A Coordination Model
to Specify Systems Including Mobile Agents *

P. Ciancarini, F. Franze and C. Mascolo
Dip. di Scienze dell’Informazione, University of Bologna
Mura Anteo Zamboni, 7, 1-40127 Bologna, Italy
phone: +39 51 354506, fax: 439 51 354510

e-mail: {ciancarini,franze,mascolo}@cs.unibo.it

Abstract

A coordination model provides a formal framework
wm which the interaction of active entities that we call
agents can be expressed. A coordination model deals
with the creation and destruction of agents, their com-
munication activities, their distribution and mobility
m space, as well as the synchronization and distri-
bution of their actions over time. We show how a
coordination model called PoliS offers a flexible basis
for the description and the analysis of architectures of
systems including mobile agents. We have developed
a model checking technigque for the automatic analysis
of PoliS specifications.

1 Introduction

New computing paradigms based on code mobility
need specification methods able to deal with the fea-
tures of agent-based architectures [20]. For instance,
since the original WWW architecture supports very
limited forms of distributed programming, it 1s be-
ing extended with specific programming languages,
like Java, which extends the functionality of WWW
browsers to deal with agents called applets. Some mul-
tiuser applications need migratory agents, which need
to be coordinated in their travelling over the network.

A coordination model provides a formal framework
in which the interaction of software agents can be ex-
pressed [5]. A coordination model deals with the cre-
ation and destruction of agents, their communication
activities, their distribution and mobility in space, as

*Copyright 1998 TEEE. Published in the Proceedings of
TWSSD9, April 1998 Isobe, Japan. Personal use of this ma-
terial is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for cre-
ating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in
other works, must be obtained from the IEEE. Contact: Man-
ager, Copyrights and Permissions / IEEE Service Center / 445
Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA.
Telephone: + Intl. 908-562-3966.

well as the synchronization and distribution of their
actions over time.

In this paper we show how a coordination model
called PoliS [7] can be used to specify and analyse
software architectures including mobile agents: code
mobility is represented in the coordination model and
reasoning on formal properties can be supported by
model checking.

Research in the field of software architecture has led
to the definition of architecture description languages
(ADL) exploiting well-known formalisms like for in-
stance CSP [1] and the m-calculus [16]. Tn [14] also the
Chemical Abstract Machine (CHAM), a well known
coordination model, has been used as an ADL. Using
the CHAM the state of a system is represented by a
chemical solution (a multi-set of terms of a word alge-
bra) whose transformation is operationally defined by
the application of multi-set rewriting (reaction) rules.
The CHAM was originally introduced for represent-
ing concurrent computations [3]. In fact, the CHAM
is also a simple coordination model to describe and
control coordination and interaction among agents [2].
In our knowledge these notations do not support code
mobility. A paper which analizes a number of formal
models suitable for mobility is [10].

The paper is organized as follows: Section 2 intro-
duces PoliS; Section 3 studies how PoliS can be used
to describe software architectures including mobility.
We describe the architecture of the “Meeting Sched-
uler System” case study as a system including mobile
agents. In Section 4 we analyse the case study using
a model checker. Finally, in Section 5 we outline our
future work.

2 Overview of PoliS

PoliS is a coordination model based on multiple tu-
ple spaces [13]. A tuple space, or space for short, in-
cludes both tuples and other spaces. PoliS specifica-
tions are hierarchically structured: a PoliS specifica-

tion denotes a tree of nested spaces that dynamically
evolves in time.

A PoliS space can contain both other spaces and tu-
ples of two types: ordinary tuples, which are ordered
sequences of values, and program tuples, which con-
tain the coordination rules that manage activities in-
side the space they belong to. The execution of a pro-
gram tuple is an action, which can modify a space tree
removing tuples and adding tuples and spaces. How-
ever, an action can only handle the tuples of the space
it belongs to and the tuples of its parent space. This
constraint precisely defines both the “input” and the
“output” environment of any action, as represented by
a program tuple.

The typical structure of a nested multiple tuple
space is graphically shown in Figure 1. In such a fig-
ure any ellipse represents a tuple space, any ordered
sequence of values (for example (5,6)) is an ordinary
tuple and any tuple ("#” : R) is a program tuple;
nested ellipses represent nested spaces.

