
Recent Developments in OMG/CORBA

Wolfgang Emmerich

University College London
Dept. of Computer Science
London WC1E 6BT, UK

http://www.cs.ucl.ac.uk/staff/w.emmerich

and LogOn Technology Transfer
Frankfurter Str. 15

61476 Kronberg (Ts.), Germany
we@acm.org

ABSTRACT
An increasing number of applications are now being de-
veloped in a distributed setting. The main focus of this
half-day tutorial is on OMG/CORBA, a widely recog-
nised middleware standard for heterogeneous and dis-
tributed application integration. The tutorial discusses
CORBA's object model and its representation in the
OMG interface de�nition language (IDL). Programming
language bindings to IDL are discussed; static and dy-
namic invocations are distinguished and CORBA ser-
vices and facilities are sketched. The tutorial closes with
an indication of recent and future standardisation e�orts
undertaken by the OMG.

KEYWORDS
Middleware, CORBA, IDL, Dynamic Invocation In-
terface, Interface Repository, Interoperability, CORBA
Services, CORBA Facilities, Domain Interfaces.

1 PROBLEMS OF DISTRIBUTION

In a number of domains applications have to be adapted
to evolving market conditions so quickly that it is no
longer feasible to develop and, especially, to maintain
huge, centralised applications. Applications, therefore,
have to be down-sized into manageable components that
can be developed and maintained autonomously and
distributed over the network of an enterprise.

Distribution, however, imposes several challenges on ap-
plication development. Autonomously implemented ap-
plication components tend to be heterogeneous, being
implemented in di�erent programming languages, and
are targeted for di�erent hardware and operating sys-
tem platforms. Moreover, if application components are
distributed over a network, concurrency control issues
must be solved and potential failures, such as temporar-
ily unreachable components, must be addressed.

The need arises to support development of distributed
applications using appropriate middleware layers, aim-
ing at making the problems of distribution transparent
to developers and users. Examples of such layers in-
clude the distributed computing environment (DCE) of
the Open Software Foundation, ISO's ODP standard,
various standards of the CCITT (such as X.400, X.500
and X.722), the Common Object Request Broker Ar-
chitecture (CORBA) of the Object Management Group
and the evolving Distributed Component Object Model
(formerly called Network OLE) from Microsoft. In or-
der to be able to design and implement distributed ap-
plication architectures, software engineers will need to
know the middleware components that they can rely on.
This tutorial will provide an overview of the middleware
standards and focus on OMG/CORBA.

2 CONTRIBUTION OF OMG/CORBA

There are about ten CORBA implementations commer-
cially available. Although the tutorial brie
y sketches
the major products, the main focus is not on a particu-
lar product but rather on the standards adopted by the
OMG and their rationales. All OMG speci�cations are
publicly available from www.omg.org.

Object Request Broker: CORBA facilitates integra-
tion of distributed and heterogeneous applications and
reuseability and portability of application components,
on the basis of object technology. The central compo-
nent of CORBA is an object request broker (ORB). It
enables client objects to request operation executions
from server objects. Client and server objects need not
be implemented in the same programming language;
they can be running on di�erent types of operating
systems and on di�erent types of hardware platforms.
The interoperability speci�cation in revision 2.0 of the
CORBA standard de�nes how operation requests are to
be transferred to server objects connected to ORBs of
di�erent vendors.

Object Model: To accomplish integration in the con-
text of such heterogeneity, the OMG has adopted a com-
mon object model. It de�nes a set of object-oriented
concepts and facilitates mappings of the CORBA ob-

1



ject model to a large variety of programming languages.
The concepts include attributes and operations, mul-
tiple inheritance, polymorphism, operation rede�nition
and exceptions.

Interface De�nition Language: CORBA IDL is a
programming language independent module intercon-
nection language with constructs for all concepts of the
common object model. Application builders use this
IDL to de�ne export interfaces of objects and to group
these interfaces into more coarse-grained modules. The
OMG has adopted standard language bindings to the
IDL for C, C++, Smalltalk and Ada-95. Further bind-
ings for Java and OO-Cobol are currently being consid-
ered for adoption.

Object Adapter The OMG has recently adopted the
portable object adapter (POA). The POA replaces the
basic object adapter (BOA) that was part of CORBA
2.0. Object adapters determine how server objects reg-
ister themselves with a broker. Moreover they standard-
ise object identi�cation and object activation strategies.
The POA resolves portability problems that were cre-
ated due to a poorly speci�ed BOA.

Static vs. Dynamic Requests: Operation execu-
tion requests can be de�ned statically or dynamically.
Client stubs for static requests, which are program-
ming language dependent, are generated by an IDL
compiler. Client objects request operation execution
through stubs as local procedure calls in their respec-
tive programming languages. Asynchronous requests
are implemented by invoking a stub in a new thread.
Hence, operation requests are de�ned at compile time
of the client object. The static de�nition of requests
has the advantages that it is easy to use and that type-
safeness and the availability of requested operations are
checked at compile time by the respective compiler used
for the client object. However, static invocations can-
not be used if the interface of a server object is not
yet de�ned at the time of the compiling the client. An
example is an object browser that displays attribute val-
ues of objects. Such a browser should cope with objects
whose interfaces are de�ned after the browser has been
built. In these cases, the Dynamic Invocation Interface
(DII) is used to compose operation requests at run-time
and send requests to a server object.

Interface Repository: In order to be able to use the
DII e�ectively, a repository is required to look up type
information of objects at runtime. The object browser,
for instance, has to perform a look up of attribute names
and types before it can compose an invocation request
for an operation to obtain an attribute value. The
CORBA Interface Repository (IR) serves this purpose.
Any CORBA object has an operation that returns a
reference to its interface de�nition stored in the IR. It

provides operations to obtain the attribute names and
attribute types of an interface de�nition and operations
and their signatures. Hence, the IR is typically used to
accomplish safe usage of the DII.

CORBAservices: A number of fundamental require-
ments common to all heterogeneous and distributed
computing architectures are addressed by CORBAser-
vices. Fifteen services have been adopted so far and
these include the de�nition of external object names
(Naming), distribution of events amongmultiple objects
(Event Noti�cation), maintaining relationships between
objects (Relationship), creation, migration and removal
of objects (Lifecycle), persistent storage of objects (Per-
sistence), atomic transactions (Transaction), and object
concurrency control (Concurrency).

CORBAfacilities: The CORBAfacilities are layered
on top of the services. Facilities are components that
are useful horizontally across domain borders. The �rst
facility adopted by the OMG is the distributed docu-
ment component facility that evolved from the Open-
Doc Framework produced by Apple, IBM, CI Labs and
Novell. It features document components, their com-
position into compound documents and their portable
visualisation across various user interface platforms.

3 FUTURE DEVELOPMENT OF CORBA

The OMG is now working on standards for di�erent
vertical market domains. The domains currently being
considered are business objects, electronic commerce,
health care, manufacturing, telecommunication and the
�nancial sector. Domain speci�c task forces have been
set up and are working towards domain interfaces. The
�nancial domain task force, for instance, is currently
working towards the speci�cation of facilities for money
and currency, international business calendars and in-
ternational funds transfer.

Among desktop environments, Microsoft's OLE (object
linking and embedding) has a major role. The OMG has
recently adopted the COM/CORBA interworking spec-
i�cation. It de�nes the mapping of Microsoft's common
object model (COM) to CORBA's object model and
interoperability protocols between OLE and CORBA.
These enable OLE objects to request operation execu-
tion from CORBA objects and vice versa.

2


