were incubated with 200 ng/ml ethidium bromide (EtBr) for 10 days. Values of VO2 were 

measured from intact cells during respiration to anoxia using the VLS system. The values represent the 

mean + SEM from 3 independent experiments; * represents a significant difference (p < 0.05) from 

control (non-treated cells). 
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5.4.3 Hypoxic HIF-1α stabilisation in ethidium bromide treated cells  

To confirm the inhibition of HIF-1α stabilisation was not due to a direct effect of EtBr 

treatment, cells were placed in hypoxia (0.5%) for 7 days and treated with 200 ng/ml 

EtBr. Stabilisation of HIF-1α was observed in both control and EtBr treated cells at 

0.5% oxygen (Figure 70). 
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Figure 70 – Effect of Ethidium bromide on HIF-1α stabilisation in hypoxia 

Cells were treated with 200 ng/ml ethidium bromide (EtBr) for 7 days. Cells were then incubated at 0.5% 

oxygen for 2 h. Cell lysates were subject to SDS-PAGE and analysed by Western blot (A) and quantified 

by densitometry (B). The corresponding densitometry values were normalised with α-tubulin and results 

are shown relative to control. The values represent the mean + SEM from 3 independent experiments; * 

represents a significant difference (p < 0.05) from control. One representative blot is shown. 
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5.5 Alternative source of ROS induced HIF-1α stabilisation 

The data above suggests HIF-1α can be stabilised by mitochondrial ROS, other ROS 

sources, however, may be responsible. Another major contributor to cellular ROS 

generation is the family of NADPH oxidases (NOX). Hypoxic up-regulation of a NOX 

and subsequent augmented ROS generation has been linked to HIF-1α accumulation 

(Goyal et al., 2004).  

 

To establish whether ROS generated from NOX stabilise HIF-1α, the expression of 

NOX in HEK 293T cells was evaluated. Isoforms NOX2 and NOX4 of NADPH 

oxidase are reportedly expressed in HEK 293T cells at an endogenous level (Anilkumar 

et al., 2008). Therefore, NOX2 and NOX4 protein expression was determined via 

Western blot in cell lysates. Figure 71 shows endogenous NOX2 can be detected in cell 

lysates. Endogenous NOX4 was not detectable in cell lysates (data not shown). 
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Figure 71 – Endogenous NOX2 protein expression in HEK 293T cells 

HEK 293T cell lysates were subject to SDS-PAGE and analysed by Western blot for endogenous NOX2 

protein expression. (n = 3). 
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5.5.1 NOX2 silencing in HEK 293T cells  

We next set out to silence NOX2 using siRNA. Previous data (section 4.4.1) 

demonstrated that optimal fluorescence for siRNA conjugated to Alexa Fluor 555 was 

between 12 and 24 h post silencing. A similar time frame was therefore used to study 

the silencing of NOX2 in cells. Small interfering RNA (scrambled and NOX2) was 

prepared, and plated into a 6 well plate. Cells were then seeded on top in low serum, 

antibiotic free media.  

 

To determine successful NOX2 silencing, NOX2 mRNA and protein was determined. 

In parallel, NOX1, NOX4 and NOX5 mRNA gene expression was also evaluated. 

Silencing NOX2 causes a time-dependent reversible decrease in NOX2 mRNA (Figure 

72) and protein (Figure 74). There was also a time-dependent reversible decrease in 

NOX1, NOX4 and NOX5 mRNA (Figure 73). There was no difference in mRNA and 

protein expression in scrambled transfected cells (data not shown). 
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Figure 72 – NOX2 mRNA expression in NOX2 silenced cells 

Cells were transfected with NOX2 siRNA at 21% oxygen for 24 h. Total RNA was obtained from cells, 

reverse transcribed into cDNA and mRNA copy numbers of NOX2 were quantified by quantitative 

reverse transcriptase PCR and normalised against β-actin and expressed relative to control. The values 

represent the mean + SEM from 3 independent experiments; * represents a significant difference (p < 

0.05) from control.  



Chapter five: Invetstigation into the origin of ROS involved in HIF-1α stabilisation 

 192

NOX1 NOX4 NOX5

0.0

0.5

1.0

1.5

0

12

24

48

Time post silencing (h)

*
* *

N
O

X
 m

R
N

A
 E

xp
re

ss
io

n
(R

el
at

iv
e 

to
 -

ac
ti

n
)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 73 – NOX1, NOX4 and NOX5 mRNA expression in NOX2 silenced cells 

Cells were transfected with NOX2 siRNA at 21% oxygen for 24 h. Total RNA was obtained from cells, 

reverse transcribed into cDNA and mRNA copy numbers of NOX1, 4 and 5 were quantified by 

quantitative reverse transcriptase PCR and normalised against β-actin and expressed relative to control. 

The values represent the mean + SEM from 3 independent experiments; * represents a significant 

difference (p < 0.05) from control.  
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Figure 74 – NOX2 protein expression after NOX2 siRNA transfection 

Cells were transfected with NOX2 siRNA at 21% oxygen (0-48 h) and a non-targeting control siRNA 

sequence (Scr) for 24 h. Cell lysates were subject to SDS-PAGE and analysed by Western blot (A) and 

quantified by densitometry (B). The corresponding densitometry values were normalised with α-tubulin 

and results are shown relative to control. The values represent the mean + SEM from 3 independent 

experiments; * represents a significant difference (p < 0.05) from control. 
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5.5.2 Silencing NOX2 at 3% oxygen does not effect HIF-1α stabilisation 

Once successful silencing of NOX2 (and other NOX isoforms) had been confirmed, 

experiments were performed to investigate the effect this would have on HIF-1α 

stabilisation at low [O2]. To determine the effect of transfecting NOX2 siRNA in cells 

at 3% oxygen, NOX2 protein was determined. Figure 75 (A) and (B) shows NOX2 is 

silenced at 3% oxygen but there is no effect on HIF-1α stabilisation (Figure 75 (A) and 

(C)). 



Chapter five: Invetstigation into the origin of ROS involved in HIF-1α stabilisation 

 195

0.0

0.5

1.0

1.5

R
el

at
iv

e 
V

al
u

e 
to

 C
o

n
tr

o
l

0

5

10

15

Scr siRNA

NOX2 siRNA

- -

-- -

- +

+

3% O221% O2

R
el

at
iv

e 
V

al
u

e 
to

 C
o

n
tr

o
l

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 75 – HIF-1α stabilisation in cells transfected with NOX2 siRNA 

Cells were transfected with NOX2 siRNA at 21% and 3% oxygen (24 h) and a non-targeting control 

siRNA sequence (Scr) at 3% oxygen (24 h). Cell lysates were subject to SDS-PAGE and analysed by 

Western blot (A) and quantified by densitometry (B) NOX2 and (C) HIF-1α. The corresponding 

densitometry values were normalised with α-tubulin and results are shown relative to control. The values 

represent the mean + SEM from 3 independent experiments; * represents a significant difference (p < 

0.05) from control. 
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5.6 Summary of key results 

A Rho0 phenotype, defined as non-respiring cells with no mitochondrial DNA was 

successfully induced in HEK 293T cells. We were able to demonstrate that these cells 

produced less ROS compared to un-induced cells and cells transfected with γGCS 

siRNA at 21% oxygen. In addition, antioxidants had no effect. The level of ROS 

produced at 3% oxygen was also diminished to that of normoxic control cells. Crucially, 

Rho0 cells did not stabilise HIF-1α in response to treatment with γGCS siRNA or at 3% 

oxygen, with no effect observed at 0.5% oxygen. In another model of normoxic HIF-1α 

stabilisation, H157 carcinoma cells were successfully induced as Rho0 cells using 

ethidium bromide. In these cells, HIF-1α stabilisation was prevented at 21% oxygen, but 

remained stable at 0.5% oxygen. Silencing NOX2 (and the other isoforms) had no effect 

on HIF-1α stabilisation at 3% oxygen.  
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Chapter six: Discussion and conclusion 
 

6.1 Background and aim of current study 

Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator that functions as a 

master regulator of the cellular response to decreases in oxygen concentration. The 

importance of HIF-1 in physiological processes is emphasised by the vast array of target 

genes that are controlled by HIF-1, including genes involved in erythropoiesis, glucose 

transport, glycolysis, iron transport and cell proliferation/survival. HIF-1 also plays key 

roles in critical aspects of tumour progression by promoting angiogenesis, cell survival, 

glucose metabolism and invasion. Tumour micro-environment and genetic mutations 

can lead to HIF-1α over-expression, and this is closely correlated with increased patient 

mortality in several cancer types (Semenza, 2009a).  

  

HIF-1 is a heterodimeric protein that consists of a constitutively expressed HIF-1β 

subunit and a HIF-1α subunit, the expression of which is highly regulated. The α-

subunit is degraded under normoxic oxygen conditions (21%) but is stabilised at low 

(3%), hypoxic (0.5%) and anoxic (0%) oxygen concentrations ([O2]). More recently, 

evidence from several groups has demonstrated that HIF-1α can be regulated by 

oxygen-independent mechanisms, and more specifically, by the generation of reactive 

oxygen species (ROS) at low [O2] (Chandel et al., 1998;Agani et al., 2000;Chandel et 

al., 2000a;Guzy et al., 2005;Quintero et al., 2006a). Stabilisation of the α-subunit by 

ROS has been shown to be a possible consequence of mitochondrial ROS production 

(Mansfield et al., 2005;Brunelle et al., 2005).  

 

The aim of this study was to investigate the effect of ROS on the stabilisation of HIF-

1α, both in normoxic and low [O2], and ultimately to determine the cellular source of 

free radicals involved in HIF-1α stabilisation. 
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6.2 Mechanisms of HIF-1α stabilisation 

Most organisms are dependent on a continuous supply of oxygen for survival. Sensing 

and responding to changes in oxygen partial pressure assures that the cellular oxygen 

supply is tightly controlled in order to balance the risk of oxidative damage vs. oxygen 

deficiency (Brune and Zhou, 2007). This delicate balance is disrupted in a variety of 

pathological conditions including heart disease and cancer (Semenza, 2000). A decrease 

in oxygen availability needs to be sensed in order to provoke appropriate changes that in 

turn circumvent hypoxic episodes, which are potentially harmful to cells, organs or the 

organism. A fundamental step in oxygen sensing involves a transcription factor named 

HIF-1 (Wang and Semenza, 1993). 

 

The intracellular oxygen concentration varies widely in different tissues due to the 

dynamic relationship between oxygen supply and demand, making hypoxia difficult to 

define. Many authors use the term ‘hypoxia’ to describe the oxygen concentration used 

in their study. However, little consistency exists between studies concerning the actual 

oxygen concentrations used, thus leading to confusing interpretation of results. For the 

purpose of this discussion, we have defined low [O2] as between 3% and 1.5%, and 

hypoxia as below 1.5% oxygen. 

 

HIF-1α can be stabilised through both oxygen-dependent and independent mechanisms. 

Indeed, a decrease in oxygen availability, as well as increases in nitric oxide (NO) and 

reactive oxygen species (ROS) have been described in the regulation of HIF-1α. This 

study has investigated the role of these different parameters in HIF-1α stabilisation. 

 

6.2.1 Oxygen-dependent stabilisation of HIF-1α 

6.2.1.1 HIF-1α stabilisation in hypoxia 

HIF-1 was first detected in nuclear extracts from Hep3B cells cultured in 1% oxygen, 

during studies investigating the hypoxia-dependent expression of erythropoietin (EPO) 

(Wang and Semenza, 1993). These authors also demonstrated HIF-1 DNA binding 

activity decayed rapidly when hypoxic cells were exposed to increased oxygen tension. 

It was later described that the expression of HIF-1α, and HIF-1 transcriptional activity 

increased exponentially as cellular oxygen concentrations decrease (Jiang et al., 1996). 

HIF expression is therefore most commonly associated with hypoxia. Hypoxia is a 
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fundamental physiological stimulus that occurs in response to tissue growth during 

normal development and in disease states such as anemia, haemorrhage, cardiovascular 

disease and cancer (Semenza, 2009b). When cells are subjected to acute hypoxia, the 

hydroxylation reactions, which prepare HIF-1α for proteasomal degradation, are 

inhibited as a result of substrate (O2) deprivation and/or, as we have now shown, 

mitochondrial ROS production (section 6.5). Loss of hydroxylase activity increases 

HIF-1α stability and transactivation function, leading to dimerisation with HIF-1β, 

translocation to the nucleus, binding of HIF-1 to its recognition sequence (HRE) and 

increased transcription of target genes. 

 

Initial experiments were therefore designed to test whether HIF-1α was stabilised in 

HEK 293T and H157 carcinoma cells following exposure to experimental normoxia 

(21% oxygen) through to hypoxia. As expected, oxygen deprivation results in a 

progressive increase in HIF-1α stabilisation, attributed to the decrease in PHD activity 

(Willam et al., 2004), as oxygen, the key substrate required for their hydroxylation 

activity becomes the limiting factor. 

 

6.2.1.2 HIF-1α stabilisation at low [O2] 

Originally, Chandel et al., 1998 suggested that ROS generated at low [O2] (1.5% 

oxygen) were responsible for stabilising HIF-1α, and in recent years further evidence 

has been produced (Sanjuan-Pla et al., 2005;Mansfield et al., 2005). 

 

In support of this, our data shows that HIF-1α stabilisation at low [O2], but not in 

hypoxia, is prevented by treatment with antioxidants (NAC plus ascorbate). It is worth 

noting that HIF-1α stabilisation is greater at 0.5% oxygen than at 3% oxygen. 

Therefore, the effect of antioxidants was compared when levels of HIF-1α stabilisation 

were similar (24 h 3% oxygen vs. 2 h 0.5% oxygen). This observation implies that in 

hypoxia HIF-1α stabilisation is oxygen-dependent, whereas at low [O2] HIF-1α 

stabilisation is dependent on free radicals. However, the addition of ascorbate has been 

suggested to enhance PHD activity (hence increasing hydroxylation reactions) rather 

than decreasing ROS via reduction of ferric iron to ferrous iron, thereby modulating 

HIF-1α protein accumulation (Pan et al., 2007). With this in mind, further experiments 

were performed using an alternative antioxidant, one that is not a co-factor for PHD 

activity. Glutathione (GSH) is the most abundant intracellular antioxidant. As native 
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GSH does not permeate the cell membrane, methylated GSH was used. Treatment of 

cells with methylated GSH at low [O2] prevented HIF-1α stabilisation in a dose-

dependent manner. This data provides further evidence to suggest that HIF-1α 

stabilisation is dependent on a free radical mechanism at low [O2] since it can be 

suppressed by antioxidants NAC plus ascorbate and GSH.  

 

We have also been able to demonstrate that H157 carcinoma cells incubated with either 

L-NMMA (a non-specific NOS inhibitor) or antioxidants at low [O2] show a reduction 

in the stabilisation of HIF-1α. However, in hypoxia this treatment has no effect. This 

supports data from Quintero et al., 2006 demonstrating that HIF-1α stabilisation was 

prevented at 3% oxygen in H157, H357 and B1CR6 oral squamous carcinoma cells by 

inhibition of NOS activity using L-NMMA and also by antioxidants, thus suggesting 

that the mechanism is dependent on a free radical reaction (Quintero et al., 2006a). 

Exposure of these cells to hypoxia however, resulted in HIF-1α stabilisation, which was 

not prevented by L-NMMA or antioxidants.  