Figure 1: A PoliS space tree

A space i1s a multi-set of tuples. A space is modi-
fied by reactions that transform multi-sets of tuples in
multi-sets of tuples (this is multi-set rewriting, and is
common to most coordination models based on gen-
erative communication [5]). The rule is the construct
that defines which reactions can take place. A rule
can act on the tuples of the space in which it resides
and in the tuples of the parent space of this space: we
will call this spaces the rule scope. A rule defines a
reaction that reads and consumes tuples in its scope,
performs a sequential computation, produces new tu-
ples in its scope and creates new subspaces.

More precisely, a rule is made up of a preactivation,
a local computation, and a postactivation. The pre-
activation is a multi-set of tuples to be found in its
scope; the local computation is any sequential com-
putation which does not modify the tuple space; the
postactivation is made up of a multi-set of tuples to
be produced in 1ts scope and of a set of spaces to be
created. Notice that this is a very general definition;
actually rules need not to be made up of all the ad-

mitted components: a rule can have an empty preac-
tivation, it can involve no local computation, it can
produce no tuples and it can create no spaces.

The preactivation can include formal tuples, that
are tuples whose fields can be identifiers; moreover, it
includes the primitive ask, that permits to check the
values that are assigned to the identifiers of a formal
tuple matched against a tuple in the space.

The semantics of a program tuple PT is that a re-
action takes place in a space if the space itself includes
both PT and a multi-set of tuples matching the pre-
activation of PT. A match relation checks whether a
multi-set of formal tuples My, can be instantiated by
a multi-set My; of ground tuples. Consequently, such
a match relation is defined between pairs of multi-sets
of tuples and not between pairs of tuples.

The tuples of the preactivation must be read or con-
sumed in the rule scope. When a rule can be activated
in a space, the reaction can takes place: the tuples to
be consumed locally are removed from the space where
the reaction takes place, the tuples to be consumed
externally are removed from the parent space of the
space where the reaction takes place, the local com-
putation is performed, the tuples and the new spaces
of the postactivation are created.

A program tuple is a multi-set rewriting rule: pre-
activation and postactivation are multi-sets and the
local computation is written as annotation on the ar-
row between preactivation and postactivation. A tuple
in the preactivation must be read if the symbol “7” is
put in front of it and must be consumed otherwise; a
read or consume operation involves the parent space if
the symbol “1” is put in front of a tuple and involves
the local space if the symbol is missing; a tuple in the
postactivation must be produced in the parent space
if the symbol “ 17 is put in front of it and must be
produced locally otherwise.

Rules are first class entities in PoliS: in fact, they
are themselves part of spaces as (program) tuples that
can be read, consumed or produced just like ordinary
tuples. A program tuple has the form (rule_id: rule)
where rule_id is a rule identifier and rule is a PoliS
rule. A program tuple has an identifier which simpli-
fies reading or consuming program tuples. Whenever
disjoint multi-sets of tuples satisfy the activation pre-
conditions of a set of rules, such rules can be executed
independently and simultaneously: every rule modi-
fies only the portion of space containing the tuples
that must be read or consumed and therefore other
rules can modify other tuples in the space or other
spaces. In PoliS rules specification is written below
the specification of the space containing it.

A simple example helps in explaining both syntax
and semantics of PoliS. Let us consider a producer-
consumer system. Such a system can be described by
a space tree where the producer and the consumer are
assoclated to two distinct spaces both included in the
main space containing also the buffer represented by
tuples generated by the producer. Such a system is
graphically shown in Figure 2.

Figure 2: Producer-consumer: spaces topology

Table 1 contains the specification of the producer-
consumer system. The StartContext space is the
main space, that contains the initial tuple s and rules
presents. The program tuple (“r,” : R,) indicates
that the rule R, specified below in Table 1, is con-
tained in the main space.

A key feature in PoliS is that a space tree can evolve
dynamically: a new space is created by the primitive
tsc (for tuple space create) and any space can be re-
moved because of the execution of a special rule named
mwvariant that terminates the space where it is exe-
cuted. The execution of a rule containing a tsc(M)
operation in its postactivation causes the multi-set M
to be added as a child space of the space where the
rule was executed.

For instance, the rule R, of Table 1, contained in
the main space, creates a space tree representing the
producer-consumer system. Such a rule creates the
spaces Sp and S, that contain the tuples describing
the producer and the consumer, respectively.

