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Sleep-Related Consolidation of a Visuomotor Skill:
Brain Mechanisms as Assessed by Functional Magnetic

Resonance Imaging
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Subjects were trained on a pursuit task in which the target trajectory was predictable only on the horizontal axis. Half of them were sleep
deprived on the first post-training night (n = 13). Three days later, functional magnetic resonance imaging revealed task-related
increases in brain responses to the learned trajectory, as compared with a new trajectory. In the sleeping group (n = 12) as compared with
the sleep-deprived group, subjects’ performance was improved, and their brain activity was greater in the superior temporal sulcus (STS).
Increased functional connectivity was observed between the STS and the cerebellum and between the supplementary eye field and the
frontal eye field. These differences indicate sleep-related plastic changes during motor skill learning in areas involved in smooth pursuit

eye movements.

Key words: functional neuroimaging; functional magnetic resonance imaging; statistical parametric mapping; functional connectivity;
procedural memory; memory consolidation; sleep; sleep deprivation; smooth pursuit eye movements

Introduction

Several lines of evidence indicate that sleep is involved in memory
trace consolidation. First, sleep organization can be modified by
recent learning both in animals (Hennevin et al., 1995) and in
humans (Maquet, 2001). Second, neurons involved in recent
waking experience are reactivated during post-training sleep in
rodent hippocampus (Pavlides and Winson, 1989; Wilson and
McNaughton, 1994; Kudrimoti et al., 1999; Nadasdy et al., 1999;
Louie and Wilson, 2001) and in human cortex (Maquet et al.,
2000). Third, sleep deprivation alters subsequent performance
on the learned task in animals (Hennevin et al., 1995; Smith,
1995) and in humans (Maquet, 2001). Sleep deprivation studies
suggest that sleep occurring during the first hours after training
sessions in animals (Hennevin etal., 1995; Smith, 1995) or during
the first post-training night in man (Stickgold et al., 2000) plays a
critical role in memory trace consolidation, as measured by be-
havioral performance at a later date.

In several perceptual and motor skill learning tasks, perfor-
mance continues to improve hours after the training session has
ended (Karni and Sagi, 1993; Karni and Bertini, 1997; Karni et al.,
1998). This so-called “slow learning” is believed to lead to the
consolidation of the memory trace and to be sleep dependent
(Maquet, 2001). Accordingly, the learning of the pursuit rotor
task, a visuomotor procedural learning task, is known to be sen-
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sitive to sleep deprivation on the first post-training night (Smith
and MacNeill, 1994).

The effects of sleep on the cerebral correlates of skill learning
has not yet been characterized in humans. The aim of the present
study was to compare learning-dependent changes in regional
brain activity after sleep or sleep deprivation using a pursuit task
(PT). We trained the participants on a particular version of the
PT (Frith, 1973) in which the target trajectory was predictable on
the horizontal but not on the vertical axis (see Fig. 1 A). Half of
the subjects were totally sleep deprived during the first post-
training night (see Fig. 1 B). Three days later, during a functional
magnetic resonance imaging (fMRI) scanning session, they were
exposed to the previously learned trajectory and also to a new one
in which the predictable axis was vertical. This experimental de-
sign allowed for the assessment of the effects of learning on brain
activity, using within-subject comparisons between learned and
new conditions.

Our objective was to provide evidence that sleep deprivation
disrupts the slow processes thatlead to memory consolidation. In
contrast to others (Drummond et al., 2000), we were not aiming
to characterize the immediate effect of sleep deprivation on hu-
man performance or cognition. This is the reason why we
adopted an experimental protocol in which both sleeping and
sleep-deprived subjects were retested after at least two complete
nights of sleep, i.e., in a state of arousal that was similar across the
two groups and between the training and retest sessions (Stick-
gold et al., 2000).

Materials and Methods

Subjects. Normal subjects (13 females, 12 males; age range: 1924 years)
were recruited by advertisement. They had no history of medical, neuro-
logical, or psychiatric disease. None of them was on medication. The
quality of their usual sleep was assessed by the Pittsburgh Sleep Quality
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Index questionnaire (Buysse et al., 1989) to check for the absence of
obvious disturbances of sleep/wakefulness cycles. The subjects were
right-handed as indicated by the Edinburgh Inventory (Oldfield, 1971).
The subjects gave their written informed consent to the study, which was
approved by the Joint Ethics Committee of National Hospitals and Insti-
tute of Neurology.