 

From the observations made using HEK 293T and H157 carcinoma cells exposed to 

varying oxygen concentrations, our data suggests that at low [O2], but not in hypoxia, a 

ROS-dependent mechanism of HIF-1α stabilisation exists. It has also been shown by 

other authors that the addition or expression of antioxidants is sufficient to reverse HIF-

1α stabilisation at low [O2] (Sanjuan-Pla et al., 2005;Guzy et al., 2005). However, 

conflicting reports have demonstrated that enzymatically-generated superoxide actually 

reduces HIF-1α protein levels (Wellman et al., 2003) and a separate study has 

demonstrated that non-toxic levels of hydrogen peroxide did not result in HIF-1α 

stabilisation (Tuttle et al., 2007). Herein, further experiments were designed to study 

HIF-α stabilisation by both exogenous and endogenously released ROS. 
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6.3 ROS-dependent stabilisation of HIF-1α in normoxia 

Reactive oxygen species (ROS) have long been recognised as bona fide second 

messengers, having been suggested to activate a number of transcription factors, 

including nuclear factor kappa B (NF-ĸB), activator protein 1 (AP-1), specificity protein 

1 (Sp1), peroxisome proliferator-activated receptors (PPARs), among others (Lavrovsky 

et al., 2000). ROS have also been implicated in the regulation of HIF-1α stability 

(Chandel et al., 1998) 

 

6.3.1 Pharmacological agents 

Pharmacological agents such as cobalt chloride (CoCl2) have also been shown to 

regulate HIF-1α stability in normoxia via various mechanisms. These include increased 

ROS production (Chandel et al., 1998) and inhibition of the interaction between HIF-1α 

and the VHL protein (Yuan et al., 2003). We found that indeed, the addition of CoCl2 

stabilised HIF-1α in normoxia. In order to validate our experiments, we also used 

menadione, which has also been reported to release ROS (Criddle et al., 2006). Our 

own experiments showed that menadione did release ROS and we used it to investigate 

whether exogenous ROS stabilised HIF-1α. Both compounds stabilised HIF-1α in a 

dose-dependent manner. Treatment with antioxidants prevented the observed normoxic 

stabilisation of HIF-1α, further validating the role of ROS. Furthermore, both 

compounds have a synergistic effect on HIF-1α stabilisation in hypoxia. 

 

6.3.2 Carcinoma cells 

We were able to extend these findings by looking at HIF-1α stabilisation in H157 

carcinoma cells at 21% oxygen. These cells express HIF-1α and iNOS (Quintero et al., 

2006a) which make them ideal to investigate the role of ROS in HIF-1α stabilisation. 

Malignant tissue often produces free radicals (Szatrowski and Nathan, 1991;Bae et al., 

1997;Ha et al., 2000), thus in these cells, NO might be released in an environment 

favouring free radical reactions leading to peroxynitrite formation. Our results show that 

HIF-1α was present at 21% oxygen in these cells. Treatment with antioxidants, but not 

L-NMMA prevented normoxic stabilisation of HIF-1α, providing additional evidence 

towards a ROS-induced mechanism of HIF-1α stabilisation. 
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6.3.3 Macrophages 

It has recently been shown that bacterial infection and inflammatory sites, often 

characterised by low oxygen concentrations (Zinkernagel et al., 2007) stabilise HIF-1α 

in macrophages (MΦ) in a way that is independent of oxygen concentration 

(Peyssonnaux et al., 2005).  

 

It is well known that MΦ produce high concentrations of nitric oxide (NO) upon 

activation (Stuehr and Nathan, 1989;Garedew and Moncada, 2008) and hence 

investigations proceeded to explore the role of NO in HIF-1α stabilisation in activated 

murine MΦ. Upon activation, nitrite concentrations increased suggesting an increase in 

iNOS activity, as this is the major source of NO in these cells (Garedew and Moncada, 

2008). Nitrite accumulation was abolished in activated MΦ when co-treated with 

SEITU, a specific iNOS inhibitor. In these experiments, we also found that HIF-1α was 

stabilised after MΦ activation in a biphasic manner. The early stabilisation observed 

after 1.5 h was insensitive to treatment with SEITU but sensitive to antioxidants. It was 

not surprising that SEITU had no effect on HIF-1α stabilisation at 1.5 h post-activation 

since nitrite accumulation was not observed until 6 h activation. The later stabilisation, 

however, was dependent on the generation of NO as it could be abolished by treatment 

with SEITU. Treatment with antioxidants did not prevent HIF-1α stabilisation in the 

latter time points, initially suggesting this was entirely NO-dependent. However, in a 

situation where there is a lot of free radicals and NO (as in the case of activated MΦ), 

HIF-1α may be stabilised by possible peroxynitrite formation. Thus perhaps, in these 

conditions the antioxidants used were not enough to detoxify the ROS produced. 

Therefore, the latter stabilisation could still be ROS-dependent rather than exclusively 

NO-dependent.  

 

Our data is in agreement with Peyssonnaux et al., 2005. These authors show that the 

loss of HIF-1α-/- in MΦ attenuates iNOS induction in response to bacterial stimulation 

(Peyssonnaux et al., 2005). During inflammation HIF-1 is critically involved in iNOS 

up-regulation, while reduced NO production as seen in HIF-1α-/- cells, impairs MΦ 

TNF-α production and bactericidal activity (Peyssonnaux et al., 2005). 
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6.3.4 Genetically-induced pro-oxidant environment 

With conflicting data in the literature, we wanted to tackle the issue of ROS-induced 

HIF-1α stabilisation in normoxia (initially) without the addition of pharmacological 

agents. We decided to decrease the biosynthesis of glutathione (GSH) (an important 

cellular antioxidant) (Krzywanski et al., 2004) using an in vitro model previously 

employed by Diaz-Hernandez et al., 2007. These authors showed that impairment of 

GSH biosynthesis in primary cortical neurons induced ROS production and triggered 

apoptotic death (Diaz-Hernandez et al., 2007). This demonstrates the importance of 

GSH biosynthesis in protecting cells from the harmful effects of excessive ROS 

production.  

 

We used RNA interference (RNAi) to selectively knock down the catalytic subunit of γ-

glutamyl cysteine synthetase (γGCS), the rate-limiting enzyme in GSH biosynthesis. 

Using small interfering RNA (siRNA) sequences against human γGCS, we observed a 

reduction in the expression of the protein higher than 80%. This correlated with a ~ 40% 

decrease in total cellular GSH levels. Furthermore, our own data has showed that 

silencing the catalytic subunit of γGCS results in a 2-fold increase in ROS production at 

21% oxygen, accompanied by an increase in HIF-1α protein stabilisation. Treatment 

with antioxidants abolished this enhanced stabilisation of HIF-1α, further suggesting a 

role of ROS in the observed stabilisation of HIF-1α. Previously, it has been shown in a 

B cell lymphoma cell line that administration of L-buthionine sulfoximine (L-BSO); a 

competitive inhibitor of γGCS activity, resulted in apoptosis, which correlated with 

depleted GSH levels and an increase in ROS production (Armstrong et al., 2002). These 

data further extend our findings, which demonstrate that genetic inhibition of γGCS in 

HEK 293T cells was sufficient to cause a decrease in GSH concentrations, as well as 

increases in ROS production.  

 

We also decided to confirm these results using an alternative method to achieve GCS 

silencing. We used synthetic double-stranded siRNA molecules which can be 

introduced into cells to suppress gene expression transiently. We silenced the catalytic 

subunit of γGCS, both at the mRNA and protein levels (approximately 90% and 80% 

reduction respectively). We confirmed the functional silencing of γGCS by analysing 

the cellular GSH levels and observed a marked decrease (approximately 60% decrease) 

when compared with control (mock-transfected) cells. We also found that as previously 
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observed, there was a 2-fold increase in DCF fluorescence in cells where γGCS had 

been silenced. Thus, we achieved two independent genetic models in which the desired 

phenotype was attained.   

 

There are concerns, however, that the detection of ROS using DCFH may be unreliable 

due to superoxide formation during the conversion of DCFH to the fluorescent dye DCF 

or upon exposure to light (Rota et al., 1999). In addition, DCFH and related 

compounds/dyes are sensitive to multiple types of ROS, including ROS and RNS 

species (Droge, 2002) and cannot be targeted to specific intracellular components. Thus, 

there are multiple shortcomings to detection and visualisation of ROS with DCFH, 

which may result in false positive or over amplified signals (Belousov et al., 2006). 

Alternative methods to measure the formation of ROS and RNS include fluorometric 

and spectrophotometric methods, chemiluminescence and electron paramagnetic 

resonance (Chance et al., 1979;Pou et al., 1989;Tarpey and Fridovich, 2001). These 

methods rely on the redox properties of specific ROS and RNS, and therefore are prone 

to artefacts (as with DCFH) caused by species of similar reactivity or by reactive 

intermediates produced by the probe itself (Picker and Fridovich, 1984;Faulkner and 

Fridovich, 1993;Liochev and Fridovich, 1995;Liochev and Fridovich, 1998). 

 

To address the weakness of DCFH (and other such ROS indicators) as a probe to 

measure ROS, we proceeded to utilise a new class of ROS sensor. To overcome the 

disadvantages of existing methods for detecting ROS, Belousov et al., 2006 developed a 

genetically encoded biosensor for hydrogen peroxide (H2O2). This sensor consists of 

yellow fluorescent protein (YFP) inserted into the regulatory domain of Escherichia coli 

OxyR (OxyR-RD). The indicator, named HyPer (from hydrogen peroxide) demonstrates 

sub-micromolar reactivity to H2O2, and at the same time it is insensitive to other 

oxidants (Belousov et al., 2006). Based on these characteristics, HyPer can be used as 

an accurate monitor of intracellular H2O2 levels. Using HyPer transfected HEK 293T 

cells, where γGCS has been silenced, we observed that H2O2 levels were twice that of 

the control. Additionally, treatment with an antioxidant abolished this increase. These 

data corroborate our previous DCFH-based observations that ROS accumulation occurs 

in cells where γGCS is silenced. Since there was a two-fold increase in HyPer 

fluorescence it would strongly suggest that the vast majority of ROS produced in this 

silencing model is H2O2. 
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Following confirmation of increased ROS production in our γGCS-silencing model, 

HIF-1α stabilisation was also observed. Moreover, antioxidants reversed this normoxic 

stabilisation confirming our previous observations showing stabilisation of HIF-1α in 

normoxic conditions by ROS.  

 

We also observed a two-fold increase in catalase and Nrf2 and a three-fold increase in 

manganese superoxide dismutase and thioredoxin, suggesting that when γGCS has been 

disrupted, cells attempt to compensate for the increase in ROS by increasing the 

expression of other antioxidant genes (Colombo and Moncada, 2009). ROS production 

has also been linked to the activation of the nuclear factor kappa B (NF-ĸB) (Palacios-

Callender et al., 2004). Our experiments show that down-regulation of γGCS caused an 

increase in ROS which correlated with an increase in NF-ĸB expression.  

 

6.4 Mechanism of ROS-induced HIF-1α stabilisation 

Our findings add to an increasing body of evidence that suggests ROS stabilise HIF-1α 

in both normoxia and at low [O2]. The mechanism by which ROS stabilise HIF-1α has 

yet to be fully clarified. It has been proposed to occur through modifications in the 

PHDs, such as nitrosylation (Metzen et al., 2003) or changes in the redox state of their 

ferrous iron (Gerald et al., 2004).  

 

The immediate regulators of HIF-1α stability are the prolyl hydroxylases (PHD), a 

family of oxidases involved in the post-translational modification that signals HIF-1α 

for degradation (Epstein et al., 2001;Berra et al., 2003). PHD use 2-oxoglutarate and 

oxygen as substrates and require ferrous iron (Fe2+) as a cofactor. Chemical inhibitors 

that block the activity of PHD, such as iron chelators that deprive the enzyme of Fe2+ 

(desferoxamine), or which consequently competes with 2-oxoglutarate for binding at the 

hydroxylase (DMOG), prevent HIF-1α proline hydroxylation and cause accumulation of 

HIF-1α as well as activation of HIF-dependent gene expression (Ivan et al., 2002).  

 

Cells cultured under low [O2] stabilise HIF-1α; however, recent studies, including our 

own, have found that such accumulation is dependent on functional mitochondria 

(section 6.5) (Chandel et al., 2000a;Mansfield et al., 2005). Questions remain 

concerning the signalling pathway linking mitochondrial ROS production to the 

inhibition of PHD activity. ROS may regulate the redox state of iron through the Fenton 
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reaction. Therefore, low oxygen levels may inhibit PHD activity because ROS decrease 

the availability of the PHD cofactor Fe2+ (Gerald et al., 2004) rendering the enzyme 

inactive. It has been shown however that low-level ROS formation increased PHD 

activity in both normoxia and hypoxia (Callapina et al., 2005).  

 

In both our genetic models, we have observed HIF-1α stabilisation, implying an 

inhibition of PHD activity (since the observed stabilisation was in normoxic 

conditions). Exogenous hydrogen peroxide has been shown to stabilise HIF-1α at 

ambient oxygen concentrations (Simon, 2006;Bell et al., 2007), implying ROS inhibit 

the hydroxylation reaction. To investigate this further, we used a proteasomal inhibitor 

(MG132) to detect hydroxylated HIF-1α protein at 21% oxygen. Prelimary results 

showed that HIF-1α was hydroxylated in our ROS-induced HIF-1α model, suggesting it 

had been targeted for hydroxylation and therefore the PHD were not inhibited by 

enhanced ROS production. We went on to show that HIF-1α appeared to be 

ubiquitinated and thus possibly being targeted for proteasomal degradation. How then is 

it that HIF-1α is stabilised in our model? Our data shows that the gene expression of 

HIF-1α was increased 2-fold in our ROS-induced model of HIF-1α stabilisation. This 

preliminary data suggests that HIF1-α is stabilised by ROS increasing its synthesis 

(transcription), rather than ROS inhibiting PHD activity and ultimately preventing HIF-

1α degradation. Indeed, Yuan et al., 2008 demonstrate that ROS generated by NADPH 

oxidase was required for HIF-1α accumulation by intermittent hypoxia (IH) in PC12 

cells. HIF-1α levels in cells exposed to IH with cyclohexamide (an inhibitor of protein 

synthesis) were similar to those exposed to IH alone, suggesting that increased HIF-1α 

accumulation in the absence of cyclohexamide was at least in part due to new synthesis 

of HIF-1α protein (Yuan et al., 2008).  

 

However, to confirm this hypothesis, further studies would be required using 

cyclohexamide and treatment with actinomycin D (a transcription inhibitor). Also, 

questions remain as to which signal transduction pathways lead to HIF-1α synthesis. In 

the case of intermittent hypoxia (IH)- induced HIF-1α stabilisation are known to involve 

NADPH oxidase-dependent ROS production that, through a signalling cascade 

involving inostitol 1,4, 5- triphosphate (IP3), diacylglycerol (DAG), calcium-

calmodulin kinase (Ca/CAMK) and protein kinase C (PKC), stimulate mTOR-

dependent HIF-1α synthesis. 
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Furthermore, recent data demonstrates that there is no evidence for hydrogen peroxide 

dependent inhibition of PHD activity (Chua et al., 2010). This confirms our own results 

that ROS do not regulate PHD activity directly.  

 

6.5 Mitochondrial ROS-induced HIF-1α stabilisation 

Studies investigating the involvement of the electron transport chain in oxygen sensing 

revealed that a functional mitochondrial chain was required for HIF-1α stabilisation. 

This observation was made during studies using electron transport chain inhibitors, 

since rotenone (an inhibitor of the distal end of Complex I), myxothiazol and 

stigmatellin (inhibitors of the upstream end of Complex III), were capable of preventing 

HIF-1α stabilisation at low [O2] (Chandel et al., 1998;Agani et al., 2000;Guzy et al., 

2005). However, these studies relied heavily on the use of pharmacological agents, 

which may have non-specific effects on the cell. Furthermore, the role of ROS in the 

stabilisation of HIF-1α at low [O2] has not been completely clarified, since data has 

challenged these findings (Vaux et al., 2001;Srinivas et al., 2001). However, our own 

data has demonstrated that ROS play a role in the stabilisation of HIF-1α in normoxia 

and at low [O2]. Therefore, we next investigated the cellular source of ROS involved in 

HIF-1α stabilisation. 

