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Abstract

Disorders of mitochondrial fat metabolism lead to sudden death in infants and children. Although survival is possible, the
underlying molecular mechanisms which enable this outcome have not yet been clearly identified. Here we describe a
conserved genetic network linking disorders of mitochondrial fat metabolism in mice to mechanisms of fat storage and
survival in Caenorhabditis elegans (C. elegans). We have previously documented a mouse model of mitochondrial very-long
chain acyl-CoA dehydrogenase (VLCAD) deficiency.[1] We originally reported that the mice survived birth, but, upon
exposure to cold and fasting stresses, these mice developed cardiac dysfunction, which greatly reduced survival. We used
cDNA microarrays[2,3,4] to outline the induction of several markers of lipid metabolism in the heart at birth in surviving
mice. We hypothesized that the induction of fat metabolism genes in the heart at birth is part of a regulatory feedback
circuit that plays a critical role in survival.[1] The present study uses a dual approach employing both C57BL/6 mice and the
nematode, C. elegans, to focus on TMEM135, a conserved protein which we have found to be upregulated 4.3 (60.14)-fold
in VLCAD-deficient mice at birth. Our studies have demonstrated that TMEM135 is highly expressed in mitochondria and in
fat-loaded tissues in the mouse. Further, when fasting and cold stresses were introduced to mice, we observed 3.25 (60.03)-
and 8.2 (60.31)- fold increases in TMEM135 expression in the heart, respectively. Additionally, we found that deletion of the
tmem135 orthologue in C. elegans caused a 41.8% (62.8%) reduction in fat stores, a reduction in mitochondrial action
potential and decreased longevity of the worm. In stark contrast, C. elegans transgenic animals overexpressing TMEM-135
exhibited increased longevity upon exposure to cold stress. Based on these results, we propose that TMEM135 integrates
biological processes involving fat metabolism and energy expenditure in both the worm (invertebrates) and in mammalian
organisms. The data obtained from our experiments suggest that TMEM135 is part of a regulatory circuit that plays a critical
role in the survival of VLCAD-deficient mice and perhaps in other mitochondrial genetic defects of fat metabolism as well.
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Introduction

The very long-chain acyl-CoA dehydrogenase (VLCAD) enzyme

catalyzes the first step in the mitochondrial fatty acid b-oxidation

spiral. Fatty acids are the preferred substrates for ATP generation

in the heart, skeletal muscles and high energy requiring tissues. It is

well documented that mutation in the VLCAD gene leads to

cardiomyopathy, skeletal myopathy, encephalopathy and sudden

death in children and young adults.[5,6,7,8,9] Our previously

published data on VLCAD-deficient mice showed that when the

fasting and cold stresses were introduced, these animals exhibited

decreased survival, recapitulating the clinical phenotypes of

children with VLCAD deficiency.[10] In a previous study[1], we

documented that, at birth, the surviving mice showed marked

upregulation of both the peroxisome proliferator-activated recep-

torc (PPARc) coactivator-1 alpha (PGC-1a), which is a critical

regulator of mitochondrial biogenesis, as well as acyl-CoA synthase,

which is a facilitator of sarcolemmal fatty acid uptake.[1] The

induction of these genes at birth further supported our hypothesis

that the induction of these fat metabolism genes in the heart at birth

is part of a feedback-regulated circuit that plays a critical role in

survival in VLCAD deficiency. Another protein, TMEM135,

which had not been previously characterized, was also found to be

elevated in VLCAD-deficient mice on the first day of life. In this

report, we sought to elucidate the role of TMEM135 in this

hypothesized survival circuit. TMEM135 was first identified in a

lung adenocarcinoma cell line cDNA library,[11] but a recently

published paper suggests that TMEM135 might be a critical gene

for adipogenesis and osteoblastogenesis.[12] Due to the fact that

TMEM135 was found to be phylogenetically highly conserved, we

hypothesized that the regulatory feedback circuit to which it

belongs, as well as its function, might be equally conserved.
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Recent papers have proposed the use of the nematode,

Caenorhabditis elegans (C. elegans), for studies of fat metabolism,

obesity and longevity.[13] Genes and pathways involved in

coordinating the transport, sorting and storage of lipids, as well

as fat metabolism, are well conserved in the worm and are critical

for its long-term survival. Therefore, we decided to investigate the

role of TMEM135 concurrently in the mouse and in the C. elegans

model.

In this study, we also set out to replicate in C. elegans the

metabolic model established in the mouse. We assessed the tissue

distribution and sub-cellular localization of TMEM135 in the

mouse and in the worm. We then used a C. elegans model to test the

role of TMEM135 in modulating fat stores, longevity and cold

sensitivity. This is the first study to demonstrate an association of

TMEM135 with mitochondrial fat metabolism, and the first

published data on a possible newly identified role for TMEM135

in enhancing fat storage, fat sorting and mitochondrial function in

mammalian organisms and in the nematode.

With a focus on potential target molecules linking TMEM135 to

a genetic network involved in fat biology and survival in the

mouse, we also sought to determine if there exists a link between

TMEM135 and insulin signaling within this genetic network. We

deemed it particularly relevant to examine this possibility because

it has been documented that insulin signaling plays a critical role in

regulating fat stores and enhancing longevity in C. ele-

gans.[14,15,16,17,18,19,20,21] Given the serious human out-

comes which result from VLCAD dehydrogenase enzyme

deficiency, namely cardiac pathologies and sudden death, our

studies may provide new insights into the molecular mechanisms

that place newborn infants with these defects at a greater risk for

sudden death.[22] There is a high degree of molecular

heterogeneity in disease outcome and prognosis.[5] However, it

remains to be determined whether molecular elements related to

this putative feedback regulatory circuit account for the clinical

spectrum in patients with identical genetic mutations. It is also

uncertain whether the changes we have identified in protein

expression patterns in the mice at birth[1] bear relevance to

human patients. Nevertheless, the results of our studies definitively

point to a critical role for TMEM135 in the biology of lipid storage

and lipid utilization in both the mouse and the worm.

Materials and Methods

VLCAD knockout mice
Ethics Statement. VLCAD-deficient mice were generated as

previously described.[1] Experiments involving these mice were

undertaken in accordance with the guidelines and regulations set

forth by the Animal Welfare Act, and the protocols were approved

by the Vanderbilt University Institutional Animal Care and Use

Committee (Approval ID numbers: M/00/535, M/03/070, and

M/03/116).