Sp is the producer space and contains the tuples
("next,”,), that is a counter, and the rule R,.

R, emits a new produced item (tuple) in the main
space: (1“prod” i, p) and updates the counter increas-
ing it by one.

S, is the consumer space. It contains a counter and
the rule R.. R, consumes a tuple from the main space
and increases the counter by one.

In order to partially constrain activities inside a tu-
ple space we can define one or more invariants, namely
constraints that must hold for all the tuple space life-
time. Whenever an invariant is violated, the tuple
space terminates and disappears. A PoliS invariant
is a condition on the tuple space contents: it asserts

that the space will never contain a given multi-set of
tuples. Invariant rules can only read tuples locally
(the tuples that must not belong to the tuple space)
and produce tuples in the parent space. When the
tuples to be read are in the space, the reaction spec-
ified by the invariant takes place in the usual way.
Local computation and tuple production are used to
communicate possible results to the parent space and
then the space dies. Invariants are given by means of
special program tuples whose names are replaced by
the keyword invariant.

Going back to our example, if we want the con-
sumer computation to terminate as soon as it receives
an item containing the value 0, we put the invariant
shown in Table 1 in the consumer space. The invari-
ant fires when the consumer space contains a tuple
("prod”,i,0). Tuple ("done”) represents a termina-
tion signal sent by the consumer to the parent space.

Communication is inspired by Linda [12]: tuples
representing messages are put in a space shared by
agents which have to communicate. Hence, communi-
cation is decoupled because agents do not know each
other, since they access tuples by pattern matching.
Since messages have no destination address, their con-
tents determine the set of possible receivers, (commu-
nication is property driven).

In summary, a space represents at the same time
both an agent performing a (chemical) computation
and a persistent, multicast channel supporting com-
munication among agents it contains.

3 The specification of an architecture
with mobile agents
We use mobile agents to specify the “Meeting
Scheduler System” (case study for TWSSD9, url:
http://salab-www.cs.titech.ac.jp/iwssd9.html).
We first give an informal description (Sect. 3.1),
then a PoliS specification (Sect. 3.2).

3.1 The Meeting Scheduler System: an
informal description
An organization manages meetings as follows. A
meeting initiator asks all potential attendees for the
following information included in their personal agen-
das:

- a set of dates on which they cannot attend the
meeting (exclusion set);

- a set of dates on which they would prefer the
meeting to take place (preference set). For sim-
plicity, and withous loss of generality, we assume
that all days outside the exclusion set and not
yet fixed for a meeting are free and represent the
preference set.

| StartContext

StartContext = ﬂ (“rg” = Ry) ﬂ

R, = ﬂ (Pry” 1 Ry) ﬁ — ﬂ tsc(Sy), tse(S:) [}
| |
[Sp]
Sp = ﬂ ("nexty”,0), ("rp” ¢ Rp) [}
| |
R, = ﬂ "next, & (i2) = f(i1) ﬂ 10 prod” iz, p), " nexty” 12) &
where f(i1) = (11 —|— 1)
| |
[SC]
S. = ﬂ ("next.”,0),("r.” : R.), (invariant : Rin.) [}
| |
R. = ﬂ (Pnext.”, 11), 1("prod”, ir, p) & G2) = f(i) {] (Pprod”, i1, p), "next.”, iz) &
where f(z)=(z+1)
Riny = ﬂ ?("prod”, i,0) ﬂ —_ {] 1("done”) ﬂ

Table 1: Specification of the Producer-Consumer System

The proposed meeting date should belong to none
of the exclusion sets and to as many preference sets as
possible. A date conflict occurs when no date can be
found. Conflicts can be resolved in two ways:

- some participants remove some dates from their
exclusion set;
- some participants withdraw from the meeting.

The system should assist users in the following ac-
tivities.

- Plan meetings consistently, using the constraints
expressed by participants.

- Re-plan a meeting dynamically (to offer flexibil-
ity). Participants should be allowed to modify
their exclusion and preference sets before a meet-
ing date is decided. A meeting date initially found
may need to be modified; sometimes the meeting
may even be cancelled.

- Support conflict resolution according to some ar-
bitrary resolution policies.