 

Mitochondria and NADPH oxidases are a major cellular source of ROS. Both 

mitochondrial derived ROS (Chandel et al., 1998;Chandel et al., 2000a;Schroedl et al., 

2002) and NOX derived ROS (Hirota and Semenza, 2001;Goyal et al., 2004;Mekhail et 

al., 2004) have been previously implicated in HIF-1α stabilisation. Thus we decided to 

investigate the role of these ROS sources in HIF-1α stabilisation. 

 

6.5.1 Mitochondrial ROS 

Mitochondria contain their own DNA (mtDNA), which encodes 13 genes that are 

essential for the assembly of a functional electron transport chain. Mitochondrial DNA 

(mtDNA) is replicated by an assembly of proteins and enzymes including DNA 

polymerase γ (POLγ) and its accessory protein, mitochondrial single stranded DNA 

binding protein (mtSSB) and mtDNA helicase (Twinkle). DNA POLγ is the only known 

DNA POLγ in human mitochondria and is essential for mitochondrial DNA replication. 

It is well established that defects in mtDNA replication lead to mitochondrial 



Chapter six: Discussion and conclusion 

 209

dysfunction and disease. Wanrooij et al., 2007 characterised the inducible expression of 

mutant POLγ in cultured human cells. The expression of the mutated form D890N 

(representing an amino acid change from an aspartate residue (D) to an asparagine 

residue (N)) was under the control of an inducible promoter activated by incubation of 

cells with doxycycline (DC). Over-expressed catalytically-inactive mutant POLγ out 

competes with the endogenous wild type POLγ for binding to mtDNA, thus preventing 

the cell to replicate mtDNA (Wanrooij et al., 2007) and eventually  producing non-

functional respiratory mitochondria. HEK 293T cells stably transfected with an 

inducible mutated isoform of mitochondrial DNA POLγ (D890N) were kindly provided 

by Johannes Spelbrink, Institute of Medical Technology and Tampere University 

Hospital, Tampere, Finland, and were further characterised for use in our studies for use 

as Rho0 cells (cells without respiratory functionality and mtDNA). 

 

Our results show that mutating DNA POLγ over a period of 5-10 days depletes the cell 

of its mtDNA. DC induction also decreases the expression of cytochrome c oxidase, a 

partially mitochondrial-encoded protein. We also show that mutating DNA POLγ 

results in the inhibition of cellular respiration and a decrease in cytochrome aa3 content.  

 

It has been estimated that 1-3% of oxygen consumed by the mitochondria is converted 

to ROS (Boveris and Chance, 1973). The rate of ROS production is strongly linked to 

the mitochondrial membrane potential (ΔΨm), which is generated by protons in the 

intermembrane space. Mild uncoupling of mitochondria strongly reduces ROS 

production (Brand et al., 2004). We observed in our Rho0 cells that the ΔΨm was not 

affected by the addition of rotenone, which inhibits Complex I (by preventing the 

transfer of electrons from Complex I to ubiquinone), suggesting the absence of electron 

transport along the ETC in these cells. Indeed, ROS production in DC induced Rho0 

cells were significantly less than that of non-induced cells. Knocking-down γGCS in 

HEK 293T cells has previously demonstrated a 2-fold increase in ROS production. 

However, this increased ROS production is not observed in our Rho0 cells in which 

γGCS has been knocked down. Treatment with antioxidants in both cases has no further 

effect on ROS production. This data suggests that the vast majority of ROS produced in 

our Rho0 cells is of mitochondrial origin since even when γGCS has been silenced, no 

increase in ROS is observed. A study utilising the mitochondrial-targeted antioxidant, 

Mito-Q has provided further evidence towards the role for ROS in mitochondrial 

signalling to the HIF pathway at low [O2] (Bell et al., 2007).  
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ROS production at 3% oxygen was next to be examined in these cells especially since it 

has been well documented that low [O2] increase ROS production (Chandel et al., 

1998;Vanden Hoek et al., 1998;Waypa and Schumacker, 2002). Our data confirm 

results of Chandel et al., 1998. At 3% oxygen we demonstrate a clear increase in ROS 

production compared to cells cultured in normoxia. This increase in ROS is absent in 

our Rho0 cells, suggesting that mitochondria are responsible for ROS production at low 

[O2]. Elimination of ROS in both our normoxic model of HIF-1α stabilisation and at 3% 

oxygen, resulted in the prevention of HIF-1α stabilisation in these cells. In both 

however, HIF-1α was stabilised at 0.5% oxygen.  

 

Due to the central role of HIF in the adaptive response to decreased oxygen tension, the 

HIF pathway has become an area of intense investigation as a therapeutic target in 

ischaemic disease and cancer, since hypoxia plays a significant role in disease 

development (Poellinger and Johnson, 2004;Semenza, 2006). In our studies we have 

demonstrated that HIF-1α stabilisation in human head and neck squamous carcinoma 

(H157) cells is dependent on ROS generation at 21% and 3% oxygen. Upon induction 

of a Rho0 phenotype in these cells, HIF-1α stabilisation is inhibited in normoxia but not 

in hypoxia. These data provide further evidence for the role of mitochondrial-derived 

ROS in HIF-1α stabilisation, since in the absence of functional mitochondria, ROS 

production decreases. 

 

The integrity of the mitochondrial electron transport chain in HIF-1α stabilisation is 

confirmed in our own data and is in agreement with the work by several other groups. 

Initial observations by Chandel et al., 1998 and Agani et al., 2000 which concluded a 

role of the electron transport chain in HIF-1α stabilisation were made using 

pharmacological agents that may have had non-specific effects on cells and in turn the 

mitochondria. Thus these authors went on to utilise an alternative method to study the 

role of the electron transport chain in HIF-1α stabilisation. They too utilised cells that 

had been depleted of their mitochondrial DNA. First they induced mitochondria-

depleted cells using ethidium bromide. Ethidium bromide interferes with DNA 

replication and caused a progressive decline in mtDNA. This results in a loss of electron 

transport in the mitochondria and was subsequently associated with an absence in HIF-

1α stabilisation at low [O2] (Chandel et al., 1998;Chandel et al., 2000a). More recently, 
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genetic approaches have been developed to investigate the requirement of functional 

mitochondria in hypoxic HIF-1α stabilisation.  

 

One study knocked out cytochrome c (Mansfield et al., 2005) which carries electrons 

from Complex III to Complex IV. Murine embryonic cells lacking cytochrome c fail to 

stabilise HIF-1α at low [O2] (Mansfield et al., 2005). Two further studies demonstrated 

that inhibiting Complex III function by knocking- down the Rieske iron-sulphur protein 

inhibits the ability of multiple cell lines to stabilise HIF-1α at low [O2] (Guzy et al., 

2005;Brunelle et al., 2005). 

 

6.5.2 NADPH oxidase ROS 

The NADPH oxidase (NOX) family of superoxide and hydrogen peroxide producing 

proteins have emerged as an important source of ROS in signal transduction. ROS 

produced by NOX proteins NOX1-5 and DUOX1 /2 play essential roles in the 

physiology of the brain, the immune system, the vasculature, and the digestive tract as 

well as in hormone synthesis (Brown and Griendling, 2009).  

 

Early in vitro studies showed that NOX enzymes were less active in hypoxia than 

normoxia (Gabig et al., 1979). However there is evidence for (He et al., 2002) and 

against (Chang et al., 2005) NOX-derived ROS in HIF-1α stabilisation. There is a 

report showing that stimulation of human umbilical vein cells (HUVEC) with 

prostacyclin stabilised HIF-1α under prolonged hypoxia, by attenuating NOX-derived 

ROS production due to suppressed Rac1 and p47phox expression (Chang et al., 2005). To 

the contrary, other groups have not confirmed the inhibitory effect of NADPH oxidase 

signalling on HIF but instead report that ROS production by renal NOX4 is essential for 

HIF-2α expression and vascular endothelial growth actor (VEGF) or glucose transporter 

1 (Glut-1) expression in renal tumour cells (Mekhail et al., 2004). Furthermore, the 

GTPase Rac1, which stimulates NOX activity, was stimulated by hypoxia and a 

dominant-negative Rac1 repressed hypoxia-dependent HIF-1α accumulation (Hirota and 

Semenza, 2001). In A549, a human epithelial cell line, hypoxia increased NOX1 mRNA 

and protein expression, which was accompanied by enhanced ROS production and 

activation of HIF-1-dependent target gene expression (Goyal et al., 2004).  

 



Chapter six: Discussion and conclusion 

 212

Conflicting reports have been published on whether NOX-derived ROS stabilise HIF-

1α, we therefore investigated the role of NOX-derived ROS in HIF-1α stabilisation in 

our own experiments. We found that NOX2 was expressed most abundantly, and 

preceded to silence NOX2 gene expression in our cells (HEK 293T). Upon silencing 

NOX2, it became apparent that this also resulted in the concomitant decrease of the 

other NOX isoforms, NOX1, 4 and 5, possibly because of sequence conservation 

amongst the isoforms. Exposure of the cells to a low [O2] (3%) did not up-regulate 

NOX2. Furthermore, silencing NOX2 gene expression did not effect HIF-1α 

stabilisation at 3% oxygen. This data therefore suggests that ROS necessary to stabilise 

HIF-1α do not come from NOX at low [O2]. It has been demonstrated that during 

hypoxia, increased mitochondrial ROS generation leads to activation of NOX1 by 

protein kinase C (PKC), thereby augmenting ROS production, and thus the elevation 

intracellular Ca2+ concentrations, and pulmonary artery smooth muscle cell (PASMC) 

shortening (Rathore et al., 2008). This could imply a positive feedback pathway for 

ROS generation (Ward, 2008). However, since in our model there is no effect on HIF-

1α stabilisation in cells where NOX2 has been silenced, this may be either a cell 

specific mechanism or dependent on the duration of hypoxia and/or re-oxygenation 

episodes, though further investigations would be required. 

 

Taken together, our data provide evidence for participation of mitochondrial-derived 

ROS in HIF-1α stabilisation. In our Rho0 models (POLγ mutant in HEK and ethidium 

bromide treatment in H157), HIF-1α stabilisation is prevented. First in normoxia when 

γGCS has been silenced, secondly at 3% oxygen where HIF-1α is consistently stable 

and thirdly in cancerous cells that have previously demonstrated normoxic stabilisation. 

To support this further, we have shown that upon silencing γGCS in Rho0 cells, ROS 

production does not increase indicative that the main source of ROS in these cells is 

indeed mitochondrial. NF-ĸB has also been shown to be up-regulated in our normoxic 

model of HIF-1α stabilisation, and several studies have linked the production of 

mitochondrial ROS to the activation of NF-ĸB (Chandel et al., 2000b;Pearlstein et al., 

2002;Palacios-Callender et al., 2004). 
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6.6 Mitochondrial ROS production at low [O2] 

The mitochondria are considered a likely site of oxygen sensing, and it has been 

proposed that the electron transport chain acts as an oxygen sensor by releasing ROS in 

response to ‘hypoxia’. The ROS released during ‘hypoxia’ act as signalling agents that 

trigger diverse responses, including the stabilisation of HIF-1α (Guzy and Schumacker, 

2006).  

 

The paradoxical generation of mitochondrial ROS at low [O2] may exist due to the 

influence of oxygen concentration on the activity of cytochrome c oxidase (CcO). NO 

may bind and inhibit CcO, resulting in an increase in its Km for oxygen and an increased 

reduction of electron carriers located upstream from the terminal oxidase (Cooper and 

Davies, 2000), favouring superoxide formation at low [O2] (Palacios-Callender et al., 

2004). Thus, in normoxic oxygen conditions, the enzyme (CcO) is predominately in an 

oxidised state, it consumes oxygen and metabolises NO. At low [O2], when the enzyme 

is predominately in a reduced state, oxygen and NO compete for binding to the enzyme 

and NO is not metabolised. Allowing for the possibility that, as oxygen concentration 

falls, there lies a ‘window’ in which the mitochondria are able to produce free radicals 

which is not a direct affect of low [O2] but is instead due to the reduction of the electron 

transport chain via NO (Palacios-Callender et al., 2004). When the enzyme is fully 

reduced in hypoxia, there is not enough oxygen consumed by the electron transport 

chain to yield the production of ROS (Figure 76). 
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Figure 76 – A model summarising ROS production at low [O2] 

As the oxygen concentration ([O2]) decreases from normoxia to hypoxia, the cytochrome c oxidase 

changes from an oxidised state to a reduced state. Between ~ 3% and 1.5% oxygen (low [O2]) lies a 

‘window’ in which the production of ROS is favoured.  
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6.7 Conclusion and future work 

The results from the current study indicate that reactive oxygen species (ROS) stabilise 

HIF-1α in both normoxia (21%) and at a low [O2] (3%). We have also provided 

preliminary data to suggest that ROS do not inhibit the hydroxylation or ubiquitination 

of HIF-1α but instead ROS enhance the synthesis of HIF-1α.  

 

Furthermore, we have been able to demonstrate that the source of ROS involved in HIF-

1α stabilisation in HEK 293T and oral squamous carcinoma cells is of mitochondrial 

origin. Our results also indicate that as oxygen concentrations decrease (without 

reaching hypoxia or anoxia), mitochondria produce more free radicals. Additionally, our 

work has demonstrated that two distinct mechanisms of HIF-1α stabilisation exist 

within the cell depending on the oxygen concentration. At low [O2], HIF-1α 

stabilisation is dependent of the formation of ROS, yet in hypoxic conditions, oxygen 

becomes the limiting factor.  

 

To further this study it would be of interest to clearly demonstrate the mechanism of 

action by which reactive oxygen species result in HIF-1α stabilisation. Prolyl 

hydroxylases (PHD) mediate hydroxylation and degradation of HIF-1α at 21% oxygen. 

PHD should be active in normoxia yet HIF-1α is stable in our γGCS knock-down 

model. Thus, it would be important to investigate further whether ROS affect the 

activity of PHD in this model. We have provided preliminary data suggesting that PHD 

are active and that HIF-1α is targeted for hydroxylation. However, the method used in 

this study does not demonstrate this clearly. In order to investigate this further, PHD 

activity could be measured in cells where γGCS has been silenced at 21% using a HIF-

1α-pVHL binding assay. This assay is based on the knowledge that only hydroxylated 

HIF-1α is capable of binding pVHL, thus reflecting PHD activity. 

 

Hypoxia plays an important role in determining disease progression in a vast array of 

pathologies, including vascular disease, cancer and chronic inflammation. However, as 

observed in this study, not just low or hypoxic oxygen conditions results in HIF-1α 

stabilisation. This study could provide means of therapeutic intervention in the 

treatment of inflammatory diseases and cancer.  

 

 



Chapter seven: References 

 216

 

 

 

 

 

Chapter seven: 

References 



Chapter seven: References 

 217

Chapter seven: References 

Abe,J.I., Takahashi,M., Ishida,M., Lee,J.D., and Berk,B.C. (1997). c-Src is required for 
oxidative stress-mediated activation of Big Mitogen-activated Protein Kinase 1 
(BMK1). J. Biol. Chem., 272, 20389-20394. 

Agani,F.H., Pichiule,P., Chavez,J.C., and LaManna,J.C. (2000). The role of 
mitochondria in the regulation of Hypoxia-inducible Factor 1 expression during 
hypoxia. J. Biol. Chem., 275, 35863-35867. 

al-Bekairi,A.M., Nagi,M.N., Shoeb,H.A., and al-Sawaf,H.A. (1994). Evidence for 
superoxide radical production by a simple flavoprotein: glucose oxidase. Biochem. Mol. 
Biol. Int., 34, 233-238. 