Experimental protocol. Subjects performed the PT while lying in the
scanner (see Fig. 1). A mirror box allowed them to view the display (18 X
23°) generated by a PC (480 X 640 resolution; refresh rate 60 Hz) and
projected by liquid crystal display projector. Subjects were simulta-
neously shown the positions of a moving target (red circle, 1°) and of a
joystick (yellow dot, 0.5% refresh rate 25 Hz). By manipulating a custom-
made joystick with their left hand, the subjects could move the position
of the joystick on the screen. The instruction was to maintain the joystick
position as close as possible to the moving target at all times. The left
hand was chosen to ensure that performance on the PT would not rely on
preexisting motor skills such as writing or drawing and to minimize
interference with normal daytime activity during the post-training pe-
riod (because the subjects were all right-handed). The subjects did not
know that the trajectory followed by the target (Fig. 1 A) was manipulated
in a similar way as in Frith (1973). The coordinates of the target were
described by a single sine wave (frequency: 0.423 Hz) along the horizon-
tal axis, and by the sum of four nonharmonic sine waves (frequency:
0.267, 0.341, 0.413, and 0.673 Hz) on the vertical axis. As a result, the
trajectory followed by the target was easily predictable along the horizon-
tal axis but very difficult to predict along the vertical axis. This trajectory
was used to train the subjects and will be referred to as the “learned
trajectory.”

The subjects were trained on the task in the scanner on the afternoon
of day 1, during a period of 5 min, between 2 and 6 P.M. (Fig. 1 B). The
subjects were not scanned during the training session. They were trained
in the MR scanner to ensure that the task would be performed under the
same conditions during the training and retest sessions, i.e., with the
same physical characteristics for the presentation of visual inputs and
same position for motor performance. The training session was deliber-
ately kept short. The subjects developed only an imperfect skill on the
task. In such a situation, learning and memory are more likely to depend
on sleep processes (Hennevin et al., 1995).

The subjects were only scanned on day 4, at the same time of day as
during the training session. During this scanning session, 30 18-sec-long
blocks of PT were performed. Half of the blocks used the learned trajec-
tory. In the remaining blocks, the trajectory was rotated by 90°, in such a
way that the predictable axis became the vertical one. Because the sub-
jects had never been exposed to it, this trajectory is referred to as the “new
trajectory. The order of the learned and new trajectories was randomized
over subjects. Periods of fixation, also 18 sec long, were interleaved be-
tween the PT blocks. The coordinates of the target and the joystick were
recorded every 40 msec, during both the training and the scanning ses-
sions (see below). Functional MRI time-series were acquired at 2 Tesla
using a Magnetom VISION (Siemens, Erlangen, Germany) whole-body
MRI system, equipped with a head volume coil. Multislice T2*-weighted
fMRI images were obtained with a gradient echo-planar sequence using
an axial slice orientation (echo time = 40 msec; repetition time = 3.65
sec; 64 X 64 X 48 voxels; voxel size: 3 X 3 X 3 mm?>). After the six initial
scans were discarded (to allow for magnetic saturation effects), each
time-series comprised 300 volume images. A structural T1-weighted se-
quence scan was also obtained. The eye position was monitored on-line
using an eye-trajectory system (ASL, Model 504; Applied Science Group,
Bedford, MA).

The subjects were prospectively pseudorandomized into two groups
(Fig. 1B). In the first group (sleeping group), the subjects went home
after the training session and slept as usual during the three post-training
nights. In the second group (sleep-deprived group), the subjects stayed
awake in the laboratory and were monitored during the first post-
training night (until 7.00 A.M.). During this night, the ambient light and
the subjects’ physical activity were maintained as low as possible, and the
subjects remained under the constant supervision of the experimenters.
They pursued their usual activities on the following days and slept at
home during the two remaining nights. After a single night of total sleep
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deprivation, individual performance on several tasks and subjective
sleepiness are completely restored after two nights of recovery sleep
(Bonnet, 2000).