RNA extraction and northern blots
RNA extraction and northern blots were performed using

mouse heart tissue, as previously described.[1] RNA (10 mg per

sample lane) was resolved by electrophoresis in a formaldehyde-

agarose gel and then transferred to a nitrocellulose membrane. We

used 1 kb of the amino-terminal coding sequence of TMEM135 to

generate [a- 32P] dCTP-labeled Random-Primer probes, employ-

ing the Prime-It II kit (Stratagene, La Jolla, CA).

Protein isolation and immunoblotting
In the mouse, tissues were harvested representing the three

VLCAD genotypes (+/+, +/2, and 2/2) and were snap-frozen in

liquid nitrogen, as previously described.[10] Frozen tissue stored at

270uC was used to assess the tissue distribution of TMEM135 in

the heart, skeletal muscles, liver and brain of two-month-old mice.

Western blot analysis was performed as previously described.[10]

The expression of TMEM135 in the mouse was assessed with

peptide-specific rabbit polyclonal antibodies against TMEM135

(1:1000) (generated in immunized rabbits by Invitrogen antibody

services, Carlsbad, CA). In C. elegans, the expression levels of DAF-

16 (Santa Cruz Biotechnologies –sc 33738, 1:5000), SKN-1/

NRF2 (Abcam, ab 31163, 1:5000), SOD3 (sc 67088, 1:10000),

AKT (sc 8312, 1:1000), VLCAD (Strauss laboratory, rabbit

polyclonal antibody) as previously published,[1] PGC-1a (sc

13067, 1:1000), b- actin (sigma A 1978, 1:10000) and ACS (from

Dr. Jean Schaffer, Washington University, St. Louis, MO), as

previously published [1] were assessed using rabbit polyclonal

antibodies. Luminol-based detection was performed using horse-

radish peroxidase-conjugated anti-rabbit or anti-mouse IgG and

the chemilunescence reagent, ECL (Amersham Pharmacia

Biotech UK). Results are representative of at least three

independent experiments.

Sub-cellular fractionation
Sub-cellular fractionation of mouse hearts was performed as

previously described.11 Hearts were harvested from euthanized

animals in conformity with humane animal codes. Hearts were

rinsed in phosphate-buffered saline (PBS), kept in ice-chilled PBS

and then transported to a cold room (4uC).[23] To minimize

protein degradation, initial experiments were performed at 4uC.

Mitochondrial fractions were obtained from pellets saved by

subsequent differential centrifugation. Sub-cellular organelles were

then re-suspended in 200 ml of re-suspension buffer and snap-

frozen in liquid nitrogen until use.

Protein multiple alignment
Multiple-alignment of TMEM135 orthologues was generated

with Clustal X 2.0.10 using default alignment parameters (Gonnet

Matrix series) loaded with the following protein sequences retrieved

from NCBI: NP_082619.3 for TMEM135 from Mus musculus,

NP_075069.3 for TMEM135 from Homo sapiens, NP_001013918.1

for TMEM135 from Rattus norvegicus, NP_001082887.1 for

TMEM135 from Danio rerio, NP_001085541.1 for TMEM135 from

Xenopus laevi, NP_649803.1, NP_731251.1, NP_731250.1 for

TMEM135-like protein from Drosophila melanogaster, and NP_

508800.2 for TMEM-135 from Caenorhabditis elegans.

K02G10.3/tmem-135 cloning
The full tmem-135 sequence from 850 bp upstream of the start

codon down to the last codon was amplified by PCR with the

TaKaRa LA Taq polymerase (Takara Bio Inc.) in an Eppendorf II

thermocycler (Eppendorf) using the following primers: forward

primer: 59- tataggatccgaacaggcaattatggaagacc-39, reverse primer:

59- tataggtaccgcatattcaacaagtggcatgtaaagc -39. It was then cloned

into pPD95.75 (Andrew Fire Laboratory, Addgene Kit, please see

http://www.addgene.org/docs/fire/andrew/datasheets.pdf) in

frame with the green fluorescent protein (GFP) between the

BamHI and KpnI restriction sites to generate the plasmid

pMA0002.

Handling of the worms and generation of C. elegans
transgenic strains

C. elegans strains were handled and maintained at 20uC as

previously described.[24] The RB1443 strain carrying the 1.1 kb

deletion ok1646, which impairs the K02G10.3 expression product,
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was obtained from the C. elegans consortium. The wild-type Bristol

N2 strain and the BC15594 strain[25] expressing the GFP under the

promoter of K02G10.3 (k02g10.3::GFP) were obtained from the

Caenorhabditis Genetic Centre (CGC, Minnesota). The original

RB1443 was outcrossed 4 times with N2 to remove undesirable

genetic alterations resulting from ethyl-methanesulfonate (EMS)

mutagenesis used to generate the original strain. We henceforth refer

to the K02G10.3 expression product as TMEM-135, which stands

for TMEM135-like protein. Homozygous mutant RB1443 animals

will be further designated as tmem-135(ok1646) or tmem (2/2).

We also generated eight independent full-length K02G10.3::

GFP-expressing strains termed MAB123 (mjaEx086[K02G10.3::

GFP; rol-6(su1006)]) to MAB130 (mjaEx093[K02G10.3::GFP; rol-

6(su1006)]) by co-injection in young adult gonads pMA0002 at

25 ng/mL and pRF4 at 100 ng/mL. Single worm PCR was

performed according to the procedures set forth by Barstead et al.

(1991).[26] Fluorescent images for GFP were obtained by confocal

microscopy.

Life-span evaluation
For life-span evaluation, 20 worms from each group were

transferred to NGM/FUDR plates, placed at two different

temperatures (15 and 20uC) and scored every day. Delay of egg-

laying in C. elegans hermaphrodites lead to accumulation of mixed-

stage developing embryos in the uterus. These embryos eventually

hatch and kill their parent. To prevent this undesirable effectin our

lifespan assay, we used FUDR treatment of young adult worms to

render them sterile. [27] These studies were performed for three

independent cohorts, and the results are representative of triplicate

experiments.