Alvarez,S., Valdez,L.B., Zaobornyj,T., and Boveris,A. (2003). Oxygen dependence of 
mitochondrial nitric oxide synthase activity. Biochem. Biophys. Res. Commun., 305, 
771-775. 

Anderson,M.T., Staal,F.J., Gitler,C., Herzenberg,L.A., and Herzenberg,L.A. (1994). 
Separation of oxidant-initiated and redox-regulated steps in the NF-kappa B signal 
transduction pathway. Proc. Natl. Acad. Sci. U. S. A, 91, 11527-11531. 

Anilkumar,N., Weber,R., Zhang,M., Brewer,A., and Shah,A.M. (2008). Nox4 and Nox2 
NADPH Oxidases mediate distinct cellular redox signaling responses to agonist 
stimulation. Arterioscler. Thromb. Vasc. Biol., 28, 1347-1354. 

Armstrong,J.S., Steinauer,K.K., Hornung,B., Irish,J.M., Lecane,P., Birrell,G.W., 
Peehl,D.M., and Knox,S.J. (2002). Role of glutathione depletion and reactive oxygen 
species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death 
Differ., 9, 252-263. 

Arnold,R.S., Shi,J., Murad,E., Whalen,A.M., Sun,C.Q., Polavarapu,R., Parthasarathy,S., 
Petros,J.A., and Lambeth,J.D. (2001). Hydrogen peroxide mediates the cell growth and 
transformation caused by the mitogenic oxidase Nox1. Proc. Natl. Acad. Sci. U. S. A, 
98, 5550-5555. 

Babior,B.M., Kipnes,R.S., and Curnutte,J.T. (1973). Biological defense mechanisms. 
The production by leukocytes of superoxide, a potential bactericidal agent. J. Clin. 
Invest., 52, 741-744. 

Bae,Y.S., Kang,S.W., Seo,M.S., Baines,I.C., Tekle,E., Chock,P.B., and Rhee,S.G. 
(1997). Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role 
in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem., 272, 217-221. 

Baeuerle,P.A. and Henkel,T. (2003). Function and activation of NF-kappaB in the 
immune system. Annu. Rev. Immunol., 12, 141-179. 

Baeuerle,P.A. and Baltimore,D. (1996). NF-kappaB: Ten years after. Cell, 87, 13-20. 

Balaban,R.S., Nemoto,S., and Finkel,T. (2005). Mitochondria, oxidants, and Aging. 
Cell, 120, 483-495. 



Chapter seven: References 

 218

Ballatori,N., Hammond,C.L., Cunningham,J.B., Krance,S.M., and Marchan,R. (2005). 
Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC 
and OATP/SLC21A families of membrane proteins. Toxicol. Appl. Pharmacol., 204, 
238-255. 

Ballinger,S.W., Patterson,C., Knight-Lozano,C.A., Burow,D.L., Conklin,C.A., Hu,Z., 
Reuf,J., Horaist,C., Lebovitz,R., Hunter,G.C., McIntyre,K., and Runge,M.S. (2002). 
Mitochondrial integrity and function in atherogenesis. Circulation, 106, 544-549. 

Banfi,B., Malgrange,B., Knisz,J., Steger,K., Dubois-Dauphin,M., and Krause,K.H. 
(2004a). NOX3, a superoxide-generating NADPH Oxidase of the inner ear. J. Biol. 
Chem., 279, 46065-46072. 

Banfi,B., Maturana,A., Jaconi,S., Arnaudeau,S., Laforge,T., Sinha,B., Ligeti,E., 
Demaurex,N., and Krause,K.H. (2000). A mammalian H+ channel generated through 
alternative splicing of the NADPH Oxidase homolog NOH-1. Science, 287, 138-142. 

Banfi,B., Molnar,G., Maturana,A., Steger,K., Hegedus,B., Demaurex,N., and 
Krause,K.H. (2001). A Ca2+-activated NADPH Oxidase in testis, spleen, and lymph 
nodes. J. Biol. Chem., 276, 37594-37601. 

Banfi,B., Tirone,F., Durussel,I., Knisz,J., Moskwa,P., Molnar,G., Krause,K.H., and 
Cox,J.A. (2004b). Mechanism of Ca2+ activation of the NADPH Oxidase 5 (NOX5). J. 
Biol. Chem., 279, 18583-18591. 

Bardos,J.I. and Ashcroft,M. (2005). Negative and positive regulation of HIF-1: A 
complex network. Biochim. Biophys. Acta. - Reviews on Cancer, 1755, 107-120. 

Barja,G. (1999). Mitochondrial oxygen radical generation and leak: sites of production 
in states 4 and 3, organ specificity, and relation to aging and longevity. J. Bioenerg. 
Biomembr., 31, 347-366. 

Barry-Lane,P.A., Patterson,C., van der,M.M., Hu,Z., Holland,S.M., Yeh,E.T., and 
Runge,M.S. (2001). p47phox is required for atherosclerotic lesion progression in 
ApoE(-/-) mice. J. Clin. Invest., 108, 1513-1522. 

Bauskin,A.R., Alkalay,I., and Ben-Neriah,Y. (1991). Redox regulation of a protein 
tyrosine kinase in the endoplasmic reticulum. Cell, 66, 685-696. 

Bedard,K. and Krause,K.H. (2007). The NOX family of ROS-generating NADPH 
Oxidases: Physiology and pathophysiology. Physiol. Rev., 87, 245-313. 

Beg,A.A., Finco,T.S., Nantermet,P.V., and Baldwin,A.S., Jr. (1993). Tumor necrosis 
factor and interleukin-1 lead to phosphorylation and loss of I kappa B alpha: a 
mechanism for NF-kappa B activation. Mol. Cell Biol., 13, 3301-3310. 

Bejarano,I., Terron,M.P., Paredes,S.D., Barriga,C., Rodriguez,A.B., and Pariente,J.A. 
(2007). Hydrogen peroxide increases the phagocytic function of human neutrophils by 
calcium mobilisation. Mol. Cell Biochem., 296, 77-84. 

Bell,E.L., Klimova,T.A., Eisenbart,J., Moraes,C.T., Murphy,M.P., Budinger,G.R.S., 
and Chandel,N.S. (2007). The Qo site of the mitochondrial complex III is required for 
the transduction of hypoxic signaling via reactive oxygen species production. J. Cell 
Biol., 177, 1029-1036. 



Chapter seven: References 

 219

Belousov,V.V., Fradkov,A.F., Lukyanov,K.A., Staroverov,D.B., Shakhbazov,K.S., 
Terskikh,A.V., and Lukyanov,S. (2006). Genetically encoded fluorescent indicator for 
intracellular hydrogen peroxide. Nat. Meth., 3, 281-286. 

Benhar,M., Engelberg,D., and Levitzki,A. (2002). ROS, stress-activated kinases and 
stress signaling in cancer. EMBO Rep., 3, 420-425. 

Berra,E., Benizri,E., Ginouves,A., Volmat,V., Roux,D., and Pouyssegur,J. (2003). HIF 
prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-
1alpha in normoxia. EMBO J., 22, 4082-4090. 

Blouin,C.C., Page,E.L., Soucy,G.M., and Richard,D.E. (2004). Hypoxic gene activation 
by lipopolysaccharide in macrophages: Implication of Hypoxia-Inducible Factor 1alpha. 
Blood, 103, 1124-1130. 

Bosch-Marce,M., Okuyama,H., Wesley,J.B., Sarkar,K., Kimura,H., Liu,Y.V., Zhang,H., 
Strazza,M., Rey,S., Savino,L., Zhou,Y.F., McDonald,K.R., Na,Y., Vandiver,S., 
Rabi,A., Shaked,Y., Kerbel,R., LaVallee,T., and Semenza,G.L. (2007). Effects of aging 
and Hypoxia-Inducible Factor-1 activity on angiogenic cell mobilization and recovery 
of perfusion after limb ischemia. Circ. Res., 101, 1310-1318. 

Boveris,A. and Chance,B. (1973). The mitochondrial generation of hydrogen peroxide. 
General properties and effect of hyperbaric oxygen. Biochem. J., 134, 707-716. 

Boveris,A., Oshino,N., and Chance,B. (1972). The cellular production of hydrogen 
peroxide. Biochem. J., 128, 617-630. 

Brahimi-Horn,M.C., Chiche,J., and Pouyssegur,J. (2007). Hypoxia signalling controls 
metabolic demand. Curr. Opin. Cell Biol., 19, 223-229. 

Brahimi-Horn,M.C. and Pouyssegur,J. (2007). Oxygen, a source of life and stress. 
FEBS Lett., 581, 3582-3591. 

Brand,M.D., Affourtit,C., Esteves,T.C., Green,K., Lambert,A.J., Miwa,S., Pakay,J.L., 
and Parker,N. (2004). Mitochondrial superoxide: production, biological effects, and 
activation of uncoupling proteins. Free Radic. Biol. Med., 37, 755-767. 

Bredt,D.S. and Snyder,S.H. (1990). Isolation of nitric oxide synthetase, a calmodulin-
requiring enzyme. Proc. Natl. Acad. Sci. U. S. A, 87, 682-685. 

Brown,D.I. and Griendling,K.K. (2009). Nox proteins in signal transduction. Free 
Radic. Biol. Med., 47, 1239-1253. 

Brune,B. and Zhou,J. (2007). Nitric oxide and superoxide: Interference with hypoxic 
signaling. Cardiovasc. Res., 75, 275-282. 

Brunelle,J.K., Bell,E.L., Quesada,N.M., Vercauteren,K., Tiranti,V., Zeviani,M., 
Scarpulla,R.C., and Chandel,N.S. (2005). Oxygen sensing requires mitochondrial ROS 
but not oxidative phosphorylation. Cell Metab., 1, 409-414. 

Callapina,M., Zhou,J., Schmid,T., Kohl,R., and Brune,B. (2005). NO restores HIF-
1alpha hydroxylation during hypoxia: Role of reactive oxygen species. Free Radic. 
Biol. Med., 39, 925-936. 



Chapter seven: References 

 220

Cassina,A. and Radi,R. (1996). Differential inhibitory action of Nitric Oxide and 
Peroxynitrite on mitochondrial electron transport. Arch. Biochem. Biophys., 328, 309-
316. 

Cave,A.C., Brewer,A.C., Narayanapanicker,A., Ray,R., Grieve,D.J., Walker,S., and 
Shah,A.M. (2006). NADPH oxidases in cardiovascular health and disease. Antioxid. 
Redox. Signal., 8, 691-728. 

Ceradini,D.J., Kulkarni,A.R., Callaghan,M.J., Tepper,O.M., Bastidas,N., 
Kleinman,M.E., Capla,J.M., Galiano,R.D., Levine,J.P., and Gurtner,G.C. (2004). 
Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of 
SDF-1. Nat. Med., 10, 858-864. 

Chae,H.Z., Kim,H.J., Kang,S.W., and Rhee,S.G. (1999). Characterization of three 
isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of 
thioredoxin. Diabetes Res. Clin. Pract., 45, 101-112. 

Chance,B., Sies,H., and Boveris,A. (1979). Hydroperoxide metabolism in mammalian 
organs. Physiol. Rev., 59, 527-605. 

Chandel,N.S., Maltepe,E., Goldwasser,E., Mathieu,C.E., Simon,M.C., and 
Schumacker,P.T. (1998). Mitochondrial reactive oxygen species trigger hypoxia-
induced transcription. Proc. Natl. Acad. Sci. U. S. A, 95, 11715-11720. 

Chandel,N.S. and Budinger,G.R.S. (2007). The cellular basis for diverse responses to 
oxygen. Free Radic. Biol. Med., 42, 165-174. 

Chandel,N.S., McClintock,D.S., Feliciano,C.E., Wood,T.M., Melendez,J.A., 
Rodriguez,A.M., and Schumacker,P.T. (2000a). Reactive oxygen species generated at 
mitochondrial Complex III stabilize Hypoxia-inducible Factor-1alpha during hypoxia. 
A mechanism of oxygen sensing. J. Biol. Chem., 275, 25130-25138. 

Chandel,N.S., Schumacker,P.T., and Arch,R.H. (2001). Reactive oxygen species are 
downstream products of TRAF-mediated signal transduction. J. Biol. Chem., 276, 
42728-42736. 

Chandel,N.S., Trzyna,W.C., McClintock,D.S., and Schumacker,P.T. (2000b). Role of 
oxidants in NF-kappaB activation and TNF-alpha gene transcription induced by 
hypoxia and endotoxin. J. Immunol., 165, 1013-1021. 

Chang,E.I., Loh,S.A., Ceradini,D.J., Chang,E.I., Lin,S., Bastidas,N., Aarabi,S., 
Chan,D.A., Freedman,M.L., Giaccia,A.J., and Gurtner,G.C. (2007). Age decreases 
endothelial progenitor cell recruitment through decreases in Hypoxia-Inducible Factor 
1alpha stabilization during ischemia. Circulation, 116, 2818-2829. 

Chang,T.C., Huang,C.J., Tam,K., Chen,S.F., Tan,K.T., Tsai,M.S., Lin,T.N., and 
Shyue,S.K. (2005). Stabilization of Hypoxia-inducible Factor-1alpha by prostacyclin 
under prolonged hypoxia via reducing reactive oxygen species level in endothelial cells. 
J. Biol. Chem., 280, 36567-36574. 

Chelikani,P., Fita,I., and Loewen,P.C. (2004). Diversity of structures and properties 
among catalases. Cell Mol. Life Sci., 61, 192-208. 



Chapter seven: References 

 221

Cheng,G., Cao,Z., Xu,X., Meir,E.G.V., and Lambeth,J.D. (2001). Homologs of 
gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene, 269, 131-
140. 

Chiarugi,P. and Cirri,P. (2003). Redox regulation of protein tyrosine phosphatases 
during receptor tyrosine kinase signal transduction. Trends Biochem. Sci., 28, 509-514. 

Chua,Y.L., Dufour,E., Dassa,E.P., Rustin,P., Jacobs,H.T., Taylor,C.T., and Hagen,T. 
(2010). Stabilization of HIF-1alpha protein in hypoxia occurs independently of 
mitochondrial reactive oxygen species production. J. Biol. Chem., 285, 31277-31284. 

Chung,S.H., Chung,S.M., Lee,J.Y., Kim,S.R., Park,K.S., and Chung,J.H. (1999). The 
biological significance of non-enzymatic reaction of menadione with plasma thiols: 
enhancement of menadione-induced cytotoxicity to platelets by the presence of blood 
plasma. FEBS Lett., 449, 235-240. 

Colombo,S.L. and Moncada,S. (2009). AMPKalpha1 regulates the antioxidant status of 
vascular endothelial cells. Biochem. J., 421, 163-169. 

Commoner,B., Townsend,J., and Pake,G. (1954). Free radicals in biological materials. 
Nature, 174, 689-691. 

Cooper,C.E. and Davies,N.A. (2000). Effects of nitric oxide and peroxynitrite on the 
cytochrome oxidase Km for oxygen: implications for mitochondrial pathology. 
Biochim. Biophys. Acta. - Bioenergetics, 1459, 390-396. 

Cooper,C.E. and Giulivi,C. (2007). Nitric oxide regulation of mitochondrial oxygen 
consumption II: molecular mechanism and tissue physiology. Am. J. Physiol. Cell 
Physiol., 292, C1993-C2003. 

Counts,D.F., Cardinale,G.J., and Udenfriend,S. (1978). Prolyl hydroxylase half 
reaction: peptidyl prolyl-independent decarboxylation of alpha-ketoglutarate. Proc. 
Natl. Acad. Sci. U. S. A, 75, 2145-2149. 

Crapo,J.D., Freeman,B.A., Barry,B.E., Turrens,J.F., and Young,S.L. (1983). 
Mechanisms of hyperoxic injury to the pulmonary microcirculation. Physiologist, 26, 
170-176. 