The meeting scheduler system must in general han-
dle several meeting requests in parallel. Meeting re-
quests can compete by overlapping in time:
rency must thus be managed.

concur-

3.2

The “Meeting Scheduler System” specification doc-
ument in PoliS is organized as follows: every initiator
of a meeting is associated to a multi-set of tuples rep-
resenting a mobile agent. Several agents (one for each
meeting) can run in parallel.

Our specification using PoliS

Each initiator agent moves among the sites of par-
ticipants collecting free dates and trying to decide a
date (see Fig. 3). For simplicity we assume that a
meeting can take place only if all potential attendees
will participate.

An agent collects information inside a participant
space, then it is frozen and moved outside: we call this
phase serialization, because it is similar to what hap-
pens to a Java object which moves over the Internet
[15].

Table 2 shows our specification, that includes three
kinds of spaces. The StartContext is the initial space:
it includes p participants and n agents, one for each
meeting. Each participant space has an initial state
consisting of tuples representing its agenda: some days
are marked “free” and other are marked “exclusion”,
meaning that these dates are in the participant ex-
clusion set (we implicitly assume that the number of
meetings (n) is less or equal to the number of days in
the agenda (m)). Agendas are represented by multi-
sets after @ operator in the StartContext definition.

StartContext

Participant; & {(“day”, 1, “free”),...,(“day”, m, “exclusion”)},
Participants ® {...},...

Participant, & {(“day”, 1, “exclusion”), ..., (“day”, m, “free”)},
Agenty, ..., Agent,,

(“start”), ..., (“start”),

(“end” : EN D)

StartContext =

END = ﬂ (“frozen”, k, si) [}Mﬂ (“end”, day, k) ﬂ
where f(z) = (fena(z))

Participant;
] (Sget” : GETAG), (“push” : PUSHAG), (“extend” : EXTEN D),
Participant; = {] (“accept”)
M 1(“frozen”, h, sp), (“frozen”, h , Sh),

GETAG = ﬂ T(“agent” : a), (“accept”) (“agent” : a), (“agent”)

| (“frozen”, h, sn), T(“frozen” h, sp),
PUSHAG = {] (“agent” : a),(“go”) - T(“agent” : a), (“accept”)

— (“day”’ d’ “exCluslon”)’ 43 0l 43 2
EXTEND _ﬂ 2“accopt®) ——{ (“day”,d, “free”) |

Agent;

Aaent — (“resume”), (“start” : START), (“resume” : RESUME), ("update” : U)
gent =1\ (invariant : EXIT), (“withdraw” : WITHDRAW), (“agent” : AGENT)

— [9 « »” (“done”)’
START = ﬂ T(“start”), (“resume”) ﬂ {] (“M?,1,0),...,(“M”, m,0)
« 9, P« ”
ACENT — ﬂ g(iZ;:;tJJ.)AGENT), P(“frozen” k, si), & —>ﬂ tsc(Agenty) [}
B T(“frozen”,i,s,'), (dy s) F(50) (“M”’l,dl), (ch” m, d)
RESUME = (“resume”),T(“agent”) (selfaa),T()

where f(z) = (deserialize(z), ..., deserializen(z))

1(%day”,1,d1), ..., 1(“day”, m, ds,), (“day”, 1, 61) o 1(%day”,m, erm),
U= ﬂ (“M”,1,01), ..., (“M”,m,vpm), |} (2.0) = f(d.7.me) ﬂ (“M”, 1, w1),...,(“M”, m, wn), I}
T(“self”, me) “done”)
where f(T,7,2) = (if (Vjz; # 2Ak = min{j|z; = “free”})then (f|$k Z’ylyk yk+1) else (T,7))
_ T(“day”, h,me), (“M”, h,n1), (n2)—f(n1) T(“day”, h, “free”),
WITHDRAW = ?E“self”,me),)as(k(nl > 0)) B 2=t ﬂ (c(cM”, hyn2), (“dmze”) B
where f(z)=(z —1)

MY), (MY my o), ()= F(V1,00,0m) T(“frozen”,i,s),
EXIT = ?(“done”) 1(“agent” : AGENT)

where f(z1,...,2m) = (serialize(z1,...,%m))

Table 2: PoliS specification of the system

frozen Agent, Participant
Participant \
| G|
’ push
frozen Agent; ;
Participant

|
| Cagent AGENT > |
\ h

push

Figure 3: Agents System Architecture

Tuples (“start”) are consumed by agents to serialize
themselves and start migrating (see rule START in
the Agent space).