Nile red staining and mitochondrial action potential
imaging

The vital dye, Nile Red (5 H-benzo [a] phenoxazine-5-one,

9diethylamino), was used to visualize fat droplets in live worms as

described in Greenspan et al.[28] Mitochondrial localization and

distribution were assessed using MitoTracker Red (M22425

Invitrogen, Carlsberg, CA) according to procedures outlined as

follows. Ten mM of MitoTracker Red in DMSO where diluted in

1 mL of M9 buffer (22 mM KH2PO4, 22 mM Na2HPO4, 85 mM

NaCl, 1 mM MgSO4) in which synchronous L1 or young adult

worms were incubated for 2 hours in the dark. Worms were then

washed with M9 buffer in order to remove excess dye. Worms

were subsequently transferred to NGM/OP50 plates for 2 hours

to clear the intestinal tract of residual dye, after which they were

paralyzed with a mixture of 0.01% levamisole/0.1% tricaine and

mounted on 4% agarose pads for imaging. Fluorescence

observations were performed with an epifluorescence microscope

(Nikon Eclipse 80i, Nikon) equipped with a Lambda LS Xenon

lamp (Sutter Instrument Company) and Nikon Plan Fluor 20x dry

and Nikon Plan Apo 6061.3 oil objectives. The microscope was

coupled to a black-and-white camera (DS-Qi1Mc; Nikon)

operated by the Nikon Elements AR3.0 software (NES AR3.0).

Confocal images were acquired with a Zeiss LSM510 confocal

microscope (Carl Zeiss Microimaging Inc.) equipped with a Plan-

Apochromat 63x and a Plan-Neofluar 1006oil objectives with 1.4

and 1.3 apertures.

Cold exposure
L1 worms were mounted on agarose pads, covered with cover-

slips and left for 1 hour at either 4uC or at 20uC. Then, worms

were brought to room temperature for 30 minutes prior to

imaging. For each condition approximately 30 worms were

observed under an epifluorescence microscope, and 5 were

imaged by confocal microscopy.

Data analysis and statistics
Data were plotted as means 6 SEM. For GFP-fluorescence

integrated intensity, northern and western blot densitometry

analysis, two-tailed T-tests were used for single comparisons,

while one-way analysis of variance (ANOVA) was used for

multiple comparisons. Multiple comparisons were performed

using the SPSS software package (SPSS). Differences were deemed

significant for p,0.05. By convention, we noted *: p,0.05,

**: p,0.01, ***: p,0.001.

Results

TMEM135 is overexpressed in the heart of VLCAD-
deficient mice

We previously reported on a mouse model of VLCAD

deficiency[1,10,23] that exhibited lipid accumulation in the heart

as well as the marked induction of several indictors of lipid

metabolism at birth, including PPARa, adipophilin and acyl-CoA

synthase prior to any microscopic evidence of lipid droplets in the

heart.[1] We performed cDNA microarrays of the VLCAD-

deficient hearts[2,3,4], comparing one-day-old VLCAD-deficient

hearts to wild-type controls. Detail results of the microarray studies

are unpublished. These studies provided us with a previously

uncharacterized expressed sequence tag (EST) that was markedly

induced in hearts of VLCAD-deficient mice at birth. Results

obtained from northern blot analysis showed that this novel EST

was upregulated 4.3 (60.14)-fold in hearts of VLCAD2/2 mice

compared with those of VLCAD+/+ control mice (p,0.001). This

EST was also upregulated 1.5-fold in the VLCAD2/2 mice

compared with VLCAD+/2 mice (Fig. 1A and 1B). A sequence

BLAST of this EST produced a full-length mouse sequence,

including the 59 and 39 untranslated regions, which were found in

the NCBI database. This EST corresponded to the uncharacter-

ized gene, tmem135. Computer-generated analysis in protein

databases revealed that this TMEM135 and its orthologues are

membrane proteins, exhibiting 5 to 7 transmembrane domains,

with multiple putative PKC phosphorylation and tyrosine kinase

sites. The vertebrate sequences contain an epitope with isochemi-

cal homology to the 21 aa endothelin epitope and a putative

nuclear hormone receptor motif ‘‘IRNLDDEL’’.

TMEM135 is induced in mice with mitochondrial fatty
acid b-oxidation enzyme defects

To further characterize this novel protein, rabbit polyclonal

antibodies were raised against the putative endothelin domain and

against the carboxy terminal. We discovered, by western blot

analysis, that the epitope was abundantly expressed in high

energy-requiring tissues, such as the heart and the skeletal muscles

of VLCAD +/2 and VLCAD 2/2 mice (Fig. 1C and 1D).

Subsequently, we tested the long-chain acyl-CoA dehydrogenase-

deficient (LCAD) mouse hearts, which exhibit another form of

fatty acid b-oxidation enzyme deficiency. TMEM135 was also

found to be elevated in LCAD mutants (data not shown.) Both

models, the VLCAD and LCAD mice, demonstrate an inability to

metabolize very long- (C14–C18) and long- chain (C12–C14) fatty

acids. [29,30,31] These mice are also sensitive to the cold and

represent mouse models of human fatty acid b-oxidation defects.

Based on our experimental data, we posited that a link exists

between fatty acid metabolism and TMEM135 function in

mitochondrial fatty acid b-oxidation.

TMEM135 and Worm Fat Stores
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TMEM135 is highly conserved across animal species
Our computer search of the NCBI database revealed that the

TMEM135 sequence is highly conserved across species from C.

elegans to humans, as shown by protein multiple alignments (Fig. 2).

The search further disclosed the existence of one short orthologue

in each vertebrate species (data not shown), 3 full-length

orthologues in Drosophila and a unique orthologue in C. elegans.

As this protein was heretofore unnamed, we are labeling the C.

elegans orthologue, TMEM-135 (TMEM135-like protein).

TMEM-135 is ubiquitous and expressed in dot-like
cytoplasmic organelles throughout development in C.
elegans

Given that this protein was highly conserved across species

(Fig. 2), we used C. elegans to further investigate its role in the

hypothesized metabolic feedback mechanism that regulates

survival under stress. We obtained a promoter::GFP-expressing

strain and cloned the full-length open reading frame in phase with

GFP to study the TMEM-135 expression pattern and sub-cellular

localization. In the tmem-135 promoter::GFP-expressing strain, as

well as in the eight independent TMEM-135::GFP-expressing

strains, we consistently observed an ubiquitous expression from the

pretzel embryo to the adult stage (Fig. 3A–C), despite mozaicism

due to the extra-chromosomal array. More specifically, tmem-135

expression was more strongly expressed in the lower intestine

(Fig. 3A and 3B) and in the pharynx (Fig. 3A and 3C). TMEM-

135::GFP showed a high level of expression throughout the entire

length of the intestine, as well as in all epithelia (Fig. 3D–F). The

sub-cellular localization of this protein appeared to correspond to

dot-like cytoplasmic structures of 0.2 to 1 micron in L1 worms.