The physical activity of all the subjects was monitored continuously by
actimetry, from the end of the training session to the beginning of the
scanning session (sampling rate: 1/30 Hz) (Actiwatch, Cambridge Tech-
nology). Subjects wore the actimeter on their right wrist and were also
asked to fill in a sleep log during the entire experimental period.

All of the subjects were randomly assigned to each experimental group
and exposed to the same task characteristics during the training session.
Thus, no difference in the improvement in performance along time was
expected between the two groups unless the sleep deprivation had a
significant and deleterious effect on the acquisition of this visuomotor
skill.

Analysis of behavioral data. First, the subject’s error was computed as
the Euclidean distance between the target and the joystick location for
each time point of the training session, and the SD was computed (Fig.
1C). For the scanning session, the same measures were computed at each
time point during the PT blocks. The time on target was used as the
metric of subjects’ performance. For each subject, it was computed as the
number of time points (each 40 msec long) during which the distance
was smaller than half the SD computed during the training session. This
method ensured that the same metric was used to compute the perfor-
mance in the training and scanning session on an individual basis. Sum-
ming these points within each PT block provided a measure of the time
on target achieved during this block.

For the training session, the 5 min performance data were divided into
19 blocks of equal duration. These behavioral data were modeled by a
general linear model with repeated measures, using the repetition of
consecutive blocks as within-subject factor and the group (sleep vs sleep
deprived) as between-subject factor. For the scanning session, the data
were modeled by a general linear model with repeated measures, using
the repetition of consecutive blocks and the trajectory (learned vs new) as
within-subject factors and the group (sleep vs sleep deprived) as
between-subject factor. Post hoc t tests were computed for differences
between the groups or between trajectories.

The actimetry data were integrated over post-training periods of day
(D2, D3) and night (N1, N2, N3), defined by the time-to-bed and
wakeup times indicated in the individual sleep logs. The D4 data were not
considered in the analyses because they usually spanned only a few hours
(from wake up to the scanning session). Data were modeled by a general
linear model with repeated measures, using consecutive night and day
periods as within subject factor and the group (sleep versus sleep de-
prived) as between subject factor. Post hoc t tests checked for differences
between the group for each relevant time period.

Analysis of fMRI data. Functional volumes were analyzed using Statis-
tical Parametric Mapping http://www.fil.ion.ucl.ac.uk/spm/. They were
corrected for head motion, spatially normalized to an echo planar imag-
ing template of 3 X 3 X 3 mm? voxels conforming to the Montreal
Neurological Institute space, spatially smoothed with a Gaussian kernel
of 8 mm full-width at half-maximum (FWHM), and high-pass filtered
(1/140 Hz).

For each subject, changes in brain regional responses were estimated
by a general linear model in which the activity evoked in the PT blocks
with learned or new trajectory was modeled by boxcar waveforms con-
volved with a canonical hemodynamic response function. Movement
parameters derived from realignment of the functional volumes were
included as covariates of no interest. The effects of interest were then
tested by linear contrasts, generating statistical parametric maps
[SPM(T)]. The images resulting from the comparison between learned
and new conditions were then further spatially smoothed (6 mm FWHM
Gaussian kernel) and entered in a second-level analysis, corresponding to
arandom effects model, to account for intersubject variance in the main
effect of learning. Two analyses were performed. First, parameter esti-
mates for the learned and new conditions were compared in a one-
sample ¢ test across all subjects to describe the main effect of learning
regardless of the group. Second, a two-sample f test was used to evaluate
the trajectory-by-group interaction.
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On the basis of published work on motion
perception, smooth eye pursuit, eye—hand co-
ordination, and motor learning, we expected
that changes in brain responses would occur in
areas that participate in performing the task:
motion-related areas in the occipital and tem-
poral cortices, intraparietal sulcus, premotor
cortex [including frontal eye field (FEF)], sup-
plementary motor area [including supplemen-
tary eye field (SEF)], primary motor cortex,
and cerebellum. Small-volume correction of
our fMRI results (Worsley, 1996) was com-
puted on a 10 mm sphere around the average
coordinates published for the corresponding
relevant a priori location (Table 1, last col-
umn).