The StartContext space includes only one program
tuple (“end” : EN D): the rule EN D associated to the
program tuple checks that all the potential attendees
will participate, that is the condition for the meeting
to take place (the function f.,q checks if the num-
ber of participants has reached a prefixed number and
outputs a date).

Each participant space can accept incoming
agents. It contains some program tuples to acti-
vate the following rules. The rule GETAG allows
the agent to enter in a space. It consumes the tu-
ples (“frozen” h,sp) and (“agent” : a) from the main
space and generates them locally. It also consumes
the (“accept”) tuple locally and generates the tuple
(“agent”), meaning that the frozen agent has been
entered in the local space.

The rule PUSH AG moves the agent out of a space.
Tt moves the tuples (“frozen”, h, sp) and (“agent”) to
the main space. Fig. 3 shows the actions of the two
rules.

Participants can extend the set of possible dates
using the rule FXTEND, to solve conflicts that
can arise. It simply decides to free a date remov-
ing the tuple (“day”,d, “exclusion”) and emitting
(“day”,d, “free”).

The Agent space contains some rules and an in-
variant rule to make the agent to freeze. The rule
START fires an agent to build a calendar (i.e. the
tuples (“M”,d;, 7)).

The rule AGENT generates (by tsc) a new agent
space inside the participant space (Fig. 4).

The first rule enabled in a new agent space, inside
a participant space, 18 RESUMFE: it is used to get
and deserialize the frozen state of the agent. It emits a

tuple (“go”) enabling rule PUSH AG for a next move.
A deserialized agent contains also rule U (Update) and
rule WITHDRAW . The rule U updates the agenda
of a participant using a policy that works as follows:
a participant takes the first free date and books ift,
if it exists; a participant cannot book more than one
date. Rule U also updates the internal agent table ',
represented by tuples like (“M”, d, v) where d is a day
and v is the number of potential attendees.

In Fig. 4 an updating is shown: the participant
agenda is updated booking day “1” with the name of
the meeting (i.e. the name of the agent): “Z”, and
increasing by 1 the counter of the meeting potential
attendees for day “1” in the agent table (that now is
2).
The rule WITHDRAW models a withdrawing
from a meeting by a participant. It consumes the tu-
ple (“day”, h,me) and emits a tuple (“day”, h, free)
in the Participant space. It also decreases the num-
ber of supposed participants to the meeting A (i.e. it
consumes the tuple (“M” h, n1) and emits the tuple
(“M”,h,,ns) where na = ny — 1.

The rule EXIT is an invariant rule (see section 2
for its semantics). Tt terminates the agent space, by
freezing the agent and moving it outside: this is per-
formed producing a tuple that represents the serialized
state (“frozen”, i, s) and a tuple (“agent” : AGENT)
for re-generating an Agent space.

Participant Participant

enda

exc T "
frozen",z,s

K

agent

Figure 4: Deserialized agent performing update

4 Architectural Analysis in PoliS

In a previous work [7] a mapping between PoliS
operational semantics and TLA (Temporal Logic of
Action) has been studied. This allowed us to use a
theorem prover for formal reasoning on PoliS specifi-
cations.

In this work instead we exploit a model checking
technique to perform architectural analysis on PoliS
specification documents.

1Each agent tries to establish a single meeting and the table
contains for each date the number of participants that would
accept that date

Model checking was introduced for hardware sys-
tem verification [8]. Recently it has been used also
for software systems, but we know only one previous
example in which it has been used with a coordina-
tion model [6].
analysis.

The aim of model checking is to find an assign-
ment (model) for system variables that satisfies some
formulae describing some system properties. Given an

We explore its use for architectural

operational specification of a software system, a model
checker builds a model and then it makes an exhaus-
tive checking of variable values. This method could
seem trivial and inefficient, but it is very powerful for
systems with finite state models.
4.1 A Temporal Logic and a Model
Checker for PoliS

In order to specify the architectural properties to
be proved, we introduce a temporal logic. The Po-
1iS Temporal Logic (PTL) is a CTL [8] dialect. The
main differences between PTL and CTL depend on
the definition of our model, that 1s based on multi-
sets (spaces): all formulae are evaluated in a context
(a space); we also assume that formulae without an ex-
plicit context are evaluated in the StartContext. An
atomic proposition atom is a tuple; we say that propo-
sition atom is true in a context C if it belongs to space
denoted by constant C. We have also added the clas-
sical logic operators and some temporal operators to
improve formulae representation and understanding.