Criddle,D.N., Gillies,S., Baumgartner-Wilson,H.K., Jaffar,M., Chinje,E.C., 
Passmore,S., Chvanov,M., Barrow,S., Gerasimenko,O.V., Tepikin,A.V., Sutton,R., and 
Petersen,O.H. (2006). Menadione-induced reactive oxygen species generation via redox 
cycling promotes apoptosis of murine pancreatic acinar cells. J. Biol. Chem., 281, 
40485-40492. 

de la Asuncion,J.G., Millan,A., Pla,R., Bruseghini,L., Esteras,A., Pallardo,F.V., 
Sastre,J., and Vina,J. (1996). Mitochondrial glutathione oxidation correlates with age-
associated oxidative damage to mitochondrial DNA. FASEB J., 10, 333-338. 

Devary,Y., Gottlieb,R.A., Smeal,T., and Karin,M. (1992). The mammalian ultraviolet 
response is triggered by activation of src tyrosine kinases. Cell, 71, 1081-1091. 

Diaz-Hernandez,J.I., Moncada,S., Bolanos,J.P., and Almeida,A. (2007). Poly(ADP-
ribose) polymerase-1 protects neurons against apoptosis induced by oxidative stress. 
Cell Death Differ., 14, 1211-1221. 



Chapter seven: References 

 222

Dikalov,S.I., Dikalova,A.E., Bikineyeva,A.T., Schmidt,H.H.H.W., Harrison,D.G., and 
Griendling,K.K. (2008). Distinct roles of Nox1 and Nox4 in basal and angiotensin II-
stimulated superoxide and hydrogen peroxide production. Free Radic. Biol. Med., 45, 
1340-1351. 

Droge,W. (2002). Free radicals in the physiological control of cell function. Physiol. 
Rev., 82, 47-95. 

Epstein,A.C.R., Gleadle,J.M., McNeill,L.A., Hewitson,K.S., O'Rourke,J., Mole,D.R., 
Mukherji,M., Metzen,E., Wilson,M.I., and Dhanda,A. (2001). C. elegans EGL-9 and 
mammalian homologs define a family of dioxygenases that regulate HIF by prolyl 
hydroxylation. Cell, 107, 43-54. 

Epstein,F.H., Barnes,P.J., and Karin,M. (2009). Nuclear Factor-kappaB - A pivotal 
transcription factor in chronic inflammatory diseases. N. Engl. J. Med., 336, 1066-1071. 

Erbel,P.J., Card,P.B., Karakuzu,O., Bruick,R.K., and Gardner,K.H. (2003). Structural 
basis for PAS domain heterodimerization in the basic helix--loop--helix-PAS 
transcription factor hypoxia-inducible factor. Proc. Natl. Acad. Sci. U. S. A, 100, 15504-
15509. 

Faulkner,K. and Fridovich,I. (1993). Luminol and lucigenin as detectors for O2.-. Free 
Radic. Biol. Med., 15, 447-451. 

Fire,A., Xu,S., Montgomery,M.K., Kostas,S.A., Driver,S.E., and Mello,C.C. (1998). 
Potent and specific genetic interference by double-stranded RNA in Caenorhabditis 
elegans. Nature, 391, 806-811. 

Forbes,J.M., Coughlan,M.T., and Cooper,M.E. (2008). Oxidative Stress as a Major 
Culprit in Kidney Disease in Diabetes. Diabetes, 57, 1446-1454. 

Forman,H.J., Fukuto,J.M., and Torres,M. (2004). Redox signaling: thiol chemistry 
defines which reactive oxygen and nitrogen species can act as second messengers. Am. 
J. Physiol. Cell Physiol., 287, C246-C256. 

Forman,H.J. and Torres,M. (2002). Reactive Oxygen Species and Cell Signaling: 
Respiratory Burst in Macrophage Signaling. Am. J. Respir. Crit. Care Med., 166, 4S-8. 

Forstermann,U. (2010). Nitric oxide and oxidative stress in vascular disease. Pflugers 
Arch., 459, 923-939. 

Forstermann,U. and Kleinert,H. (1995). Nitric oxide synthase: expression and 
expressional control of the three isoforms. Naunyn Schmiedebergs Arch. Pharmacol., 
352, 351-364. 

Forsythe,J.A., Jiang,B.H., Iyer,N.V., Agani,F., Leung,S.W., Koos,R.D., and 
Semenza,G.L. (1996). Activation of vascular endothelial growth factor gene 
transcription by hypoxia-inducible factor 1. Mol. Cell Biol., 16, 4604-4613. 

Frede,S., Stockmann,C., Freitag,P., and Fandrey,J. (2006). Bacterial lipopolysaccharide 
induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappaB. 
Biochem. J., 396, 517-527. 



Chapter seven: References 

 223

Fridovich,I. (1995). Superoxide Radical and Superoxide Dismutases. Annu. Rev. 
Biochem., 64, 97-112. 

Fukuda,R., Hirota,K., Fan,F., Jung,Y.D., Ellis,L.M., and Semenza,G.L. (2002). Insulin-
like Growth Factor 1 Induces Hypoxia-inducible Factor 1-mediated Vascular 
Endothelial Growth Factor Expression, Which is Dependent on MAP Kinase and 
Phosphatidylinositol 3-Kinase Signaling in Colon Cancer Cells. J. Biol. Chem., 277, 
38205-38211. 

Fukuda,R., Zhang,H., Kim,J.W., Shimoda,L., Dang,C.V., and Semenza,G.L. (2007). 
HIF-1 Regulates Cytochrome Oxidase Subunits to Optimize Efficiency of Respiration 
in Hypoxic Cells. Cell, 129, 111-122. 

Fukui,T., Ishizaka,N., Rajagopalan,S., Laursen,J.B., Capers,Q., Taylor,W.R., 
Harrison,D.G., de Leon,H., Wilcox,J.N., and Griendling,K.K. (1997). p22phox mRNA 
Expression and NADPH Oxidase Activity Are Increased in Aortas From Hypertensive 
Rats. Circ. Res., 80, 45-51. 

Gabig,T.G., Bearman,S.I., and Babior,B.M. (1979). Effects of oxygen tension and pH 
on the respiratory burst of human neutrophils. Blood, 53, 1133-1139. 

Garcia-Ruiz,C., Colell,A., Mari,M., Morales,A., and Fernandez-Checa (1997). Direct 
Effect of Ceramide on the Mitochondrial Electron Transport Chain Leads to Generation 
of Reactive Oxygen Species. J. Biol. Chem., 272, 11369-11377. 

Gardner,P.R., Raineri,I.s., Epstein,L.B., and White,C.W. (1995). Superoxide Radical 
and Iron Modulate Aconitase Activity in Mammalian Cells. J. Biol. Chem., 270, 13399-
13405. 

Garedew,A., Henderson,S.O., and Moncada,S. (2010). Activated macrophages utilize 
glycolytic ATP to maintain mitochondrial membrane potential and prevent apoptotic 
cell death. Cell Death Differ., 17, 1540-1550. 

Garedew,A. and Moncada,S. (2008). Mitochondrial dysfunction and HIF1alpha 
stabilization in inflammation. J. Cell Sci., 121, 3468-3475. 

Geiszt,M.S., Kopp,J.B., Varnai,P., and Leto,T.L. (2000). Identification of Renox, an 
NAD(P)H oxidase in kidney. Proc. Natl. Acad. Sci. U. S. A, 97, 8010-8014. 

Genius,J. and Fandrey,J. (2000). Nitric oxide affects the production of reactive oxygen 
species in hepatoma cells: implications for the process of oxygen sensing. Free Radic. 
Biol. Med., 29, 515-521. 

Gerald,D., Berra,E., Frapart,Y.M., Chan,D.A., Giaccia,A.J., Mansuy,D., Pouyssegur,J., 
Yaniv,M., and Mechta-Grigoriou,F. (2004). JunD Reduces Tumor Angiogenesis by 
Protecting Cells from Oxidative Stress. Cell, 118, 781-794. 

Gerber,H.P., Condorelli,F., Park,J., and Ferrara,N. (1997). Differential Transcriptional 
Regulation of the Two Vascular Endothelial Growth Factor Receptor Genes. J. Biol. 
Chem., 272, 23659-23667. 

Ghafourifar,P. and Richter,C. (1997). Nitric oxide synthase activity in mitochondria. 
FEBS Lett., 418, 291-296. 



Chapter seven: References 

 224

Giulivi,C., Poderoso,J.J., and Boveris,A. (1998). Production of Nitric Oxide by 
Mitochondria. J. Biol. Chem., 273, 11038-11043. 

Gopalakrishna,R. and Anderson,W.B. (1989). Ca2+- and phospholipid-independent 
activation of protein kinase C by selective oxidative modification of the regulatory 
domain. Proc. Natl. Acad. Sci. U. S. A, 86, 6758-6762. 

Gopalakrishna,R. and Anderson,W.B. (1991). Reversible oxidative activation and 
inactivation of protein kinase C by the mitogen/tumor promoter periodate. Arch. 
Biochem. Biophys., 285, 382-387. 

Goyal,P., Weissmann,N., Grimminger,F., Hegel,C., Bader,L., Rose,F., Fink,L., 
Ghofrani,H.A., Schermuly,R.T., Schmidt,H.H.H.W., Seeger,W., and Hanze,J. (2004). 
Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via 
increase in reactive oxygen species. Free Radic. Biol. Med., 36, 1279-1288. 

Graham,F.L., Smiley,J., Russell,W.C., and Nairn,R. (1977). Characteristics of a Human 
Cell Line Transformed by DNA from Human Adenovirus Type 5. J. Gen. Virol., 36, 
59-72. 

Griffith,O.W. and Meister,A. (1985). Origin and turnover of mitochondrial glutathione. 
Proc. Natl. Acad. Sci. U. S. A, 82, 4668-4672. 

Grimble,R.F., Jackson,A.A., Persaud,C., Wride,M.J., Delers,F., and Engler,R. (1992). 
Cysteine and glycine supplementation modulate the metabolic response to Tumor 
Necrosis Factor alpha in rats fed a low protein diet. J. Nutr., 122, 2066-2073. 

Guzik,T.J., Korbut,R., and Adamek-Guzik,T. (2003). Nitric oxide and superoxide in 
inflammation and immune regulation. J. Physiol. Pharmacol., 54, 469-487. 

Guzy,R.D., Hoyos,B., Robin,E., Chen,H., Liu,L., Mansfield,K.D., Simon,M.C., 
Hammerling,U., and Schumacker,P.T. (2005). Mitochondrial complex III is required for 
hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab., 1, 401-408. 

Guzy,R.D. and Schumacker,P.T. (2006). Oxygen sensing by mitochondria at complex 
III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol, 91, 
807-819. 

Ha,H.C., Thiagalingam,A., Nelkin,B.D., and Casero,R.A. (2000). Reactive Oxygen 
Species Are Critical for the Growth and Differentiation of Medullary Thyroid 
Carcinoma Cells. Clin. Cancer Res., 6, 3783-3787. 

Halliwell and Gutteridge (1989). Free Radicals in Biology and Medicine.Oxford: 
Clarendon Press, 188-207. 

Han,D., Antunes,F., Canali,R., Rettori,D., and Cadenas,E. (2003). Voltage-dependent 
Anion Channels Control the Release of the Superoxide Anion from Mitochondria to 
Cytosol. J. Biol. Chem., 278, 5557-5563. 

Hanahan,D. and Weinberg,R.A. (2000). The hallmarks of cancer. Cell, 100, 57-70. 

Harman,D. (1956). Aging: A Theory Based on Free Radical and Radiation Chemistry. 
J. Gerontol., 11, 298-300. 



Chapter seven: References 

 225

Hayes,G.R. and Lockwood,D.H. (1987). Role of insulin receptor phosphorylation in the 
insulinomimetic effects of hydrogen peroxide. Proc. Natl. Acad. Sci. U. S. A, 84, 8115-
8119. 

He,L., Chen,J., Dinger,B., Sanders,K., Sundar,K., Hoidal,J., and Fidone,S. (2002). 
Characteristics of carotid body chemosensitivity in NADPH oxidase-deficient mice. 
Am. J. Physiol. Cell Physiol., 282, C27-C33. 

Heinzel,B., John,M., Klatt,P., Bohme,E., and Mayer,B. (1992). Ca2+/calmodulin-
dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem. J., 
281 ( Pt 3), 627-630. 

Hellwig-Burgel,T., Stiehl,D.P., Wagner,A.E., Metzen,E., and Jelkmann,W. (2005). 
Review: Hypoxia-Inducible Factor-1 (HIF-1): A Novel Transcription Factor in Immune 
Reactions. J. Interferon Cytokine Res., 25, 297-310. 

Hinchman,C.A. and Ballatori,N. (1990). Glutathione-degrading capacities of liver and 
kidney in different species. Biochem. Pharmacol., 40, 1131-1135. 

Hink,U., Li,H., Mollnau,H., Oelze,M., Matheis,E., Hartmann,M., Skatchkov,M., 
Thaiss,F., Stahl,R.A.K., Warnholtz,A., Meinertz,T., Griendling,K., Harrison,D.G., 
Forstermann,U., and Munzel,T. (2001). Mechanisms Underlying Endothelial 
Dysfunction in Diabetes Mellitus. Circ. Res., 88, e14-e22. 

Hirota,K. and Semenza,G.L. (2001). Rac1 Activity Is Required for the Activation of 
Hypoxia-inducible Factor 1. J. Biol. Chem., 276, 21166-21172. 

Hollis,V.S., Palacios-Callender,M., Springett,R.J., Delpy,D.T., and Moncada,S. (2003). 
Monitoring cytochrome redox changes in the mitochondria of intact cells using multi-
wavelength visible light spectroscopy. Biochim. Biophys. Acta. - Bioenergetics, 1607, 
191-202. 

Huang,R.P., Wu,J.X., Fan,Y., and Adamson,E.D. (1996). UV activates growth factor 
receptors via reactive oxygen intermediates. J. Cell Biol., 133, 211-220. 

Ivan,M., Haberberger,T., Gervasi,D.C., Michelson,K.S., Gunzler,V., Kondo,K., 
Yang,H., Sorokina,I., Conaway,R.C., Conaway,J.W., and Kaelin,W.G. (2002). 
Biochemical purification and pharmacological inhibition of a mammalian prolyl 
hydroxylase acting on hypoxia-inducible factor. Proc. Natl. Acad. Sci. U. S. A, 99, 
13459-13464. 

Jackson,M.J., Papa,S., Bolanos,J.P., Bruckdorfer,R., Carlsen,H., Elliott,R.M., Flier,J., 
Griffiths,H.R., Heales,S., Holst,B., Lorusso,M., Lund,E., Ïivind Moskaug,J., Moser,U., 
Di Paola,M., Cristina Polidori,M., Signorile,A., Stahl,W., Vina,R.J., and Astley,S.B. 
(2002). Antioxidants, reactive oxygen and nitrogen species, gene induction and 
mitochondrial function. Mol. Aspects Med., 23, 209-285. 

Jantsch,J., Chakravortty,D., Turza,N., Prechtel,A.T., Buchholz,B., Gerlach,R.G., 
Volke,M., Glasner,J., Warnecke,C., Wiesener,M.S., Eckardt,K.U., Steinkasserer,A., 
Hensel,M., and Willam,C. (2008). Hypoxia and Hypoxia-Inducible Factor-1alpha 
modulate lipopolysaccharide-induced dendritic cell activation and function. J. 
Immunol., 180, 4697-4705. 



Chapter seven: References 

 226

Jiang,B.H., Semenza,G.L., Bauer,C., and Marti,H.H. (1996). Hypoxia-inducible factor 1 
levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. 
Physiol. Cell Physiol., 271, C1172-C1180. 

Jiang,F., Roberts,S.J., Datla,S.R., and Dusting,G.J. (2006). NO Modulates NADPH 
Oxidase Function Via Heme Oxygenase-1 in Human Endothelial Cells. Hypertension, 
48, 950-957. 