To examine whether sleep deprivation alters
long-term functional connectivity, analyses of
psychophysiological interactions were per-
formed. These analyses searched for a modula-
tion by the training condition of correlations
between the learning-related areas (see below)
[right dentate nucleus (DN); left supplemen-
tary motor area (SMA)] and other distant areas
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(Friston et al., 1997). A new linear model was group 2

constructed for each subject, using three re- night 1 night2 night 3
gressors (plus the covariates of no interest as in

the initial model). One regressor was the differ-  Figure 1.

ence between the two main regressors of inter-
est (learned minus new). The second regressor
was the activity in the reference area. The third
regressor represented the interaction of inter-
est between the first (psychological) and sec-
ond (physiological) regressors. Significant
contrasts for this psychophysiological regres-
sor indicated a learning-related change in the
regression coefficients between any reported
brain area and the reference region. After
smoothing (6 mm FWHM Gaussian kernel), these contrast images were
then entered into a second-level (random effects) analysis. A two-sample
t test was performed to assess the between-group differences in learning-
dependent changes in functional connectivity (voxelwise threshold, p <
0.001 uncorrected; small-volume correction at p < 0.05).

Results

Behavioral data

Two subjects were discarded: one in the sleeping group because of
task-related movement artifacts in the fMRI time-series and an-
other in the sleep-deprived group because the subject’s sleep was
compromised on nights 2 and 3 for professional reasons. The
final number of subjects in the sleeping and sleep-deprived
groups was 11 and 12, respectively. At debriefing, none of them
was aware of the different spatial properties of the learned and
new trajectories.

The behavioral results appear in Figure 2A. The statistical
analyses were run separately for the training and the scanning
sessions. This is because the learning effect could be assessed
within the scanning session, by comparison of the subjects’ per-
formance on the learned versus new trajectory. This analysis of
behavioral data shadows the analysis of fMRI data, essentially
based on the within-session learning effect during the scanning
session (see below). For the training session, there was a signifi-
cant effect of the repetition of training blocks (F(, s = 1.659; p =
0.044), reflecting the improvement of subjects’ performance with
time. There was also a significant effect of the group (sleep vs
sleep deprived) (F(;, = 4.669; p = 0.041). Post hoc t tests con-
firmed that the performance of the sleep-deprived subjects was

Experimental design. A, The bi-dimensional trajectory followed by the target during the training session combined a
regular movement on the horizontal axis and an irregular movement on the vertical axis. B, Two experimental groups were
compared: half of the subjects were totally sleep deprived during the first night after training on the PT and half were allowed to
sleep normally. All subjects continuously wore an actimeter and were scanned while doing the PT on the third day after training
(see Materials and Methods). C, Computation of the behavioral performance at the PT. Continuous line indicates the joystick
trajectory; dotted line indicates the target trajectory. At each time point (40 msec), the distance between the target and the
subject’s trajectory was computed. The subject was considered on target if this distance (arrow) was smaller than half the SD of the
joystick-to-target distances observed for the subject during the training session. The bottom display shows a typical distribution of
the joystick-to-target distances for one subject.

lower than that of the subjects in the sleeping group ( p < 0.001).
The repetition by group interaction was not significant (F,5 ;) =
0.518; p = 0.950), suggesting that the rate of learning during the
training session was not different between the two groups. For the
post-training session during fMRI, the effect of the trajectory
(learned vs new) was significant (F,) = 18.603; p < 0.001). Post
hoc paired ¢ tests showed that the effect of trajectory (learned vs
new) was significant in both the sleep group ( p < 0.001) and the
sleep-deprived group (p = 0.015). Most importantly, the
trajectory-by-group interaction was also significant (F(,,,, =
4.862; p = 0.038), indicating that the sleeping subjects were sig-
nificantly better on the trained than the new trajectory in com-
parison with the sleep-deprived group. The repetition (of the
blocks) by group interaction showed a nonsignificant trend
(F149) = 2.778; p = 0.055). No other interactions were signifi-
cant. The group effect was not significant (F,, = 2.21;p = 0.151),
suggesting that the sleep-deprived subjects were as good as the
sleeping subjects (regardless of the status of the trajectory).