In table 3 we sketch the PTL syntax.

- A pifcan be a temporal, a classic, a parenthesized
pif, an atom, a pitf can be universally or existen-
tially quantified inside range over some variables;

- a contert is a PTL formula that has a pattern
like: ptf € C (space C), ptf € * C (all C
spaces), ptf € & C (some C spaces), or ptf €
% C' (exactly one C space), these because in a
specification it can be more than one instance of
the same space;

- a temporal is a CTL formula: the canonical op-
erators A (for all paths) and E (at least a path
does exist) for path quantification are described
respectively by symbols * and &. X and U are
PTL symbols for CTL operators Next and Until,

- xOptfis defined as x(trueUptf): it means “for all
paths ptf will be eventually true”;

- &Opifis defined as &(trueUptf): it means “for at
least a path pif will be eventually true”;

- *Optfis defined as =& = pif it means that “for
all paths ptf is always true”;

- &Optfis defined as =xO— pifs it means that “for
at least a path pif is always true”;

ptf

range

context

temporal

classic

atom

context |
temporal |
classic |

(ptf) |

atom |

Vi range (ptf) |
3 i range (ptf)
cl

€ [min,max]
ptf € C |

ptf € xC |
ptf € &C |
ptf € %C
*Xptf |
&Xptf |
*(ptf Uptf) |
&(ptf Uptf) |
*Optf |
&Optf |
*Optf |
&Optf |

ptf ~ptf

ptf Aptf |

ptf Vptf |
—ptf |

ptf =ptf
tuple

Table 3: PTL syntax

- ptf~sptf’is defined as x0O(ptf = *Optf’): it means
that “for all paths it is always true that ptf implies
that for al least a path ptf’ will be eventually true”;

- a classic1s a PTL formula with classical logic op-
erators;

- an atfom is simply a tuple.

PoliMC is a model checker for PoliS. The model
checker gets two inputs: a system specification written
in PoliS, and a set of properties to be verified written
in PTL. PoliMC first parses the PoliS specification
and builds up a model for it. Starting from the SOS
formal operational semantics of PoliS we also defined a
transition system. The graph obtained from unfolding
a transition system of a real system is something quite
similar to our model of the system.

The main difference between SOS unfolding and our
model is that in SOS a unique monolithic graph is built
to represent the system, while we have a graph for each
space definition. Nodes show how spaces evolve and
edges are labelled with tuples produced/consumed and
tested in the parent spaces. PoliMC works recursively
starting from the more nested spaces, going up to the
root space (StartContext), using the information col-
lected during the visit.

After having built the graph, the checker parses
PTL formulae and builds syntax trees including only
CTL operators, finally PoliMC can start performing
model checking. Tts algorithm follows the guidelines
given in [8]: the checking is performed recursively
starting from simpler sub-formulae (which are deeper
in a syntactic tree), a difference to remark is that each
formula is checked inside its context, that is the model
checker make the checks using the graph of the space
(context).

4.2 Analysis of the Meeting Scheduler
System

We have used PoliMC to analyse some liveness
properties. For instance, we would like to prove that
an agent will be able to establish a meeting date, or
we would like to prove properties on the migration of
an agent inside/outside the components.

Formally we can write:

FEnd =
(Vagent(Iday((“end”, day, agent) € StartContext)))

Move = (((“done”) € &Agent) € & Participant)

E'nd states that each agent finds a date for its meet-
ing (i.e. all meetings are arranged).

Move states that an agent is inside a participant
space and it has performed some actions.

If we study a configuration where the number of
meetings to be arranged (i.e. the number of agents),
is smaller than the available days. We would like to
verify the following:

*OxOEnd (1)

That is: infinitely often EFnd will be valid. However
PoliMC shows that (1) is false. To understand this we
can think about a scenario where agents are not able to
agree, choosing the same date and then withdrawing
it. By the way, PoliMC also verifies the falsity of:

*0OxO M ove (2)

Property (2) states that infinitely often Move is
valid (i.e. agents can move indefinitely). Falsity of
(2) guarantees that this cannot happen, so we have
a scenario where all meeting are arranged. PoliMC
can verify that this property 1s not true if we take
a number of meeting (agents) greater than available
days.