TMEM135 expression shows an association with fat
droplets and mitochondria in mice and worms

We next determined the compartment to which the TMEM135

protein localizes. We first used sub-cellular fractionation to assess

the sub-cellular localization of TMEM135 in the mouse heart.

Our results revealed a strong enrichment of TMEM135 in the

mitochondrial and nuclear fractions (Fig. 4A and 4B). Immuno-

transmission-electron microscopy (ITEM) confirmed the mito-

chondrial localization and revealed an even stronger staining

around fat droplets and in mitochondria surrounding those in the

mouse heart (Fig. 4C). Some nuclear staining was observed (data

not shown), but with much less consistency, a result possibly due to

non-specific staining or because the putative nuclear localization

identified may be highly regulated (i.e., seen under specific

conditions). We next tested to determine whether, in C. elegans

expressing TMEM-135::GFP, stained organelles would corre-

spond to mitochondria or fat droplets. We used the lipophilic dyes,

Nile Red and Mitotracker Red, to assess the co-localization of

TMEM-135 with fat droplets or mitochondria, respectively. We

observed no co-localization of TMEM-135::GFP and Mito-

Tracker Red (mitochondrial) (Fig. 4D) in the worm, whereas

TMEM-135::GFP and Nile Red displayed very strong co-

localization (Fig. 4E). Together, the mouse and worm data

provide strong evidence that the TMEM135 protein is associated

with fat droplets, supporting our hypothesis that TMEM135 plays

a role in fat metabolism.

TMEM135 is upregulated upon fasting and cold exposure
in worms and in mice

Based on our findings that TMEM135 is highly expressed in

VLCAD mice at birth (when lipid stores are strongly mobilized),

and given a potential role for TMEM135 in fatty acid oxidation,

we hypothesized that TMEM135 protein levels would be

upregulated upon physiological stresses such as cold exposure

and fasting (conditions in which fat stores and fat utilization are

required). Thus, we introduced these stressors as functional tests to

demonstrate the role of TMEM135 in fat metabolism. We found

that TMEM135::GFP was upregulated upon 1 hour of cold

exposure in L1 worms (Fig 5A and 5B). We observed a 2 fold

increase in the average integrated-fluorescence signal upon cold

exposure in the worm (arbitrary unit of 100614 in control animals

vs 21365.5 in cold-exposed worms, p,0.01). Moreover, although

TMEM135 expression was not highly expressed in normal mouse

heart tissue, TMEM135 was upregulated 3.25 (60.03)-fold upon

Figure 1. RNA and protein expression of TMEM135 in mouse tissues. (A) Northern blot analysis of TMEM135 transcripts in newborn hearts of
mice deficient in the very long chain ACAD gene. (B) B is representative of quantification by densitometry of Northern blot in A. (C) Protein
expression of TMEM135 in different mouse tissues. (D) Quantification by densitometry of western blots in C. N = 3 per group for wild-type control
mice labeled (+/+) for VLCAD +/+, heterozygous mice (+/2) for VLCAD+/2, and null mutant mice (2/2) for VLCAD2/2.
doi:10.1371/journal.pone.0014228.g001
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fasting (p,0.05) and 8.2 (60.31)-fold upon cold exposure

(p,0.02) (Fig. 5C and 5D). These results confirm that TMEM135

plays a conserved role in stress conditions that require fat

mobilization.

Loss of TMEM-135 leads to reduction of fat stores in the
worm

Next, we hypothesized that TMEM135 may be involved in the

modulation of fat stores in the worm. To test this hypothesis, we

obtained the C. elegans deletion mutant, tmem135(ok1646). Then,

using Nile Red staining, we compared fat stores in wild-type,

TMEM-135::GFP-overexpressing and tmem135(ok1646) mutant

worms and found that the tmem135(ok1646) mutants exhibited

significantly weaker Nile Red staining compared with the other

strains. We observed a 41.8% (62.8%) reduction in Nile Red

staining in tmem135(ok1646) animals compared with N2 controls

(p,0.0002) (Fig. 6A and 6B). When compared with wild-type

controls, TMEM-135::GFP-expressing worms did not show any

significant difference in Nile Red staining. Additionally, pharyn-

geal pumping did not differ among the three genotypes (data not

shown), suggesting that the reduction in fat stores in tme-

m135(ok1646) worms was not due to reduced feeding. Hence,

these results support a direct role for TMEM-135 in the regulation

of fat stores in the worm.

TMEM-135 deletion reduces worm longevity while
overexpression increases it at 15uC

Based on the assumption that fat stores are regulated by

TMEM135, we hypothesized that changes in TMEM135 levels in

worms may affect their longevity. To test this hypothesis, we

measured differences in longevity among the three strains (wild-

type controls, tmem135 (ok1646) mutant and TMEM135::GFP-

overexpressing worms) at different temperatures. Longevity

experiments revealed that the tmem135 (ok1646) mutants lived for

a significantly shorter time than wild-type worms, both at 20uC
(normal growth conditions) and 15uC (low temperature), while

TMEM135::GFP-overexpressing worms lived for a significantly

longer time than wild-type worms at 15uC (Fig. 6C and 6D). The

experiments conducted at 15uC showed that, in growth conditions

requiring increased fat stores (low temperature), reduced

TMEM135 expression was associated with a shorter life-span,

while increased TMEM135 expression led to an increased life-

span. These results strongly suggest that TMEM135 plays a

pivotal role in the network that regulates the fat stores required for

survival under cold and normal conditions in the worm.

TMEM135 deletion is associated with reduced
mitochondrial potential in the worm

To better characterize survival differences in the cold, we used the

mitochondrial potential sensing ability of the Mitotracker Red

staining and compared fluorescence in the three C. elegans genotypes.

We found a 40.7% (68.0%) reduction in Red fluorescence in

tmem135 (ok1646) animals compared with wild type-controls (p,0.02;

Fig. 6E). These results indicate that mitochondrial activity is

impaired in tmem135 (ok1646) worms, likely contributing to cold

sensitivity in the tmem1352/2 animals. However, changes in

mitochondrial activity cannot explain increased longevity in the cold

for TMEM135::GFP mutants, as we did not observe a significant

difference in the amount of Mitotracker Red fluorescence between

TMEM-135::GFP-overexpressing animals and N2 controls.