The difference in performance during the training session is
unlikely to confound our results. First, because of the pseudoran-
domization of the subjects and because the trajectories had the
same features in all subjects, differences in performance during
the training session could not be attributable to either a system-
atic population bias or a variation in task difficulty. Second, the
learning of the pursuit task is a robust and replicable phenome-
non (Eysenck and Frith, 1977). Consequently, no ceiling effect is
expected with the pursuit task, even in the sleep-deprived sub-
jects. Third and most importantly, the study was designed in such
a way that the learning effect could be assessed by within-session
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Table 1. Functional MRl results
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Area X (mm) y(mm) Z(mm) V4 Psvc Reference coordinates found in
Main learning effect
Right dentate nucleus 22 —48 —40 3.67 0.035 Miall et al. (2000)
Left medial frontal cortex —6 —14 60 3.58 0.014 SMA
Grafton et al. (1992); Grafton et al. (1994); Fink et al.
(1997); Jueptner et al. (1997); Boecker et al. (1998); Toni
etal. (1998); van Mier et al. (1998); Jenkins et al. (2000);
Doyon et al. (2002)
SEF
Luna et al. (1998); Berman et al. (1999); Petit and Haxby
(1999); 0'Driscoll et al. (2000)
Right cuneus 4 —80 22 3.50 0.999 Buechel et al. (1998); Chawla et al. (1999); Sunaert et al.
(1999)
Trajectory by group interaction
Right STS 40 —50 12 3.23 0.030 Bonda et al. (1996); Puce et al. (1998); Grossman et al.
(2000); Vaina et al. (2001)
Psyschophysiological interactions—DN
Right STS 40 —50 14 3.85 0.031 Bonda et al. (1996); Puce et al. (1998); Grossman et al.
(2000); Vaina et al. (2001)
Right STS 46 —62 12 3.55 0.102 idem
Psyschophysiological interactions—SEF/SMA
Right FEF 4 —6 4 4.20 0.007 Petit et al. (1997); Berman et al. (1999); Grosbras et al.

(1999); Petit and Haxby (1999); 0'Driscoll et al. (2000);
Heide et al. (2001); Schmid et al. (2001)

effect. The critical contrast is the difference in performance be-
tween the learned and the new trajectory during the scanning
session itself, regardless of the average value of performance. In
our case, performances during the scanning session were
matched between groups.

Actimetric data are shown on Figure 2 B. The analysis showed
a significant overall variation of activity across days and nights
(F(4y = 125; p < 0.001) and a significant activity by group inter-
action (F, 1) = 5.143; p = 0.001). Post hoc t tests comparing the
two groups showed a significant increase in activity during the
first night in the sleep-deprived subjects ( p < 0.001), confirming
the efficacy of the experimental treatment. The activity during the

A B

second day tended to be lower in the sleep-deprived group, al-
though the difference was not significant ( p = 0.071). No other
comparison approached significance.

Functional MRI data
The results are summarized in Table 1.

Main effect of learning

The responses to the learned trajectory were significantly larger

than to the new trajectory in three regions, regardless of the

group: the lateral nuclei of the cerebellum (hereafter referred to as

DN), a left medial frontal area, and the right cuneus (Fig. 3A).
The latter did not survive small-volume
correction, using the coordinates of the
nearest motion-related area described in
the literature (V3a; see references in Table
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Figure 2.

Behavioral data. A, Time on target (arbitrary units) during the training and scanning sessions, in the sleeping and
sleep-deprived group, for the learned (continuous line) and new (dotted line) trajectories. Mean time on targets is shown for
successive 15 sec blocks; error bars represent SEM. Units are the number of 40 msec intervals spent on the target. B, Average
movement activity measured by actimetry in the sleep (white bars) and sleep deprived (hatched bars) during the post-training
period (N7-N3). The activity was significantly higher during the first post-training night (N7) in the sleep-deprived group (*p <
0.01). No difference was noted on the following days (D2, D3) and nights (N2, N3). Error bars represent SEM.