Kadota,S., Fantus,I.G., Deragon,G., Guyda,H.J., and Posner,B.I. (1987). Stimulation of 
insulin-like growth factor II receptor binding and insulin receptor kinase activity in rat 
adipocytes. Effects of vanadate and H2O2. J. Biol. Chem., 262, 8252-8256. 

Kalinina,E.V., Chernov,N.N., and Saprin,A.N. (2008). Involvement of thio-, peroxi-, 
and glutaredoxins in cellular redox-dependent processes. Biochemistry (Mosc. ), 73, 
1493-1510. 

Kaneto,H., Kajimoto,Y., Miyagawa,J., Matsuoka,T., Fujitani,Y., Umayahara,Y., 
Hanafusa,T., Matsuzawa,Y., Yamasaki,Y., and Hori,M. (1999). Beneficial effects of 
antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose 
toxicity. Diabetes, 48, 2398-2406. 

Kaneto,H., Katakami,N., Matsuhisa,M., and Matsuoka,T.A. (2010). Role of reactive 
oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators. 
Inflamm., 2010, 453892. 

Kaneto,H., Xu,G., Song,K.H., Suzuma,K., Bonner-Weir,S., Sharma,A., and Weir,G.C. 
(2001). Activation of the hexosamine pathway leads to deterioration of pancreatic B-cell 
function through the induction of oxidative stress. J. Biol. Chem., 276, 31099-31104. 

Karlsson,K. and Marklund,S.L. (1988). Extracellular superoxide dismutase in the 
vascular system of mammals. Biochem. J., 255, 223-228. 

Karlsson,K. and Marklund,S.L. (1989). Binding of human extracellular-superoxide 
dismutase C to cultured cell lines and to blood cells. Lab Invest, 60, 659-666. 

Kelly,B.D., Hackett,S.F., Hirota,K., Oshima,Y., Cai,Z., Berg-Dixon,S., Rowan,A., 
Yan,Z., Campochiaro,P.A., and Semenza,G.L. (2003). Cell Type-Specific Regulation of 
Angiogenic Growth Factor Gene Expression and Induction of Angiogenesis in 
Nonischemic Tissue by a Constitutively Active Form of Hypoxia-Inducible Factor 1. 
Circ. Res., 93, 1074-1081. 

Kerr,S., Brosnan,M.J., McIntyre,M., Reid,J.L., Dominiczak,A.F., and Hamilton,C.A. 
(1999). Superoxide anion production is increased in a model of genetic hypertension: 
Role of the endothelium. Hypertension, 33, 1353-1358. 

Kietzmann,T. and Gorlach,A. (2005). Reactive oxygen species in the control of 
hypoxia-inducible factor-mediated gene expression. Semin. Cell Dev. Biol., 16, 474-
486. 

Kikuchi,H., Hikage,M., Miyashita,H., and Fukumoto,M. (2000). NADPH oxidase 
subunit, gp91phox homologue, preferentially expressed in human colon epithelial cells. 
Gene, 254, 237-243. 



Chapter seven: References 

 227

Kim,J.W., Tchernyshyov,I., Semenza,G.L., and Dang,C.V. (2006). HIF-1-mediated 
expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular 
adaptation to hypoxia. Cell Metab., 3, 177-185. 

Klimova,T. and Chandel,N.S. (2008). Mitochondrial complex III regulates hypoxic 
activation of HIF. Cell Death Differ., 15, 660-666. 

Knaapen,A.M., Borm,P.J., Albrecht,C., and Schins,R.P. (2004). Inhaled particles and 
lung cancer. Part A: Mechanisms. Int. J. Cancer, 109, 799-809. 

Knowles,R.G. and Moncada,S. (1994). Nitric oxide synthases in mammals. Biochem. J., 
298 ( Pt 2), 249-258. 

Koivunen,P., Hirsila,M., Remes,A.M., Hassinen,I.E., Kivirikko,K.I., and Myllyharju,J. 
(2007). Inhibition of Hypoxia-inducible Factor (HIF) Hydroxylases by Citric Acid 
Cycle Intermediates. J. Biol. Chem., 282, 4524-4532. 

Konishi,H., Tanaka,M., Takemura,Y., Matsuzaki,H., Ono,Y., Kikkawa,U., and 
Nishizuka,Y. (1997). Activation of protein kinase C by tyrosine phosphorylation in 
responsetoH2O2. Proc. Natl. Acad. Sci. U. S. A, 94, 11233-11237. 

Koshio,O., Akanuma,Y., and Kasuga,M. (1988). Hydrogen peroxide stimulates tyrosine 
phosphorylation of the insulin receptor and its tyrosine kinase activity in intact cells. 
Biochem. J., 250, 95-101. 

Krause,K.H. (2004). Tissue distribution and putative physiological function of NOX 
family NADPH oxidases. Jpn. J. Infect. Dis., 57, S28-S29. 

Krzywanski,D.M., Dickinson,D.A., Iles,K.E., Wigley,A.F., Franklin,C.C., Liu,R.M., 
Kavanagh,T.J., and Forman,H.J. (2004). Variable regulation of glutamate cysteine 
ligase subunit proteins affects glutathione biosynthesis in response to oxidative stress. 
Arch. Biochem. Biophys., 423, 116-125. 

Kurata,S.I. (2000). Selective Activation of p38 MAPK Cascade and Mitotic Arrest 
Caused by Low Level Oxidative Stress. J. Biol. Chem., 275, 23413-23416. 

Landmesser,U., Dikalov,S., Price,S.R., McCann,L., Fukai,T., Holland,S.M., 
Mitch,W.E., and Harrison,D.G. (2003). Oxidation of tetrahydrobiopterin leads to 
uncoupling of endothelial cell nitric oxide synthase in hypertension. J. Clin. Invest., 
111, 1201-1209. 

Landmesser,U., Cai,H., Dikalov,S., McCann,L., Hwang,J., Jo,H., Holland,S.M., and 
Harrison,D.G. (2002). Role of p47phox in Vascular Oxidative Stress and Hypertension 
Caused by Angiotensin II. Hypertension, 40, 511-515. 

Larsson,R. and Cerutti,P. (1989). Translocation and Enhancement of 
Phosphotransferase Activity of Protein Kinase C following Exposure in Mouse 
Epidermal Cells to Oxidants. Cancer Res., 49, 5627-5632. 

Lash,L.H. (2006). Mitochondrial glutathione transport: Physiological, pathological and 
toxicological implications. Chem. Biol. Interact., 163, 54-67. 

Laursen,J.B., Somers,M., Kurz,S., McCann,L., Warnholtz,A., Freeman,B.A., 
Tarpey,M., Fukai,T., and Harrison,D.G. (2001). Endothelial Regulation of Vasomotion 



Chapter seven: References 

 228

in ApoE-Deficient Mice : Implications for Interactions Between Peroxynitrite and 
Tetrahydrobiopterin. Circulation, 103, 1282-1288. 

Lavrovsky,Y., Chatterjee,B., Clark,R.A., and Roy,A.K. (2000). Role of redox-regulated 
transcription factors in inflammation, aging and age-related diseases. Exp. Gerontol., 
35, 521-532. 

Lenzen,S., Drinkgern,J., and Tiedge,M. (1996). Low antioxidant enzyme gene 
expression in pancreatic islets compared with various other mouse tissues. Free Radic. 
Biol. Med., 20, 463-466. 

Li,C.Y., Shan,S., Huang,Q., Braun,R.D., Lanzen,J., Hu,K., Lin,P., and Dewhirst,M.W. 
(2000). Initial stages of tumor cell-induced angiogenesis: evaluation via skin window 
chambers in rodent models. J. Natl. Cancer Inst., 92, 143-147. 

Li,F., Sonveaux,P., Rabbani,Z.N., Liu,S., Yan,B., Huang,Q., Vujaskovic,Z., 
Dewhirst,M.W., and Li,C.Y. (2007). Regulation of HIF-1alpha stability through S-
Nitrosylation. Mol. Cell, 26, 63-74. 

Li,H. and Forstermann,U. (2000). Nitric oxide in the pathogenesis of vascular disease. 
J. Pathol., 190, 244-254. 

Li,H., Witte,K., August,M., Brausch,I., Godtel-Armburst,U., Habermeier,A., Closs,E.I., 
Oelze,M., Munzel,T., and Forstermann,U. (2006). Reversal of Endothelial Nitric Oxide 
Synthase Uncoupling and Up-Regulation of Endothelial Nitric Oxide Synthase 
Expression Lowers Blood Pressure in Hypertensive Rats. J. Am. Coll. Cardiol., 47, 
2536-2544. 

Li,N. and Karin,M. (1999). Is NF-kappaB the sensor of oxidative stress? FASEB J., 13, 
1137-1143. 

Linares,E., Giorgio,S., Mortara,R.A., Santos,C.X.C., Yamada,A.T., and Augusto,O. 
(2001). Role of peroxynitrite in macrophage microbicidal mechanisms in vivo revealed 
by protein nitration and hydroxylation. Free Radic. Biol. Med., 30, 1234-1242. 

Liochev,S.I. and Fridovich,I. (1995). Superoxide from Glucose Oxidase or from 
Nitroblue Tetrazolium? Arch. Biochem. Biophys., 318, 408-410. 

Liochev,S.I. and Fridovich,I. (1998). Lucigenin as mediator of superoxide production: 
revisited. Free Radic. Biol. Med., 25, 926-928. 

Lirk,P., Hoffmann,G., and Rieder,J. (2002). Inducible nitric oxide synthase--time for 
reappraisal. Curr. Drug Targets. Inflamm. Allergy, 1, 89-108. 

Liu,F., Liu,Y., Lui,V.C.H., Lamb,J.R., Tam,P.K.H., and Chen,Y. (2008a). Hypoxia 
modulates lipopolysaccharide induced TNF-alpha expression in murine macrophages. 
Exp. Cell Res., 314, 1327-1336. 

Liu,L., Marti,G.P., Wei,X., Zhang,X., Zhang,H., Liu,Y.V., Nastai,M., Semenza,G.L., 
and Harmon,J.W. (2008b). Age-dependent impairment of HIF-1alpha expression in 
diabetic mice: Correction with electroporation-facilitated gene therapy increases wound 
healing, angiogenesis, and circulating angiogenic cells. J. Cell Physiol., 217, 319-327. 



Chapter seven: References 

 229

Liu,S.F., Adcock,I.M., Old,R.W., Barnes,P.J., and Evans,T.W. (1993). 
Lipopolysaccharide Treatment in Vivo Induces Widespread Tissue Expression of 
Inducible Nitric Oxide Synthase mRNA. Biochem. Biophys. Res. Commun., 196, 1208-
1213. 

Lo,Y.Y.C. and Cruz,T.F. (1995). Involvement of Reactive Oxygen Species in Cytokine 
and Growth Factor Induction of c-fos Expression in Chondrocytes. J. Biol. Chem., 270, 
11727-11730. 

Mabrouk,G.M., Jois,M., and Brosnan,J.T. (1998). Cell signalling and the hormonal 
stimulation of the hepatic glycine cleavage enzyme system by glucagon. Biochem. J., 
330 ( Pt 2), 759-763. 

Makino,Y., Cao,R., Svensson,K., Bertilsson,G., Asman,M., Tanaka,H., Cao,Y., 
Berkenstam,A., and Poellinger,L. (2001). Inhibitory PAS domain protein is a negative 
regulator of hypoxia-inducible gene expression. Nature, 414, 550-554. 

Manna,S.K., Zhang,H.J., Yan,T., Oberley,L.W., and Aggarwal,B.B. (1998). 
Overexpression of Manganese Superoxide Dismutase Suppresses Tumor Necrosis 
Factor-induced Apoptosis and Activation of Nuclear Transcription Factor-kappa B and 
Activated Protein-1. J. Biol. Chem., 273, 13245-13254. 

Mansfield,K.D., Guzy,R.D., Pan,Y., Young,R.M., Cash,T.P., Schumacker,P.T., and 
Simon,M.C. (2005). Mitochondrial dysfunction resulting from loss of cytochrome c 
impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab., 1, 393-
399. 

Marklund,S.L. (1982). Human copper-containing superoxide dismutase of high 
molecular weight. Proc. Natl. Acad. Sci. U. S. A, 79, 7634-7638. 

Marklund,S.L. (1984). Extracellular superoxide dismutase in human tissues and human 
cell lines. J. Clin. Invest., 74, 1398-1403. 

Marklund,S.L. (1990). Expression of extracellular superoxide dismutase by human cell 
lines. Biochem. J., 266, 213-219. 

Marklund,S.L., Holme,E., and Hellner,L. (1982). Superoxide dismutase in extracellular 
fluids. Clin. Chim. Acta, 126, 41-51. 

Masters,B.S., McMillan,K., Sheta,E.A., Nishimura,J.S., Roman,L.J., and Martasek,P. 
(1996). Neuronal nitric oxide synthase, a modular enzyme formed by convergent 
evolution: structure studies of a cysteine thiolate-liganded heme protein that 
hydroxylates L-arginine to produce NO. as a cellular signal [published erratum appears 
in FASEB J 1996 Jul;10(9):1107]. FASEB J., 10, 552-558. 

Matsuno,K., Yamada,H., Iwata,K., Jin,D., Katsuyama,M., Matsuki,M., Takai,S., 
Yamanishi,K., Miyazaki,M., Matsubara,H., and Yabe-Nishimura,C. (2005). Nox1 Is 
Involved in Angiotensin II-Mediated Hypertension: A Study in Nox1-Deficient Mice. 
Circulation, 112, 2677-2685. 

Maxwell,P.H., Wiesener,M.S., Chang,G.W., Clifford,S.C., Vaux,E.C., Cockman,M.E., 
Wykoff,C.C., Pugh,C.W., Maher,E.R., and Ratcliffe,P.J. (1999). The tumour suppressor 
protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. 
Nature, 399, 271-275. 



Chapter seven: References 

 230

McCord,J.M. and Fridovich,I. (1969a). Superoxide dismutase. An enzymic function for 
erythrocuprein (hemocuprein). J. Biol. Chem., 244, 6049-6055. 

McCord,J.M. and Fridovich,I. (1969b). The Utility of superoxide dismutase in studying 
free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl 
sulfoxide, and oxygen. J. Biol. Chem., 244, 6056-6063. 

McNally,J.S., Davis,M.E., Giddens,D.P., Saha,A., Hwang,J., Dikalov,S., Jo,H., and 
Harrison,D.G. (2003). Role of xanthine oxidoreductase and NAD(P)H oxidase in 
endothelial superoxide production in response to oscillatory shear stress. Am J Physiol 
Heart Circ Physiol, 285, H2290-H2297. 

Meister,A. (1988). Glutathione metabolism and its selective modification. J. Biol. 
Chem., 263, 17205-17208. 

Mekhail,K., Gunaratnam,L., Bonicalzi,M.E., and Lee,S. (2004). HIF activation by pH-
dependent nucleolar sequestration of VHL. Nat. Cell Biol., 6, 642-647. 

Metzen,E., Zhou,J., Jelkmann,W., Fandrey,J., and Brune,B. (2003). Nitric Oxide 
impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol. 
Biol. Cell, 14, 3470-3481. 

Meyer,M., Schreck,R., and Baeuerle,P.A. (1993). H2O2 and antioxidants have opposite 
effects on activation of NF-kappa B and AP-1 in intact cells: AP-1 as secondary 
antioxidant-responsive factor. EMBO J., 12, 2005-2015. 

Meziane-El-Hassani,R., Morand,S., Boucher,J.L., Frapart,Y.M., Apostolou,D., 
Agnandji,D., Gnidehou,S., Ohayon,R.e., Noel-Hudson,M., Francon,J., Lalaoui,K., 
Virion,A., and Dupuy,C. (2005). Dual Oxidase-2 Has an Intrinsic Ca2+-dependent 
H2O2-generating Activity. J. Biol. Chem., 280, 30046-30054. 