Figure 2. Comparison of sequence homology analysis of TMEM135 in different species. TMEM135 is well conserved across species.
doi:10.1371/journal.pone.0014228.g002
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TMEM-135 modulates FoxO/DAF16 expression levels in C.
elegans

FoxO/DAF-16 is well known as an important requirement for

ensuring normal longevity in the worm.[15,16] Given the impact

of TMEM-135 deletion on the worm lifespan, we wondered if the

loss of TMEM-135 expression in tmem-135(ok1646) mutants would

be associated with a reduction of DAF-16 expression. Indeed,

western blot analysis showed a significant 60.7% (63.3%)

reduction in FoxO/DAF-16 expression in tmem-135(ok1646)

worms compared with wild-type controls (p,0.006) (Fig. 6F).

Furthermore, TMEM-135::GFP overexpression led to a 2.0-fold

up-regulation of FoxO/DAF-16 levels compared with wild-type

controls (p,0.002) (Fig. 6F). Based on these results, we have

concluded that TMEM135 is normally involved directly or

indirectly in FoxO/DAF-16/regulation. Additional studies are

needed to test whether DAF-16 down-regulation accounts for the

reduction in fat stores, mitochondrial membrane potential and life-

span in tmem135 (ok1646) worms.

TMEM135 deletion does not lead to protein expression
changes in the Nrf-2/SKN-1 antioxidant pathway

Longevity regulation in the worm implicates the conserved

Insulin/IGF-1 pathway which inhibits the two major longevity-

promoting transcription factors, FoxO/DAF-16 and Nrf2/SKN-1.

Since TMEM-135 expression was found to affect DAF-16

expression levels (Fig. 6F), we hypothesized that it could similarly

impact Nrf2/SKN-1 expression. To test this hypothesis, we

sought to determine whether tmem135(ok1646) mutant and

TMEM-135::GFP-overexpressing worms would exhibit an alter-

ation in Nrf2/SKN-1 levels. When compared with wild-type

worms, we found no differences (Fig. 7). We recognize, however,

that Nrf2/SKN-1 expression levels are not necessarily informative,

since Nrf2/SKN-1 activity regulation mainly relies on its

translocation to the nucleus where it exerts its effect. To gain

access to Nrf2/SKN-1 activity, we therefore quantified, by western

blot analysis, the protein levels of a classic downstream target of

Nrf2/SKN-1, superoxide dismutase, sod-3.[32] We found that the

antioxidant enzyme level was unchanged in the tmem135 (ok1646)

and TMEM135::GFP animals (Fig. 7). These results indicate that

TMEM135 does not interfere with the Nrf-2/SKN-1 antioxidant

pathway.

TMEM-135-dependent alteration in DAF-16 levels is
independent of AKT expression

FoxO/DAF-16 is a known downstream target of the Insulin/

IGF-1 pathway via inhibition by the AKT-1+AKT-2+SGK-1

complex. As DAF-16 levels were affected by TMEM-135, and

TMEM-135 was shown to regulate fat stores (Fig. 6A and 6B), an

implication of TMEM-135 in the Insulin/IGF-1 was deemed

likely. Therefore, we measured AKT levels by western blot

analysis in tmem-135(ok1646), TMEM-135::GFP-overexpressing

and wild-type worms. We found no significant differences in

AKT expression levels between the three genetic backgrounds

(Fig. 7), although we can’t rule out a possible involvement of AKT

or the classical Insulin/IGF-1 pathway in TMEM135-dependent

modulation of DAF-16 expression.

Figure 3. TMEM-135 distribution in C. elegans. Images in A, B and C were obtained using tmem-135 promoter-driven GFP to assess tmem-135
tissue expression. tmem-135 was found to be ubiquitously expressed at all stages (A, B, C; data not shown). Apparent differences in expression
pattern reflect the mosaic distribution of the transgene. (A) Shows tmem-135 expression pattern in the pretzel embryo. (B) Shows tmem-135
expression pattern in a L1 larva. (C) Shows tmem-135 expression pattern in an adult worm. Images in D, E and F were obtained using a GFP-tagged
full-length TMEM135 to observe TMEM135 sub-cellular localization. Panels D, E and F reveal that TMEM135 localizes to rounded sub-cellular
organelles of 0.2–0.5 microns in L1 larvae, which are particularly abundant in the intestine.
doi:10.1371/journal.pone.0014228.g003
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Discussion

In this study, we utilized comparative biology between the

mouse and the nematode, C. elegans, to identify and characterize a

novel protein associated with mitochondrial fatty acid metabolism,

fat stores, longevity, and energy expenditure. We hypothesized

that this novel protein plays a critical role in a feedback regulatory

circuit involved in survival in VLCAD deficiency. Our results also

led us to undertake a systematic study linking TMEM135 to fat

storage and longevity in C. elegans. A novel finding of these pursuits

is that TMEM135 promotes longevity in the worm. The

TMEM135 transgene rescued the cold stress phenotype and

increased longevity under cold temperature conditions, while

TMEM135 deletion in the worm led to decreased longevity at all

experimental temperatures. These findings in both the worm and

in the mouse support our original hypothesis that TMEM135

plays a critical role for survival in response to cold stress, as well as

in the metabolic circuitry involving mitochondrial function and

energy expenditure. In humans, mitochondrial fatty acid oxidation

defects are associated with a variety of clinical phenotypes.[5,33]

We and others have hypothesized that there are co-founding

elements involved in the heterogeneity of clinical phenotypes and

Figure 4. TMEM135 localizes to fat droplets in the mouse and in C. elegans and to mitochondria close to fat droplets in the mouse.
Experiments in A, B and C were done in mouse tissue. (A) Western blot to assess protein expression of TMEM135 in sub-cellular fractions of the
mouse heart. TMEM135 specific antibody, 1:1000. Lane1: total protein, lane 2: nuclear fraction, lane 3: mitochondrial fraction, lane 4: microsomal
fraction, lane 5: a low speed sediment containing intercalated discs sediment and microsomes enriched in heart sarcoplasmic reticulum, lane 6:
cytosol. (B) Quantification by densitometry of western blot in A. C1, C2 and C3 are representative of Transmitted Immuno-Electron microscopy in
mouse heart tissue. (C1) Immunogold staining showing TMEM135 mostly in the mitochondria and along the Z-line in the sarcomere. M =
mitochondria, S = sarcomere. C2 and C3 show accumulation of the TMEM135 epitope in the surrounding of lipid droplets in mouse hearts. M =
mitochondria, Arrows = fat droplets, Arrowheads = TMEM135 gold stain. (D) Is representative of TMEM135::GFP staining with Mitotracker Red,
showing no co-localization of TMEM135 and the mitochondria in the worm. (E) Represents Nile red staining in the TMEM135 over-expressing animals.
This figure shows co-localization of the GFP and fat droplets in the worm, as indicated by the arrows. Experiments in this section were performed 3 or
4 times.
doi:10.1371/journal.pone.0014228.g004
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outcome,[1,5,34,35] although an age-associated phenotype-geno-