1). It will not be discussed further.

The location of the DN activation was
confirmed in reference to the cerebellar
atlas of Schmahmann et al. (2000). The
effect of learning on DN was contralateral
to the moving hand. Contralateral cere-
bellar activations have already been re-
ported in other learning situations, for in-
stance in eyeblink conditioning (Logan
and Grafton, 1995; Blaxton et al., 1996;
Ramnani et al., 2000) and rhythm learn-
ing (Ramnani et al., 2000).

The left medial frontal area lies within
the SMA (see references in Table 1) at a
level identified as the supplementary eye
field (SEF) (see references in Table 1). A
medial prefrontal response ipsilateral to
the used hand is not unexpected. There
are extensive interhemispheric connec-
tions between homologous supplemen-
tary motor areas (McGuire et al., 1991).
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MRimage of the group. The second column shows the peristimulus time course of the response in the corresponding area (continuous line, responses to the learned trajectory; dotted line, for the new
trajectory). Error bars represent SEM across subjects. B, Results of the second-level analysis based on psychophysiological interactions. On the top and bottom panels, brain areas are connected with
the SEF/SMA and DN, respectively, more tightly for learned than new trajectories, and more so in sleeping subjects than in the sleep-deprived group. The red arrowhead shows the second area
detected in the STS. Displays are thresholded at p << 0.001 and coded according to the corresponding color scale.

Moreover, it could also be the case, as for the left premotor cortex
(Schluter et al., 1998, 2001), that the left SMA controls both
hands and is dominant for action.

Trajectory-by-group interaction

The responses in the depth of the posterior superior temporal
sulcus (STS) to the learned trajectory were significantly larger in
the sleep group than in the sleep-deprived group (Fig. 4A). In
other words, the posterior STS responded more to the learned
trajectory than to the new one if the subjects were allowed to sleep
on the first post-training night.

Psychophysiological interactions

A psychophysiological analysis using the DN as reference region
identified two areas in the STS area, a few millimeters away from
the area detected in the trajectory-by-group interaction. This re-
sultindicates that these two areas are connected more tightly with
the DN in the context of the learned than the new trajectory, and
more so in sleeping subjects than in the sleep-deprived group. By
applying a small-volume correction, both were included in the

15

Time (s)

Time (s)

20 25

fMRI data. A, Main effect of learning. The first column shows the activation foci (SEF/SMA on the top panel; DN on the bottom panel ), superimposed on the average normalized structural

same sphere around the reference coordinates (Fig. 3B, bottom
panel), but only one peak survived the p < 0.05 threshold.

The left SEF/SMA was more tightly correlated with the right
premotor cortex in the sleeping than in the sleep-deprived sub-
jects in response to the learned trajectory (Fig. 3B, top panel ). The
area within the premotor cortex corresponds to the frontal eye
field (FEF) (see references in Table 1). The activation lay in the
depth of the precentral sulcus, in keeping with the location of the
pursuit area reported by Rosano et al. (2002).

Discussion

The present data reveal two important aspects of the cerebral
correlates of PT learning. First, they extend previous positron
emission tomography (PET) results obtained on the standard
version of the task (pursuit rotor task using a circular trajectory).
In our particular case, because of intrinsic properties of the target
path, an optimal performance could only be achieved by devel-
oping implicitly some model of the motion characteristics of the
learned trajectory. Furthermore, the pattern of brain responses
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Figure 4.

Trajectory by group interaction. A, Left panel, The superior temporal sulcus is significantly more active in the learned condition in sleeping subjects. The statistical results, displayed at

p <0.001, are superimposed on the average normalized structural MRimage of the group. Right panel, Peristimulus time courses of STS response (continuous line, responses to the learned trajectory;
dotted line, for the new trajectory; top row, sleep group; bottom row, sleep deprivation group). Error bars represent SEM across subjects. B, Lateral view of a glass brain in the MNI space, showing the
projections of the reported STS, as well as MT/V5, biological motion, and related areas discussed in relation to STS. Sources of the data displayed are indicated by first author and year of publication.

observed here suggests that in learning the task, the acquisition of
appropriate ocular responses is probably more critical than the
development of new motor sequences for the hand or to the
improvement of eye—hand coordination. Indeed, interactions
between temporal cortex and the cerebellum as well as between
the FEF and the SEF are both implicated in conventional pursuit
eye movement pathways (Krauzlis and Stone, 1999).