Milenkovic,M., De Deken,X., Jin,L., De Felice,M., Di Lauro,R., Dumont,J.E., 
Corvilain,B., and Miot,F. (2007). Duox expression and related H2O2 measurement in 
mouse thyroid: onset in embryonic development and regulation by TSH in adult. J. 
Endocrinol., 192, 615-626. 

Mills,G.C. (1957). Hemoglobin catabolism I. Glutathione peroxidase, an erythrocyte 
enzyme which protects hemoglobin from oxidative breakdown. J. Biol. Chem., 229, 
189-197. 

Miquel,J., Economos,A.C., Fleming,J., and Johnson,J. (1980). Mitochondrial role in cell 
aging. Exp. Gerontol., 15, 575-591. 

Mitchell,P. (1977). A commentary on alternative hypotheses of protonic coupling in the 
membrane systems catalysing oxidative and photosynthetic phosphorylation. FEBS 
Lett., 78, 1-20. 

Mollnau,H., Wendt,M., Szocs,K., Lassegue,B., Schulz,E., Oelze,M., Li,H., 
Bodenschatz,M., August,M., Kleschyov,A.L., Tsilimingas,N., Walter,U., 
Forstermann,U., Meinertz,T., Griendling,K., and Munzel,T. (2002). Effects of 
Angiotensin II Infusion on the Expression and Function of NAD(P)H Oxidase and 
Components of Nitric Oxide/cGMP Signaling. Circ. Res., 90, e58-e65. 



Chapter seven: References 

 231

Moncada,S. and Higgs,A. (1993). The L-arginine-nitric oxide pathway. N. Engl. J. 
Med., 329, 2002-2012. 

Mukhopadhyay,C.K., Mazumder,B., and Fox,P.L. (2000). Role of Hypoxia-inducible 
Factor-1 in Transcriptional Activation of Ceruloplasmin by Iron Deficiency. J. Biol. 
Chem., 275, 21048-21054. 

Murley,J.S., Kataoka,Y., Hallahan,D.E., Roberts,J.C., and Grdina,D.J. (2001). 
Activation of NF-KappaB and MnSOD gene expression by free radical scavengers in 
human microvascular endothelial cells. Free Radic. Biol. Med., 30, 1426-1439. 

Murphy,M.P. (2009). How mitochondria produce reactive oxygen species. Biochem. J., 
417, 1-13. 

Nass,M.M. (1970). Abnormal DNA patterns in animal mitochondria: ethidium bromide-
induced breakdown of closed circular DNA and conditions leading to oligomer 
accumulation. Proc. Natl. Acad. Sci. U. S. A, 67, 1926-1933. 

Nass,M.M. (1972). Differential effects of ethidium bromide on mitochondrial and 
nuclear DNA synthesis in vivo in cultured mammalian cells. Exp. Cell Res., 72, 211-
222. 

Newton,A.C. (1995). Protein Kinase C: Structure, Function, and Regulation. J. Biol. 
Chem., 270, 28495-28498. 

Newton,A.C. (1997). Regulation of protein kinase C. Curr. Opin. Cell Biol., 9, 161-167. 

Nishizuka,Y. (1995). Protein kinase C and lipid signaling for sustained cellular 
responses. FASEB J., 9, 484-496. 

Noji,H. and Yoshida,M. (2001). The Rotary Machine in the Cell, ATP Synthase . J. 
Biol. Chem., 276, 1665-1668. 

Ochoa,J.B., Udekwu,A.O., Billiar,T.R., Curran,R.D., Cerra,F.B., Simmons,R.L., and 
Peitzman,A.B. (1991). Nitrogen oxide levels in patients after trauma and during sepsis. 
Ann. Surg., 214, 621-626. 

Ohara,Y., Peterson,T.E., and Harrison,D.G. (1993). Hypercholesterolemia increases 
endothelial superoxide anion production. J. Clin. Invest., 91, 2546-2551. 

Ohashi,M., Runge,M.S., Faraci,F.M., and Heistad,D.D. (2006). MnSOD Deficiency 
Increases Endothelial Dysfunction in ApoE-Deficient Mice. Arterioscler. Thromb. 
Vasc. Biol., 26, 2331-2336. 

Okado-Matsumoto,A. and Fridovich,I. (2001). Subcellular Distribution of Superoxide 
Dismutases (SOD) in Rat Liver. J. Biol. Chem., 276, 38388-38393. 

Palacios-Callender,M., Quintero,M., Hollis,V.S., Springett,R.J., and Moncada,S. 
(2004). Endogenous NO regulates superoxide production at low oxygen concentrations 
by modifying the redox state of cytochrome c oxidase. Proc. Natl. Acad. Sci. U. S. A, 
101, 7630-7635. 



Chapter seven: References 

 232

Pallardo,F.V., Asensi,M., Garcia de la,A.J., Anton,V., Lloret,A., Sastre,J., and Vina,J. 
(1998). Late onset administration of oral antioxidants prevents age-related loss of motor 
co-ordination and brain mitochondrial DNA damage. Free Radic. Res., 29, 617-623. 

Palmer,R.M., Ferrige,A.G., and Moncada,S. (1987). Nitric oxide release accounts for 
the biological activity of endothelium-derived relaxing factor. Nature, 327, 524-526. 

Pan,Y., Mansfield,K.D., Bertozzi,C.C., Rudenko,V., Chan,D.A., Giaccia,A.J., and 
Simon,M.C. (2007). Multiple Factors Affecting Cellular Redox Status and Energy 
Metabolism Modulate Hypoxia-Inducible Factor Prolyl Hydroxylase Activity In Vivo 
and In Vitro. Mol. Cell Biol., 27, 912-925. 

Panov,A., Dikalov,S., Shalbuyeva,N., Taylor,G., Sherer,T., and Greenamyre,J.T. 
(2005). Rotenone Model of Parkinson Disease. J. Biol. Chem., 280, 42026-42035. 

Papandreou,I., Cairns,R.A., Fontana,L., Lim,A.L., and Denko,N.C. (2006). HIF-1 
mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen 
consumption. Cell Metab., 3, 187-197. 

Pearlstein,D.P., Ali,M.H., Mungai,P.T., Hynes,K.L., Gewertz,B.L., and 
Schumacker,P.T. (2002). Role of Mitochondrial Oxidant Generation in Endothelial Cell 
Responses to Hypoxia. Arterioscler. Thromb. Vasc. Biol., 22, 566-573. 

Peyssonnaux,C., Zinkernagel,A.S., Schuepbach,R.A., Rankin,E., Vaulont,S., 
Haase,V.H., Nizet,V., and Johnson,R.S. (2007). Regulation of iron homeostasis by the 
hypoxia-inducible transcription factors (HIFs). J. Clin. Invest., 117, 1926-1932. 

Peyssonnaux,C., Datta,V., Cramer,T., Doedens,A., Theodorakis,E.A., Gallo,R.L., 
Hurtado-Ziola,N., Nizet,V., and Johnson,R.S. (2005). HIF-1alpha expression regulates 
the bactericidal capacity of phagocytes. J. Clin. Invest., 115, 1806-1815. 

Picker,S.D. and Fridovich,I. (1984). On the mechanism of production of superoxide 
radical by reaction mixtures containing NADH, phenazine methosulfate, and nitroblue 
tetrazolium. Arch. Biochem. Biophys., 228, 155-158. 

Poderoso,J.J., Carreras,M.C., Lisdero,C., Riobo,N., Schopfer,F., and Boveris,A. (1996). 
Nitric Oxide Inhibits Electron Transfer and Increases Superoxide Radical Production in 
Rat Heart Mitochondria and Submitochondrial Particles. Arch. Biochem. Biophys., 328, 
85-92. 

Poellinger,L. and Johnson,R.S. (2004). HIF-1 and hypoxic response: the plot thickens. 
Curr. Opin. Genet. Dev., 14, 81-85. 

Pollard,P.J., Briere,J.J., Alam,N.A., Barwell,J., Barclay,E., Wortham,N.C., Hunt,T., 
Mitchell,M., Olpin,S., Moat,S.J., Hargreaves,I.P., Heales,S.J., Chung,Y.L., 
Griffiths,J.R., Dalgleish,A., McGrath,J.A., Gleeson,M.J., Hodgson,S.V., Poulsom,R., 
Rustin,P., and Tomlinson,I.P.M. (2005). Accumulation of Krebs cycle intermediates 
and over-expression of HIF1alpha in tumours which result from germline FH and SDH 
mutations. Hum. Mol. Genet., 14, 2231-2239. 

Pollock,J.S., Forstermann,U., Mitchell,J.A., Warner,T.D., Schmidt,H.H., Nakane,M., 
and Murad,F. (1991). Purification and characterization of particulate endothelium-
derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. 
Proc. Natl. Acad. Sci. U. S. A, 88, 10480-10484. 



Chapter seven: References 

 233

Potter,D.W. and Tran,T.B. (1993). Apparent Rates of Glutathione Turnover in Rat 
Tissues. Toxicol. Appl. Pharmacol., 120, 186-192. 

Pou,S., Hassett,D.J., Britigan,B.E., Cohen,M.S., and Rosen,G.M. (1989). Problems 
associated with spin trapping oxygen-centered free radicals in biological systems. Anal. 
Biochem., 177, 1-6. 

Pou,S., Keaton,L., Surichamorn,W., and Rosen,G.M. (1999). Mechanism of Superoxide 
Generation by Neuronal Nitric-oxide Synthase. J. Biol. Chem., 274, 9573-9580. 

Pouyssegur,J. and Mechta-Grigoriou,F. (2006). Redox regulation of the hypoxia-
inducible factor. Biol. Chem., 387, 1337-1346. 

Powis,G., Mustacich,D., and Coon,A. (2000). The role of the redox protein thioredoxin 
in cell growth and cancer. Free Radic. Biol. Med., 29, 312-322. 

Pritchard,K.A., Jr., Groszek,L., Smalley,D.M., Sessa,W.C., Wu,M., Villalon,P., 
Wolin,M.S., and Stemerman,M.B. (1995). Native Low-Density Lipoprotein Increases 
Endothelial Cell Nitric Oxide Synthase Generation of Superoxide Anion. Circ. Res., 77, 
510-518. 

Puddu,P., Puddu,G.M., Cravero,E., Rosati,M., and Muscari,A. (2008). The molecular 
sources of reactive oxygen species in hypertension. Blood Press., 17, 70-77. 

Quintero,M., Brennan,P.A., Thomas,G.J., and Moncada,S. (2006a). Nitric Oxide Is a 
Factor in the Stabilization of Hypoxia-Inducible Factor-1alpha in Cancer: Role of Free 
Radical Formation. Cancer Res., 66, 770-774. 

Quintero,M., Colombo,S.L., Godfrey,A., and Moncada,S. (2006b). Mitochondria as 
signaling organelles in the vascular endothelium. Proc. Natl. Acad. Sci. U. S. A, 103, 
5379-5384. 

Rada,B., Hably,C., Meczner,A., Timar,C., Lakatos,G., Enyedi,P., and Ligeti,E. (2008). 
Role of Nox2 in elimination of microorganisms. Semin. Immunopathol., 30, 237-253. 

Radi,R., Cassina,A., and Hodara,R. (2002). Nitric oxide and peroxynitrite interactions 
with mitochondria. Biol. Chem., 383, 401-409. 

Ramachandran,A., Levonen,A.L., Brookes,P.S., Ceaser,E., Shiva,S., Barone,M.C., and 
Darley-Usmar,V. (2002). Mitochondria, nitric oxide, and cardiovascular dysfunction. 
Free Radic. Biol. Med., 33, 1465-1474. 

Rathore,R., Zheng,Y.M., Niu,C.F., Liu,Q.H., Korde,A., Ho,Y.S., and Wang,Y.X. 
(2008). Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the 
mitochondrial ROS-PKC[var epsilon] signaling axis in pulmonary artery smooth muscle 
cells. Free Radic. Biol. Med., 45, 1223-1231. 

Rhee,S.G., Kang,S.W., Jeong,W., Chang,T.S., Yang,K.S., and Woo,H.A. (2005). 
Intracellular messenger function of hydrogen peroxide and its regulation by 
peroxiredoxins. Curr. Opin. Cell Biol., 17, 183-189. 

Rolfe,D.F. and Brown,G.C. (1997). Cellular energy utilization and molecular origin of 
standard metabolic rate in mammals. Physiol. Rev., 77, 731-758. 



Chapter seven: References 

 234

Rolfs,A., Kvietikova,I., Gassmann,M., and Wenger,R.H. (1997). Oxygen-regulated 
Transferrin Expression Is Mediated by Hypoxia-inducible Factor-1. J. Biol. Chem., 272, 
20055-20062. 

Rota,C., Chignell,C.F., and Mason,R.P. (1999). Evidence for free radical formation 
during the oxidation of 2'-7'-dichlorofluorescin to the fluorescent dye 2'-7'-
dichlorofluorescein by horseradish peroxidase: Possible implications for oxidative stress 
measurements. Free Radic. Biol. Med., 27, 873-881. 

Ryan,H.E., Lo,J., and Johnson,R.S. (1998). HIF-1alpha is required for solid tumor 
formation and embryonic vascularization. EMBO J., 17, 3005-3015. 

Sanjuan-Pla,A., Cervera,A.M., Apostolova,N., Garcia-Bou,R., Victor,V.M., 
Murphy,M.P., and McCreath,K.J. (2005). A targeted antioxidant reveals the importance 
of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1alpha. FEBS 
Lett., 579, 2669-2674. 

Scarpulla,R.C. (2008). Transcriptional Paradigms in Mammalian Mitochondrial 
Biogenesis and Function. Physiol. Rev., 88, 611-638. 

Schofield,C.J. and Ratcliffe,P.J. (2004). Oxygen sensing by HIF hydroxylases. Nat Rev 
Mol Cell Biol, 5, 343-354. 

Schofield,C.J. and Ratcliffe,P.J. (2005). Signalling hypoxia by HIF hydroxylases. 
Biochem. Biophys. Res. Commun., 338, 617-626. 

Schreck,R., Rieber,P., and Baeuerle,P.A. (1991). Reactive oxygen intermediates as 
apparently widely used messengers in the activation of the NF-kappa B transcription 
factor and HIV-1. EMBO J., 10, 2247-2258. 

Schroedl,C., McClintock,D.S., Budinger,G.R.S., and Chandel,N.S. (2002). Hypoxic but 
not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. 
Am. J. Physiol. Lung Cell Mol. Physiol., 283, L922-L931. 

Schumacker,P.T. (2002). Hypoxia, anoxia, and O2 sensing: the search continues. Am. J. 
Physiol. Lung Cell Mol. Physiol., 283, L918-L921. 

Seagroves,T.N., Ryan,H.E., Lu,H., Wouters,B.G., Knapp,M., Thibault,P., Laderoute,K., 
and Johnson,R.S. (2001). Transcription factor HIF-1 is a necessary mediator of the 
pasteur effect in mammalian cells. Mol. Cell Biol., 21, 3436-3444. 

Semenza,G.L. (2000). HIF-1 and human disease: one highly involved factor. Genes 
Dev., 14, 1983-1991. 

Semenza,G.L. (2006). Development of novel therapeutic strategies that target HIF-1. 
Expert. Opin. Ther. Targets., 10, 267-280. 

Semenza,G.L. (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 3, 721-732. 

Semenza,G.L. (2007). Oxygen-dependent regulation of mitochondrial respiration by 
hypoxia-inducible factor 1. Biochem. J., 405, 1-9. 

Semenza,G.L. (2009a). Regulation of cancer cell metabolism by hypoxia-inducible 
factor 1. Semin. Cancer Biol., 19, 12-16. 