type correlation has been described.[36] Given that cold and

fasting stresses are often lethal for mice with defects in the fatty

acid b-oxidation pathway,[10,30] our results suggest a role for

TMEM135 among the plausible candidate genes involved in

modulating overall survival and/or stress-associated clinical

phenotypes. Future studies must address whether findings in the

worm will prove beneficial for elucidating the possible role of

TMEM135 in human patients with these metabolic gene defects.

Another novel finding in this report is the discovery that

TMEM135’s pro-longevity function seems linked to DAF-16

modulation, since we were able to show that TMEM135 deletion

or TMEM135 overexpression in vivo correlates with changes in

DAF-16 levels. Functional copies of DAF-16, an orthologue of the

mammalian FOX3a,[16,17] which, in both humans and worms,

determines longevity, also regulates fat storage in worms.[19] The

DAF-2 insulin receptor, IP3-kinase, AKT1 and AKT2, phosphor-

ylate Daf16/FOXO to inhibit its downstream targets. The

inhibition of DAF-2 signaling leads to the activation of DAF-16

through dephosphorylation, as well as the translocation of DAF-16

to the nucleus to activate transcription. The translocation of DAF-

16 between the cytosol and the nucleus through phosphorylation

and dephosphorylation is a dynamic process, serving as a true

switch for nutrient sensing, metabolic substrate utilization and

stress resistance. [37] There are several other pathways known to

regulate DAF-16. Among them, the targets of rapamycin (TOR)

kinase and c-Jun N-terminal kinase (JNK) have both been shown

to contribute to various cellular responses and to aging, possibly in

parallel or downstream of DAF-16.[38] JNK was recently found to

be a positive regulator of DAF-16. [39] It appears that TMEM135

modulates DAF-16 levels, fat stores and longevity in a pathway

either upstream or in parallel to the insulin-signaling pathway.

One hypothesis is that DAF-16 and TMEM135 act on an identical

pathway to modulate survival. This notion is strengthened by the

fact that the lifespan was shortened and DAF-16 and fat stores

were found to be reduced in the tmem-135-null worms. Ogg et al.

reported that fat accumulation assayed with Sudan Black is

reduced in daf-16(mgDF50) mutants. This group hypothesized that

DAF-16 acts as a repressor of metabolic genes that mediate energy

usage and that the loss of function of these proteins causes a

metabolic shift leading to a reduction in fat mobility. [17] A

metabolic shift to accumulate fat forms the basis for life-span

extension in the worm. In agreement with this theory, it has also

been shown that daf-2 and age-1 mutants (critical components of

the insulin signaling pathway) demonstrate increased longevity and

increased energy stores [21]. On the other hand, the fact that

TMEM135 seems to regulate both DAF-16 levels (a regulator of

lipid stores) and the lack of alteration in AKT and SOD levels

raises the possibility that TMEM135 and DAF-16 cooperate in

this metabolic shift through mechanisms which may be indepen-

dent of the insulin signaling pathway.

We recognize that there are limitations to our study. Our

analysis does not address how a loss of function in genes that affect

mitochondrial fatty acid metabolism leads to the activation of

TMEM135. Additionally, in the present study, we have not

addressed the mechanism(s) leading to DAF-16 dysregulation in

the absence of TMEM135. Our observation that the TMEM135

transgene increases DAF-16 levels but does not lead to an increase

in survival at 20uC, provides a basis for further studies. However,

our results corroborate previously published data showing that the

DAF-16 transgene does not lead to increased longevity, which is in

contrast to the increase seen with the reduction in DAF-2 function.

Future studies in the worm addressing targets of TMEM135 might

include the acyl-CoA synthase (ACS), the acyl-CoA dehydroge-

nases and PGC-1 a. Although levels of ACS, VLCAD and PGC-

1a were not changed in the TMEM135-deficient animals, we did

find that TMEM135::GFP-overexpressing mutants displayed

elevated levels of ACS, VLCAD and PGC-1a (Fig. 7). These

Figure 5. TMEM135 is elevated with the stresses of cold and fasting in the worm and in C57BL/6 mice. Figures A and B are
representative experiments in the worm. Fig. A shows the induction of TMEM135 with cold stress (4uC) in the worm, and Fig. B is the quantification of
average fluorescence levels exemplified in Fig. A. Values in these experiments are expressed as relative fluorescence intensity in mean 6 SEM. Figures
C and D were experiments done using C57BL/6 mice. The animals were subjected to overnight fasting and were exposed to the cold for 2 hours, as
previously published[10]. (C) Western blots of TMEM135 expression with fasting and cold stresses. (D) Quantification by densitometry of the western
blots shown in C, N = 3 per group.
doi:10.1371/journal.pone.0014228.g005
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results might be related to DAF-16 overexpression, as DAF-16/

FoxO targets include these fatty acid-associated genes.[40] FoxO

transcription factors have been shown to enhance fatty acid uptake

and oxidation, leading to increased levels of genes of fatty acid

metabolism (i.e. ACS) in C2 C12 cells.[41] FoxO is also known to

decrease the expression of Acyl-CoA carboxylase, leading to

reduced levels of malonyl-CoA, which is an inhibitor of fatty acid

oxidation.[41] In addition, PGC-1a has been shown to be a

master regulator of mitochondrial biogenesis,[42] as well as the

transcription co-factor providing homeostatic control of cellular

ATP. [43] Given that the overexpression of TMEM135 in the

GFP::TMEM135 worm led to increase survival in the cold, and

overexpression of ACS, VLCAD and PGC-1a, it is certainly

conceivable that TMEM135 is involved in facilitated fatty acid

flux, mitochondrial biogenesis, and energy expenditures. Our

findings place TMEM135 among the plausible candidate genes

involved in our hypothesized feedback regulatory circuit, a

circuit critical to enhancing the rate of survival in fatty acid

oxidation-deficient mice. Among the three C. elegans strains tested,

we did not detect changes in SOD3, NRF2 or AKT (Fig. 7). Thus,

we determined that TMEM135 regulates fat stores and longevity

in the worm by modulating DAF-16 levels and fat metabolism

genes, without causing apparent changes in oxidative stress

response genes.