Second, our results suggest that lack of sleep may hamper the
consolidation of recent memory traces, with detrimental effects
on later performance. In contrast, in the subjects allowed to sleep,
further processing of the memory traces is permitted during the
first post-training night. Consequently, their performance im-
proves and significant changes in patterns of regional brain activ-
ity are revealed by functional neuroimaging.

Effect of learning

The performance on the learned trajectory was significantly bet-
ter than on the new trajectory in both the sleeping and the sleep-
deprived groups. The cerebral hemodynamic responses to the
learned trajectory were significantly larger than to the new trajec-
tory in a medial prefrontal area and the right DN.

The medial prefrontal area is probably the SEF. This would be
consistent with the psychophysiological interaction showing that
this area is functionally connected with the right FEF, a region
involved in controlling eye movements. In nonhuman primates,
neuronal activity in the SEF is related to smooth pursuit eye
movements, especially when the target motion is predictable
(Heinen and Liu, 1997). Electrical stimulation of this region
modulates smooth pursuit eye movements (Tian and Lynch,
1995, 1996; Missal and Heinen, 2001). Alternatively, the medial
prefrontal region could correspond to the part of SMA that is
involved in hand action. In humans, an early PET study has
shown that SMA activity correlates with the time on target during
a pursuit rotor task (Grafton et al., 1994).

The increase in cerebellar signal is located in the DN. The DN
has been involved in tracking tasks (Brooks et al., 1973; Vercher
and Gauthier, 1988) and in the control of visually guided move-
ments (Mushiake and Strick, 1993). Functional neuroimaging
studies have described both decreases and increases in cerebellar
activity in response to learning processes (Jenkins et al., 1994;
Flament etal., 1996; Imamizu et al., 2000). Recent evidence shows
that the cerebellar hemispheres tend to respond more with high
movement errors, whereas a larger dentate activation is observed
when tracking performance is good (Miall et al., 2001). The same
observation is reported for other visually guided motor tasks
(Nezafat et al., 2001; Doyon et al., 2002).

Effect of sleep on experience-dependent brain activation

The posterior STS was found to be the only region differentially
more active for the learned trajectory in sleeping subjects than in
the context of sleep deprivation. The posterior STS (Fig. 4 B) lies
anterior to other motion-responsive areas, especially the middle
temporal area (MT/V5) (Watson et al., 1993; Tootell et al., 1995;
Dumoulin et al., 2000). Its functional role is not yet characterized
precisely. It responds to biological motion (Bonda et al., 1996;
Puce et al., 1998; Grossman et al., 2000; Grezes et al., 2001; Vaina
etal., 2001) and to movement patterns of interacting geometrical
shapes (Castelli et al., 2000).

The observed posterior STS is also close to regions of the tempo-
ral lobe that are active during smooth pursuit eye movements in
humans (Petit and Haxby, 1999; Schmid et al., 2001) (Fig. 4B). In
nonhuman primates, stimulations (Komatsu and Wurtz, 1989) and
lesions (Newsome et al., 1985; Dursteler and Wurtz, 1988) of the
superior temporal sulcus [area MT and medial superior temporal
(MST) area] affect saccades and pursuit eye movements.

The observed posterior superior temporal cortex is slightly
anterior to the areas reported for biological motion or smooth eye
movements (Fig. 4B). It is even closer to the STS activation re-
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ported during imitation of action (Iacoboni et al., 2001). Imita-
tion would require matching an observed action to an internal
motor representation and using it to organize future behavior
(Rizzolatti et al., 2001). Similarly, recent studies on motor prep-
aration suggest that STS is involved in extracting contextual and
intentional cues during goal-oriented behavior (Toni et al.,
2001). We suggest that an internal model of motion characteris-
tics of the learned trajectory is built up during the training session
and consolidated during the post-training night. At retest, to
minimize the error, the information provided by the current mo-
tion of the target has to be integrated with the stored representa-
tion. The STS would be involved in this on-line integration,
which could not occur during the pursuit of the new trajectory. In
consequence, our results support the view that STS is not special-
ized in the perception of social cues but is involved more gener-
ally in the evaluation of complex motion patterns. Future re-
search will have to test these hypotheses.