Instead, we can verify the following formula:

*OxO(EndV M ove) (3)

That is, infinitely often some agents move or all
meetings are arranged. This shows that the system
cannot deadlock.

Properties (1) and (2) above cannot help us to guar-
antee progress, but we can verify:

*0&<C End (4)

Tt states that from all states of all paths (always)
we can find at least one path where Fnd is eventually
valid. Formula (4) is quite different from (1). While
(1) states that in all cases meeting will be arranged,
(4) states that in all case meeting could be arranged.
In order to ensure that all meeting will be arranged
we need a fairness condition like:

*0&O End=+0xO End (5)

If from all states of all paths we can find at least
one path in which E'nd is eventually valid then Fnd is
valid infinitely often. In other words if we are always
in condition to arrange all meetings, then this will
eventually happen.

Using (4) in conjunction with (5) leads to the ver-
ification of (1), (i.e. the system infinitely often comes
to End, but given that End is true in states without
exit transitions we can state that system always comes
to End).

We remark that if we remove some rules used
to resolve conflicts (like rule WITHDRAW or rule
EXTEND), (4) is not verified, that is, there are some
states where no path brings to End. In other words,
sometimes a system can reach a state from which 1t is
impossible to arrange some meetings, and some agents
move indefinitely.

5 Related Work and Conclusions

We have shown how we use PoliS to specify and
analyse a system including mobile agents. The idea
consists of having a coordination model able to ex-
press a dynamic topology of spaces (multi-sets) which
are active themselves, and can move. We analyse Po-
iS documents with a model checker able to prove or
disprove some formal properties of the system being
specified.

PoliS is based on multiset rewriting like the CHAM.
A CHAM specification of code mobility would be quite
complex because would require some coding of pro-
grams and workspaces using the airlock and membrane
constructs, whose properties are not simple. We have
shown that the PoliS notation allows the specification
of code mobility and agent migration in a natural way.

There is a growing interest in formal methods for
specifying logical (code) or physical (user) mobility.
For instance, in [19, 17] Mobile Unity has been used to
specify mobility of code: the idea is to extend Unity
with features for describing localities and agent mi-
gration. The Mobile Unity notation provides a logic
framework to perform analysis, however we have not
seen any analysis (either automatic or manual) ap-
plied on the specification of systems including mobile
agents.

We are currently interested in developing PoliS in
several directions.

A current line of research investiogates how Po-
liS compares with other formalisms for mobility, like
the Join Calculus [11] and the Ambient Calculus [4].
Moreover, we are also trying to specify a number of
different mobility paradigms in PoliS.

Security issues are an important problem in sys-
tems supporting mobile agents. In [9] a typed process
calculi for multiple tuple spaces that also addresses se-
curity aspects is presented. We could use a similar ap-
proach for PoliS. Moreover, we remark that PoliS rules
cannot be changed dynamically because rules are en-
coded in the specification: a program tuple (“r” : R)
refers to a given specification of R. A program tuple
(“r” : R) can be consumed but no new tuple con-
taining non-specified “programs” can be introduced.
These features simplify the task of extending model
checking to deal with security issues.

We are investigating if the PoliS model could fit for
analysis of security issues; we are especially interested
in studying if we can use the model checker to verify
security properties on a system.

Another feature which is missing is the ability to
deal with typed data and agents [18]. Another activ-
ity consists of using PoliS as coordination model of a
platform for programming mobile agents.

References
[1] R. Allen and D. Garlan. A Formal Basis for Ar-
chitectural Connection. ACM Transactions on
Software Engineering and Methodology, 6(3):213—
249, June 1997.

[2] J. Andreoli, P. Ciancarini, and R. Pareschi. Inter-
action Abstract Machines. In G. Agha, P. Weg-
ner, and A. Yonezawa, editors, Trends in Object-
Based Concurrent Computing, pages 257-280.
MIT Press, Cambridge, MA, 1993.