In summary, we have demonstrated that TMEM135 is a key

regulator of longevity and fat stores in C. elegans. Both in the mouse

and in the worm, TMEM135 seems to be critical for enabling

adaptation to energy challenges (i.e. cold and fasting stresses). Data

obtained from studies in both the mouse and the worm suggests

that TMEM135 might function as a nutrient sensor and a

metabolic regulator gene. We propose that, in the mouse,

TMEM135 is part of a feedback regulatory circuit involving the

induction of several fat metabolic genes at birth that may aid in

survival. Based on the results of our recent experiments which

have tested this hypothesis, it could be anticipated that

disturbances in levels of any of the genes involved in this feedback

Figure 6. Nile Red staining and MitoTracker Red staining, survival differences and DAF-16 levels among the three C. elegans strains.
Fig. 6A is representative staining with Nile Red in the worm. (B) Represents semi-quantitative assessment of Nile Red staining intensity, N = 4 per
group. (C) Represents survival analysis among the three C. elegans strains at 20uC. (D) Represents survival analysis among the three C. elegans strains
at 15uC. Wild-type = controls shown in red, tmem 135(2/2) = tmem135-deleted animals shown in black, TMEM135::GFP = C. elegans animal
overexpressing TMEM135 shown in green. (E) Quantitative assessment of MitoTracker Red fluorescence. (F) Western blot analysis and quantification
of DAF-16 levels in the three C. elegans strains, N = 6 per group, values are mean 6 SEM.
doi:10.1371/journal.pone.0014228.g006
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circuit may be trigger outcomes that lead to energy deprivation, as

well as sensitivity to cold and fasting stresses, which would be

consistent with the clinical phenotypes currently observed in

human infants with disease-causing genetic mutations in the

mitochondrial fatty acid oxidation pathway. Extrapolating from

the results of our studies, we note that, in cases of fatty acid

oxidation deficiency, the fact that there are compensatory genes

expressed at birth, and before the appearance of disease in the

mouse, it is possible that these molecules might serve as

therapeutic targets for restoring the metabolic profile necessary

for adequate energy balance, appropriate fatty acid flux and

sufficient metabolic stress response. Given that mitochondrial

energy metabolism, fat sorting and storage are also critical for

other aspects of cell function, our findings suggest that TMEM135

may also be a critical factor in a variety of other chronic illnesses.

Author Contributions

Conceived and designed the experiments: VJE DSA AB MA. Performed

the experiments: VJE DSA AB EAE CA MRA. Analyzed the data: VJE

DSA AB CA. Contributed reagents/materials/analysis tools: VJE DSA AB

MA. Wrote the paper: VJE. Took part in preparation of the manuscript:

DSA AB MA.

References

1. Exil VJ, Roberts RL, Sims H, McLaughlin JE, Malkin RA, et al. (2003) Very-

Long-Chain Acyl-Coenzyme A Dehydrogenase Deficiency in Mice. Circ Res 93:

448–455.

2. Hedge P, QI R, Abernathy K, Gay C, Dharap S, et al. (2000) A Concise Guide

to cDNA Microarray Analysis. Bio Techniques 29: 548–562.

3. Eisen MB, Brown PO (1999) DNA arrays for analysis of gene expression.

Methods Enzymol 303: 179–205.

4. Bell J, Eddy B, Honkanen P, Weiner N, Woolaver T, et al. A versatile system

enabling analysis of slide-based high density microarrays with a variety of

alternative chemistries; 1999; Nature, America, Scottsdale, AZ, 71.

5. Mathur A, Sims HF, Gopalakrishnan D, Gibson B, Reinaldo P, et al. (1999)

Molecular Heterogeneity in Very-Long-Chain Acyl-CoA Dehydrogenase

Deficiency causing Pediatric Cardiomyopathy and sudden death. Circulation

99: 1337–1343.

6. Souri M, Aoyama T, Orii K, Yamaguchi S, Hashimoto T (1996) Mutation

analysis of VLCAD deficiency. Am J Hum Genet 58: 97–106.

7. Aoyama T, Uchida Y, Kelley RI, Marble M, Hofman K, et al. (1993) A novel

disease with deficiency of mitochondrial very-long-chain acyl-CoA dehydroge-

nase. Biochem Biophys Res Commun 191: 1369–1372.

8. Aoyama T, Souri M, Ueno I, Kamijo T, Yamaguchi S, et al. (1995) Cloning of

human very-long-chain acyl-coenzyme A dehydrogenase and molecular

characterization of its deficiency in two patients. Am J Hum Genet 57: 273–283.

9. Bertrand C, Largilliere C, Zabot MT, Mathieu M, Vianey-Saban C (1993) Very

long chain acyl-CoA dehydrogenase deficiency: identification of a new inborn

error of mitochondrial fatty acid oxidation in fibroblasts. Biochim Biophys Acta

1180: 327–329.

10. Exil VJ, Gardner CD, Rottman JN, Sims H, Bartelds B, et al. (2006) Abnormal

mitochondrial bioenergetics and heart rate dysfunction in mice lacking very-

long-chain acyl-CoA dehydrogenase. Am J Physiol Heart Circ Physiol 290:

H1289–1297.

11. Liu F, Li Y, Yu Y, Fu S, Li P (2007) Cloning of novel tumor metastasis-related

genes from the highly metastatic human lung adenocarcinoma cell line Anip973.

J Genet Genomics 34: 189–195.

12. Scheideler M, Elabd C, Zaragosi LE, Chiellini C, Hackl H, et al. (2008)

Comparative transcriptomics of human multipotent stem cells during adipo-

genesis and osteoblastogenesis. BMC Genomics 9: 340.

13. McKay RM, McKay JP, Avery L, Graff JM (2003) C elegans: a model for

exploring the genetics of fat storage. Dev Cell 4: 131–142.

14. Antebi A, Culotti JG, Hedgecock EM (1998) daf-12 regulates developmental age

and the dauer alternative in Caenorhabditis elegans. Development 125: 1191–1205.