Effect of sleep on experience-dependent changes in brain
functional connectivity

Psychophysiological interactions showed that the responses of
the DN were correlated with the activity in the posterior part of
the STS more tightly when the trajectory was learned than when it
was new and more so in sleeping subjects than in the context of
sleep deprivation. The STS area is the same as the one detected by
the trajectory-by-group interaction. This observation is consis-
tent with a role of temporo—ponto—cerebellar circuits in ocular
following tasks. First, projections from the superior temporal
cortex to pontine nuclei are identified in nonhuman primates
and contribute to cortico—ponto—cerebellar circuits (Ungerlei-
der et al., 1984; Glickstein et al., 1985; Schmahmann and Pandya,
1991). These projections are thought to be involved in smooth
pursuit eye movements in monkeys (Tusa and Ungerleider,
1988). Second, neurophysiological studies in primates show that
ocular responses during trajectory tasks are mediated by a path-
way involving temporal areas, pontine nuclei, and the cerebellum
(Kawano et al., 1994; Takemura et al., 2001). Third, theoretical
models hypothesize that temporal cortices are involved in build-
ing up an internal inverse model for eye movements during ocu-
lar following responses (Wolpert et al., 1998). These proposals
refer to the STS in monkeys (areas MT and MST). The posterior
STS area detected here is more anterior than the human MT/V5
complex. We suggest that the increased functional coupling be-
tween the DN and the STS might indicate that STS provides the
(ponto—)cerebellar circuits with information on the eye trajec-
tory appropriate for matching the learned trajectory. These inter-
actions occurred only in the subjects who slept during the first
post-training night.

Psychophysiological interactions also showed that the re-
sponses of SEF were correlated with the activity in the FEF more
tightly when the trajectory was learned than when it was new and
more so in sleeping subjects than in the context of sleep depriva-
tion. In nonhuman primates, SEF and FEF are mutually con-
nected (Huerta et al., 1987), and neural responses in the FEF are
related to smooth pursuit eye movements (Gottlieb et al., 1994;
Tanaka and Fukushima, 1998). Inactivation of FEF impairs
smooth eye movements (Shi et al., 1998), whereas electrical
stimulation of the FEF can generate pursuit eye movements
(MacAvoy et al., 1991; Gottlieb et al., 1994) and modulate their
gain (Tanaka and Fukushima, 1998; Tanaka and Lisberger, 2001,
2002). We suggest that the increased functional connectivity be-
tween SEF and FEF reflects a closer control of the eye movement
parameters such as their direction, speed, and gain. This is possi-
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ble because prediction of the target trajectory by the internal
model becomes more accurate.

Effect of sleep on learning
It should be noted that this experiment was not designed to eval-
uate whether consolidation occurs exclusively during sleep. Even
in the sleep-deprived subjects, the performance tended to be bet-
ter for the learned trajectory during the scanning session than
during the training session. This suggests that some consolida-
tion does take place during wakefulness. Indeed, it has already
been reported that consolidation of basic motor skills can occur
within 5 hr of wakefulness (Shadmehr and Holcomb, 1997).
Our results are consistent with the hypothesis of a favorable
influence of sleep processes on recent memory traces. The behav-
ioral data confirmed the observation by Smith and MacNeill
(1994). Total sleep deprivation during the first post-training
night disrupts subsequent performance of the learned trajectory.
The functional MRI data further show that when sleep is allowed
during the first post-training night, regional responses are in-
creased in critical regions usually activated by performing learned
motor sequences. Furthermore, the functional connectivity is
augmented between these regions and other areas known to par-
ticipate in the conventional smooth pursuit eye movement net-
work. These changes in connectivity might reflect better inverse
modeling of the ocular following response and better control
over the oculomotor output.
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