[3] G. Berry and G. Boudol. The Chemical Abstract
Machine. Theoretical Computer Science, 96:217—
248, 1992.

[4] L. Cardelli. Mobile Ambient Synchronization.
Technical Report SRC Tech Note 1997-013, Dig-
ital, July 1997.

[6] N. Carriero and D. Gelernter. Coordination Lan-
guages and Their Significance. Communications

of the ACM, 35(2):97-107, February 1992.

[6] X. Chen, P. Inverardi, and C. Montangero. ESP-
MC: An Experiment in the Use of Verification
Tools. In K. Kanchanasut and J. Levy, editors,
Proc. Asian Computing Science Conference, vol-
ume 1023 of Lecture Notes in Computer Science,
pages 396-406, Thailand, Dec 1995. Springer-
Verlag, Berlin.

[7] P. Ciancarini, M. Mazza, and L. Pazzaglia. A
Logic for a Coordination Model with Multi-
ple Spaces. Science of Computer Programming,

31(2/3):(to appear), July 1998.
[8] E. Clarke, E. Emerson, and A. Sistla. Au-

tomatic Verification of Finite-State Concurrent
Systems Using Temporal Logic Specifications.
ACM Transactions on Programming Languages

and Systems, 8(2):244-263, April 1986.

[9] R. DeNicola, G. Ferrari, and R. Pugliese. Coordi-
nating mobile agents via blackboards and access
rights. In D. Garlan and D. LeMetayer, editors,
Proc. 2nd Int. Conf. on Coordination Models and

[14]

[18]

Languages, volume 1282 of Lecture Notes in Com-
puter Science, pages 220-237, Berlin, Germany,
September 1997. Springer-Verlag, Berlin.

G. DiMarzoSerugendo, M. Muhugusa, and
C. Tschudin. An Survey of Theories for Mobile
Agents. Web Journal, (to appear), 1998.

C. Fournet, G. Gonthier, J. Levy, L. Maranget,
and D. Remy. A Calculus of Mobile Agents. In
U. Montanari and V. Sassone, editors, Proc. 7th
Int. Conf. on Concurrency Theory (CONCUR),
volume 1119 of Lecture Notes in Computer Sci-
ence, pages 406-421, Pisa, ITtaly, August 1996.
Springer-Verlag, Berlin.

D. Gelernter. Generative Communication in
Linda. ACM Transactions on Programming Lan-

guages and Systems, 7(1):80-112, 1985.

D. Gelernter. Multiple Tuple Spaces in Linda.
In E. Odijk, M. Rem, and J. Syre, editors,
Proc. Conf. on Parallel Architectures and Lan-
guages Furope (PARLE 89), volume 365 of Lec-
ture Notes in Computer Science, pages 20-27.
Springer-Verlag, Berlin, 1989.

P. Inverardi and A. Wolf. Formal Specification
and Analysis of Software Architectures Using the
Chemical Abstract Machine Model. IEEFE Trans-
actions on Software Engineering, 21(4):373-386,
April 1995.

D. Lea. Concurrent Programming in Java. Design
Principles and Patterns. Addison-Wesley, 1997.

J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying Distributed Software Architectures. In
W. Schafer and P. Botella, editors, Proc. 5th Fu-
ropean Software Engineering Conf. (ESEC 95),
volume 989 of Lecture Notes in Computer Sci-
ence, pages 137-153, Sitges, Spain, September
1995. Springer-Verlag, Berlin.

G. Picco, G. Roman, and P. McCann. Expressing
Code Mobility in Mobile Unity. In M. Jazayeri
and H. Schauer, editors, Proc. 6th Furopean Soft-
ware Fng. Conf. (ESEC 97), volume 1301 of Lec-
ture Notes in Computer Science, pages 500-518.
Springer-Verlag, Berlin, 1997.

J. Riely and M. Hennessy. A Typed Language
for Distributed Mobile Processes. In Proc. 25th
ACM Symposium on Principles of Programming
Languages (POPL), 1998.

[19] G. Roman, P. McCann, and J. Plun. Mobile

UNITY: Reasoning and Specification in Mobile
Computing. ACM Transactions on Software En-
gineering and Methodology, 6(3):250-282, June
1997.

[20] T. Thorn. Programming Languages for Mobile

Code. ACM Computing Surveys, 29(3):213-239,
1997.