Chapter seven: References 

 235

Semenza,G.L. (2009b). Regulation of Oxygen Homeostasis by Hypoxia-Inducible 
Factor 1. Physiology, 24, 97-106. 

Semenza,G.L., Jiang,B.H., Leung,S.W., Passantino,R., Concordet,J.P., Maire,P., and 
Giallongo,A. (1996). Hypoxia Response Elements in the Aldolase A, Enolase 1, and 
Lactate Dehydrogenase A Gene Promoters Contain Essential Binding Sites for 
Hypoxia-inducible Factor 1. J. Biol. Chem., 271, 32529-32537. 

Shiose,A., Kuroda,J., Tsuruya,K., Hirai,M., Hirakata,H., Naito,S., Hattori,M., 
Sakaki,Y., and Sumimoto,H. (2001). A Novel Superoxide-producing NAD(P)H 
Oxidase in Kidney. J. Biol. Chem., 276, 1417-1423. 

Simon,M.C. (2006). Mitochondrial reactive oxygen species are required for hypoxic 
HIF alpha stabilization. Adv. Exp. Med. Biol, 588, 165-170. 

Simon,M.P., Tournaire,R., and Pouyssegur,J. (2008). The angiopoietin-2 gene of 
endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first 
intron and by the central factors GATA-2 and Ets-1. J. Cell Physiol., 217, 809-818. 

Singh,K.K. (2006). Mitochondria damage checkpoint, aging, and cancer. Ann. N. Y. 
Acad. Sci., 1067, 182-190. 

Soderberg,A., Sahaf,B., and Rosen,A. (2000). Thioredoxin Reductase, a Redox-active 
Selenoprotein, Is Secreted by Normal and Neoplastic Cells: Presence in Human Plasma. 
Cancer Res., 60, 2281-2289. 

Sorescu,D., Weiss,D., Lassegue,B., Clempus,R.E., Szocs,K., Sorescu,G.P., Valppu,L., 
Quinn,M.T., Lambeth,J.D., Vega,J.D., Taylor,W.R., and Griendling,K.K. (2002). 
Superoxide Production and Expression of Nox Family Proteins in Human 
Atherosclerosis. Circulation, 105, 1429-1435. 

Srinivas,V., Leshchinsky,I., Sang,N., King,M.P., Minchenko,A., and Caro,J. (2001). 
Oxygen Sensing and HIF-1 Activation Does Not Require an Active Mitochondrial 
Respiratory Chain Electron-transfer Pathway. J. Biol. Chem., 276, 21995-21998. 

Stocker,R. and Perrella,M.A. (2006). Heme Oxygenase-1: A Novel Drug Target for 
Atherosclerotic Diseases? Circulation, 114, 2178-2189. 

Stuehr,D.J., Cho,H.J., Kwon,N.S., Weise,M.F., and Nathan,C.F. (1991a). Purification 
and characterization of the cytokine-induced macrophage nitric oxide synthase: an 
FAD- and FMN-containing flavoprotein. Proc. Natl. Acad. Sci. U. S. A, 88, 7773-7777. 

Stuehr,D.J., Kwon,N.S., Nathan,C.F., Griffith,O.W., Feldman,P.L., and Wiseman,J. 
(1991b). N omega-hydroxy-L-arginine is an intermediate in the biosynthesis of nitric 
oxide from L-arginine. J. Biol. Chem., 266, 6259-6263. 

Stuehr,D.J. and Nathan,C.F. (1989). Nitric oxide. A macrophage product responsible for 
cytostasis and respiratory inhibition in tumor target cells. J Exp. Med., 169, 1543-1555. 

Stuehr,D., Pou,S., and Rosen,G.M. (2001). Oxygen Reduction by Nitric-oxide 
Synthases. J. Biol. Chem., 276, 14533-14536. 



Chapter seven: References 

 236

Suh,Y.A., Arnold,R.S., Lassegue,B., Shi,J., Xu,X., Sorescu,D., Chung,A.B., 
Griendling,K.K., and Lambeth,J.D. (1999). Cell transformation by the superoxide-
generating oxidase Mox1. Nature, 401, 79-82. 

Suzuki,Y.J., Forman,H.J., and Sevanian,A. (1997). Oxidants as Stimulators of Signal 
Transduction. Free Radic. Biol. Med., 22, 269-285. 

Szatrowski,T.P. and Nathan,C.F. (1991). Production of large amounts of hydrogen 
peroxide by human tumor cells. Cancer Res., 51, 794-798. 

Tacchini,L., Bianchi,L., Bernelli-Zazzera,A., and Cairo,G. (1999). Transferrin Receptor 
Induction by Hypoxia. J. Biol. Chem., 274, 24142-24146. 

Taille,C., El-Benna,J., Lanone,S., Dang,M.C., Ogier-Denis,E., Aubier,M., and 
Boczkowski,J. (2004). Induction of Heme Oxygenase-1 Inhibits NAD(P)H Oxidase 
Activity by Down-regulating Cytochrome b558 Expression via the Reduction of Heme 
Availability. J. Biol. Chem., 279, 28681-28688. 

Tampo,Y., Kotamraju,S., Chitambar,C.R., Kalivendi,S.V., Keszler,A., Joseph,J., and 
Kalyanaraman,B. (2003). Oxidative Stress-Induced Iron Signaling Is Responsible for 
Peroxide-Dependent Oxidation of Dichlorodihydrofluorescein in Endothelial Cells: 
Role of Transferrin Receptor-Dependent Iron Uptake in Apoptosis. Circ. Res., 92, 56-
63. 

Tanudji,M., Hevi,S., and Chuck,S.L. (2003). The nonclassic secretion of thioredoxin is 
not sensitive to redox state. Am. J. Physiol. Cell Physiol., 284, C1272-C1279. 

Tapiero,H., Mathe,G., Couvreur,P., and Tew,K.D. (2002). II. Glutamine and glutamate. 
Biomed. Pharmacother., 56, 446-457. 

Tarpey,M.M. and Fridovich,I. (2001). Methods of Detection of Vascular Reactive 
Species: Nitric Oxide, Superoxide, Hydrogen Peroxide, and Peroxynitrite. Circ. Res., 
89, 224-236. 

Tiedge,M., Lortz,S., Drinkgern,J., and Lenzen,S. (1997). Relation between antioxidant 
enzyme gene expression and antioxidative defense status of insulin-producing cells. 
Diabetes, 46, 1733-1742. 

Touyz,R.M. (2004). Reactive oxygen species and angiotensin II signaling in vascular 
cells -- implications in cardiovascular disease. Braz. J. Med. Biol. Res., 37, 1263-1273. 

Tsan,M.F., Clark,R.N., Goyert,S.M., and White,J.E. (2001). Induction of TNF-alpha 
and MnSOD by endotoxin: role of membrane CD14 and Toll-like receptor-4. Am. J. 
Physiol. Cell Physiol., 280, C1422-C1430. 

Turrens,J.F., Alexandre,A., and Lehninger,A.L. (1985). Ubisemiquinone is the electron 
donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. 
Biophys., 237, 408-414. 

Turrens,J.F., Freeman,B.A., Levitt,J.G., and Crapo,J.D. (1982). The effect of hyperoxia 
on superoxide production by lung submitochondrial particles. Arch. Biochem. Biophys., 
217, 401-410. 



Chapter seven: References 

 237

Turrens,J.F. (2003). Mitochondrial formation of reactive oxygen species. J. Physiol., 
552, 335-344. 

Tuttle,S.W., Maity,A., Oprysko,P.R., Kachur,A.V., Ayene,I.S., Biaglow,J.E., and 
Koch,C.J. (2007). Detection of reactive oxygen species via endogenous oxidative 
Pentose Phosphate Cycle activity in response to oxygen concentration: Implications for 
the mechanism of HIF-1alpha stabilisation under moderate hypoxia. J. Biol. Chem., 
282, 36790-36796. 

Valko,M., Rhodes,C.J., Moncol,J., Izakovic,M., and Mazur,M. (2006). Free radicals, 
metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 160, 
1-40. 

Vanden Hoek,T.L., Becker,L.B., Shao,Z., Li,C., and Schumacker,P.T. (1998). Reactive 
Oxygen Species Released from Mitochondria during Brief Hypoxia Induce 
Preconditioning in Cardiomyocytes. J. Biol. Chem., 273, 18092-18098. 

Vaquero,J., Zurita,M., Aguayo,C., and Coca,S. (2004). Relationship between apoptosis 
and proliferation in secondary tumors of the brain. Neuropathology., 24, 302-305. 

Vaux,E.C., Metzen,E., Yeates,K.M., and Ratcliffe,P.J. (2001). Regulation of hypoxia-
inducible factor is preserved in the absence of a functioning mitochondrial respiratory 
chain. Blood, 98, 296-302. 

Vijg,J. (1999). Genetics of aging: Sponsored by Cold Spring Harbor Laboratory, 2-5 
April 1998. Biochim. Biophys. Acta. - Reviews on Cancer, 1423, 1-12. 

Wang,G.L. and Semenza,G.L. (1993). Characterization of hypoxia-inducible factor 1 
and regulation of DNA binding activity by hypoxia. J. Biol. Chem., 268, 21513-21518. 

Wang,X., Gjorloff-Wingren,A., Saxena,M., Pathan,N., Reed,J.C., and Mustelin,T. 
(2000). The tumor suppressor PTEN regulates T cell survival and antigen receptor 
signaling by acting as a phosphatidylinositol 3-phosphatase. J. Immunol., 164, 1934-
1939. 

Wang,X., Martindale,J.L., Liu,Y., and Holbrook,N.J. (1998). The cellular response to 
oxidative stress: influences of mitogen-activated protein kinase signalling pathways on 
cell survival. Biochem. J., 333 ( Pt 2), 291-300. 

Wanrooij,S., Goffart,S., Pohjoismaki,J.L.O., Yasukawa,T., and Spelbrink,J.N. (2007). 
Expression of catalytic mutants of the mtDNA helicase Twinkle and polymerase POLG 
causes distinct replication stalling phenotypes. Nucl. Acids Res., 35, 3238-3251. 

Ward,J.P.T. (2008). Oxygen sensors in context. Biochim. Biophys. Acta. - 
Bioenergetics, 1777, 1-14. 

Warner,B.B., Stuart,L., Gebb,S., and Wispe,J.R. (1996). Redox regulation of 
manganese superoxide dismutase. Am. J. Physiol. Lung Cell Mol. Physiol., 271, L150-
L158. 

Warnholtz,A., Nickenig,G., Schulz,E., Macharzina,R., Brasen,J.H., Skatchkov,M., 
Heitzer,T., Stasch,J.P., Griendling,K.K., Harrison,D.G., Bohm,M., Meinertz,T., and 
Munzel,T. (1999). Increased NADH-Oxidase mediated superoxide production in the 



Chapter seven: References 

 238

early stages of atherosclerosis: Evidence for involvement of the renin-angiotensin 
system. Circulation, 99, 2027-2033. 

Waypa,G.B. and Schumacker,P.T. (2002). O2 sensing in hypoxic pulmonary 
vasoconstriction: the mitochondrial door re-opens. Respir. Physiol. Neurobiol., 132, 81-
91. 

Weisiger,R.A. and Fridovich,I. (1973). Mitochondrial superoxide simutase. Site of 
synthesis and intramitochondrial localization. J. Biol. Chem., 248, 4793-4796. 

Wellman,T.L., Jenkins,J., Penar,P.L., Tranmer,B., Zahr,R., and Lounsbury,K.M. 
(2003). Nitric oxide and reactive oxygen species exert opposing effects on the stability 
of hypoxia inducible factor-1alpha; (HIF-1alpha;) in explants of human pial arteries. 
FASEB J., 18, 379-381. 

Whisler,R.L., Goyette,M.A., Grants,I.S., and Newhouse,Y.G. (1995). Sublethal Levels 
of Oxidant Stress Stimulate Multiple Serine/Threonine Kinases and Suppress Protein 
Phosphatases in Jurkat T Cells. Arch. Biochem. Biophys., 319, 23-35. 

White,C.R., Darley-Usmar,V., Berrington,W.R., McAdams,M., Gore,J.Z., 
Thompson,J.A., Parks,D.A., Tarpey,M.M., and Freeman,B.A. (1996). Circulating 
plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic 
rabbits. Proc. Natl. Acad. Sci. U. S. A, 93, 8745-8749. 

Willam,C., Nicholls,L.G., Ratcliffe,P.J., Pugh,C.W., and Maxwell,P.H. (2004). The 
prolyl hydroxylase enzymes that act as oxygen sensors regulating destruction of 
hypoxia-inducible factor alpha. Adv. Enzyme Regul., 44, 75-92. 

Wittenberg,B.A. and Wittenberg,J.B. (1989). Transport of oxygen in muscle. Annu. 
Rev. Physiol., 51, 857-878. 

Woo,H.A., Yim,S.H., Shin,D.H., Kang,D., Yu,D.Y., and Rhee,S.G. (2010). Inactivation 
of Peroxiredoxin I by Phosphorylation Allows Localized H2O2 Accumulation for Cell 
Signaling. Cell, 140, 517-528. 

Xia,Y., Tsai,A.L., Berka,V., and Zweier,J.L. (1998). Superoxide Generation from 
Endothelial Nitric-oxide Synthase. J. Biol. Chem., 273, 25804-25808. 

Yamawaki,H., Haendeler,J., and Berk,B.C. (2003). Thioredoxin: A Key Regulator of 
Cardiovascular Homeostasis. Circ. Res., 93, 1029-1033. 

Yang,H., Roberts,L.J., Shi,M.J., Zhou,L.C., Ballard,B.R., Richardson,A., and Guo,Z.M. 
(2004). Retardation of Atherosclerosis by Overexpression of Catalase or Both Cu/Zn-
Superoxide Dismutase and Catalase in Mice Lacking Apolipoprotein E. Circ. Res., 95, 
1075-1081. 

Yang,S., Madyastha,P., Bingel,S., Ries,W., and Key,L. (2001). A New Superoxide-
generating Oxidase in Murine Osteoclasts. J. Biol. Chem., 276, 5452-5458. 

Yoon,D., Pastore,Y.D., Divoky,V., Liu,E., Mlodnicka,A.E., Rainey,K., Ponka,P., 
Semenza,G.L., Schumacher,A., and Prchal,J.T. (2006). Hypoxia-inducible Factor-1 
Deficiency Results in Dysregulated Erythropoiesis Signaling and Iron Homeostasis in 
Mouse Development. J. Biol. Chem., 281, 25703-25711. 



Chapter seven: References 

 239

Yuan,G., Nanduri,J., Khan,S., Semenza,G.L., and Prabhakar,N.R. (2008). Induction of 
HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ 
signaling, prolyl hydroxylases, and mTOR. J. Cell Physiol., 217, 674-685. 

Yuan,Y., Hilliard,G., Ferguson,T., and Millhorn,D.E. (2003). Cobalt Inhibits the 
Interaction between Hypoxia-inducible Factor-alpha and von Hippel-Lindau Protein by 
Direct Binding to Hypoxia-inducible Factor-alpha. J. Biol. Chem., 278, 15911-15916. 

Zhang,Y., Griendling,K.K., Dikalova,A., Owens,G.K., and Taylor,W.R. (2005). 
Vascular Hypertrophy in Angiotensin II-Induced Hypertension Is Mediated by Vascular 
Smooth Muscle Cell-Derived H2O2. Hypertension, 46, 732-737. 

Zinkernagel,A.S., Johnson,R.S., and Nizet,V. (2007). Hypoxia inducible factor (HIF) 
function in innate immunity and infection. J Mol. Med., 85, 1339-1346. 

Zylber,E., Vesco,C., and Penman,S. (1969). Selective inhibition of the synthesis of 
mitochondria-associated RNA by ethidium bromide. J Mol Biol, 44, 195-204. 
 
 