15. Gottlieb S, Ruvkun G (1994) daf-2, daf-16 and daf-23: genetically interacting

genes controlling Dauer formation in Caenorhabditis elegans. Genetics 137:

107–120.

16. Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead

family member that can function to double the life-span of Caenorhabditis

elegans. Science 278: 1319–1322.

17. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, et al. (1997) The Fork head

transcription factor DAF-16 transduces insulin-like metabolic and longevity

signals in C. elegans. Nature 389: 994–999.

18. Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin

receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor.

Genes Dev 12: 2488–2498.

Figure 7. Western blot analysis of possible downstream targets of TMEM135. 7A is representative western blot for NRF2/SKN1 targets. 7B
is representative western blot analysis of fatty acid metabolism target genes. N = 3 in each group. tmem135(2/2) for the tmem135-deletion strain,
and TMEM135::GFP for the overexpressing strain. N = 3 in each group.
doi:10.1371/journal.pone.0014228.g007

TMEM135 and Worm Fat Stores

PLoS ONE | www.plosone.org 10 December 2010 | Volume 5 | Issue 12 | e14228



19. Lee SS, Kennedy S, Tolonen AC, Ruvkun G (2003) DAF-16 target genes that

control C. elegans life-span and metabolism. Science 300: 644–647.
20. McElwee J, Bubb K, Thomas JH (2003) Transcriptional outputs of the

Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2: 111–121.

21. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin
receptor-like gene that regulates longevity and diapause in Caenorhabditis

elegans. Science 277: 942–946.
22. Exil VJ, Summar M, Boles MA, Atkinson J, Johns JA, et al. (2005) Metabolic

basis of pediatric heart disease. Progress in Pediatric Cardiology 20: 143–159.

23. Werdich AA, Baudenbacher F, Dzhura I, Jeyakumar LH, Kannankeril PJ, et al.
(2007) Polymorphic ventricular tachycardia and abnormal Ca2+ handling in

very-long-chain acyl-CoA dehydrogenase null mice. Am J Physiol Heart Circ
Physiol 292: H2202–2211.

24. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.
25. McKay SJ, Johnsen R, Khattra J, Asano J, Baillie DL, et al. (2003) Gene

expression profiling of cells, tissues, and developmental stages of the nematode

C. elegans. Cold Spring Harb Symp Quant Biol 68: 159–169.
26. Barstead RJ, Kleiman L, Waterston RH (1991) Cloning, sequencing, and

mapping of an alpha-actinin gene from the nematode Caenorhabditis elegans.
Cell Motil Cytoskeleton 20: 69–78.

27. Mitchell DH, Stiles JW, Santelli J, Sanadi DR (1979) Synchronous growth and

aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine.
J Gerontol 34: 28–36.

28. Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain
for intracellular lipid droplets. J Cell Biol 100: 965–973.

29. Spiekerkoetter U, Tokunaga C, Wendel U, Mayatepek E, Exil V, et al. (2004)
Changes in blood carnitine and acylcarnitine profiles of very long-chain acyl-

CoA dehydrogenase-deficient mice subjected to stress. Eur J Clin Invest 34:

191–196.
30. Kurtz DM, Rinaldo P, Rhead WJ, Tian L, Millington DS, et al. (1998) Targeted

disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial
roles for fatty acid oxidation. Proc Natl Acad Sci U S A 95: 15592–15597.

31. Chegary M, Brinke H, Ruiter JP, Wijburg FA, Stoll MS, et al. (2009)

Mitochondrial long chain fatty acid beta-oxidation in man and mouse. Biochim
Biophys Acta 1791: 806–815.

32. Yanase S, Yasuda K, Ishii N (2002) Adaptive responses to oxidative damage in
three mutants of Caenorhabditis elegans (age-1, mev-1 and daf-16) that affect life

span. Mech Ageing Dev 123: 1579–1587.

33. Strauss AW, Powell CK, Hale DE, Anderson MM, Ahuja A, et al. (1995)

Molecular basis of human mitochondrial very-long-chain acyl-CoA dehydroge-

nase deficiency causing cardiomyopathy and sudden death in childhood. Proc

Natl Acad Sci USA 92: 10496–10500.

34. Gregersen N, Andresen BS, Corydon MJ, Corydon TJ, Olsen RK, et al. (2001)

Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by

acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype

relationship. Hum Mutat 18: 169–189.

35. Pons R, Cavadini P, Baratta S, Invernizzi F, Lamantea E, et al. (2000) Clinical

and molecular heterogeneity in very-long-chain acyl-coenzyme A dehydroge-

nase deficiency. Pediatr Neurol 22: 98–105.

36. Andresen BS, Olpin S, Poorthuis BJ, Scholte HR, Vianey-Saban C, et al. (1999)

Clear correlation of genotype with disease phenotype in very-long-chain acyl-

CoA dehydrogenase deficiency. Am J Hum Genet 64: 479–494.

37. Libina N, Berman JR, Kenyon C (2003) Tissue-specific activities of C. elegans

DAF-16 in the regulation of lifespan. Cell 115: 489–502.

38. Jia K, Chen D, Riddle DL (2004) The TOR pathway interacts with the insulin

signaling pathway to regulate C. elegans larval development, metabolism and life

span. Development 131: 3897–3906.

39. Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, et al. (2005) JNK

regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation

of forkhead transcription factor/DAF-16. Proc Natl Acad Sci U S A 102:

4494–4499.

40. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, et al. (2003)

Genes that act downstream of DAF-16 to influence the lifespan of

Caenorhabditis elegans. Nature 424: 277–283.

41. Bastie CC, Nahle Z, McLoughlin T, Esser K, Zhang W, et al. (2005) FoxO1

stimulates fatty acid uptake and oxidation in muscle cells through CD36-

dependent and -independent mechanisms. J Biol Chem 280: 14222–14229.

42. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, et al. (2000)

Peroxisome proliferator-activated receptor [gamma] coactivator-1 promotes

cardiac mitochondrial biogenesis. J Clin Invest 106: 847–856.

43. Rohas LM, St-Pierre J, Uldry M, Jager S, Handschin C, et al. (2007) A

fundamental system of cellular energy homeostasis regulated by PGC-1alpha.

Proc Natl Acad Sci U S A 104: 7933–7938.

TMEM135 and Worm Fat Stores

PLoS ONE | www.plosone.org 11 December 2010 | Volume 5 | Issue 12 | e14228


