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the plasma are strongly coupled to the t ransverse  
modes [4-6]. This will happen, for large enough 
Bo, when the propagation vector k does not lie 
along B o [4-6]. For  example, an approximate 
solution of !R I = 0 is given at low temperatures,  
by [4 eq. (76)] 

- s  2=  2 p + ~ e 2 S i n 2 0  + ~ 2  e s i n  2 0 / c 2 k  2 (6A) 

where ~p and f~e denote the electron plasma and 
gyro frequencies. On the other hand, the cor re -  
ss~onding solution of e L = 0 (which we denote by 

app) is given by 

2 2 sin2 0. (6B) -S2app = Wp + ~e  

Eq. (6B) is the square of the frequency at which 
the "side peaks" in the spectrum of scattered 
light is usually assumed to occur. Eq. (6A), 
however, predicts that, due to the t ransverse  
motion of the plasma, the square frequency of 
the "side peaks" will be shifted by an amount 
equal to 

2 2 
~p~e sin2 0/c  2k2" (7) 

Clearly, this shift is significant when 

c2k 2 > ~2 sin2 0. (8) 

If n e = 1012 cm -3 one can obtain a value for k as 
small as 2 cm -1 so that eq. (8) will be satisfied 
when ~e ~ 6 × 1010 sec - I  (B o ~ 3500 gauss). Un- 
der these circumstances the frequency shifts of 
the "side peaks" which are  due to the t ransverse  
motion of the plasma will be quite significant. 
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Stevens and Tucker [1] showed recently that 
the finiteness of the phonon wavelength in micro-  
wave acoustic resonance altered the moments of 
the absorption line. Their approach, based on the 
moment method of Van Vleck [ 2], shares its fun- 
damental weakness that changes in the observed 
line shape are  not completely described by the 
changes in a small number of its moments. These 
may be due to some combination of line broaden- 
ing, a line shift or  the appearance of satellite 
lines. Further,  in [1] the moments are  related 
to the phonon wave vector q, which is replaced 
by qo, the wave vector appropriate to the peak 
of the resonance line. In general q varies if the 
phonon frequency co is varied to measure the line 
shape, i.e., q = q(~). But the moments are  inte- 
grals over ~ ,  i f r (~ )  is the line shape, the ~Vth 

o o  

moment is (a~) = f d~ ar~(~)  - and it is not 
- o o  

clear  what meaning can be given to an equation 
which relates this moment to q, which is a func- 
tion of the integration variable ~. 

A different approach is practical  in certain 
simple cases,  and gives some insight into the 
results of [1]. It indicates that the moments are  
altered by the appearance of additional weak 
resonance lines, with intensity quadratic in q and 
position independent of q. These will be difficult 
to detect, even though there may be large 
changes in the moments. The f i rs t  moment of 
the absorption line is changed by the variation 
of wavelength with ~. 

In the simplest model showing the effects dis-  
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cus sed  in [1] sp ins  with ef fec t ive  spin ¢ = ½ i n t e r -  
ac t  with a s t a t i c  magne t i c  f i e ld  and a r e  coupled 
in p a i r s  by the i s o t r o p i c  exchange in t e rac t ion  
~]¢1.o2,  with only weak i n t e r ac t i ons  between the 
p a i r s .  The  e i g e n s t a t e s  of one such p a i r  can be  
wr i t t en  in t e r m s  of the  s t a t e s  I~IZ,  Cr2Z }. They 
a r e  1_*½,±I>, with ene rgy  _+ t/coo, the s y m m e t r i c  

1 1 1 1 / s t a t e  Is> = { [ ~ , - ~ > +  [-  ~,~>}/~ 2 with energy  ze ro ,  
1 1 and the a n t i s y r n m e t r i c  s t a t e  In> = {1~, - ~> + 

- - ~, ½>}/~ 2 with ene rgy  - ~]. T r a n s i t i o n s  a r e  I 1 1 / 

induced be tween the l e v e l s  of th is  p a i r  by the 
m i c r o w a v e  phonon in t e r ac t i on :  h = h I ÷ h 2 = 
= A { %  1 s in  (cot.~ +q.rl)+¢x2 sin (cot + ~0 ÷ q.r2)  }. 
Any dependence  of A on q o r  co will  be neglec ted .  
We wr i t e  a = r 2 - r 1. When q.a i s  z e ro  the only 
a l lowed t r a n s i t i o n s  a r e  be tween Is) and * * 
both t r a n s i t i o n s  involving phonons of ene rgy  ~Wo. 
If q .a  i s  f in i te  t r a n s i t i o n s  be tween I a} and I ÷ I,-+ ½> 
b e c o m e  s l igh t ly  a l lowed,  fo r  <a[h 1 I, I> = - 
={<½,-½ h215,½)-  <-½,5 h I 1,1)}/J2 and 
<alh - 5 , -  5> do not vanish ,  giving sa t e l l i t e  l ines  
at  f r e q u e n c i e s  co,_ = I(coo ± 3) I" In the long wave 
l i m i t  q .a  << 1 we obtain,  a f t e r  averag ing  ove r  the 
phase  ~o: 

[<a[h[+5,_+5> ]2 = I<slhl+_5,+_½> 12 ( l q . a )2 .  (1) 

These  t r a n s i t i o n s  a r e  w e a k e r  by (Sq .a )  2 than the 
ma in  p a i r  l ine ;  fo r  X band phonons and sp ins  on 
neares t  neighbour  s i t e s  th i s  f a c t o r  i s  t yp i ca l ly  
10-5 or  10-6. The r e s u l t a n t  r e sonance  s p e c t r u m  
i s  independent  of the magne t i c  f ie ld  o r ien ta t ion  
when the  s p i n - s p i n  i n t e r ac t i on  i s  i so t rop ic  ex-  
change a lone.  If a m o r e  g e n e r a l  f o rm  of i n t e r -  
ac t ion  between the m e m b e r s  of the p a i r  i s  u sed  
the r e sonance  s p e c t r u m  i s  an i so t rop ic ,  al though 
the o v e r a l l  p i c t u r e  i s  not changed.  Both the  a l -  
lowed and s l igh t ly  a l lowed  t r a n s i t i o n s  a r e  b r o a d -  
ened by  d ipo l a r  i n t e r a c t i o n s  with sp ins  in d i f f e r -  
ent p a i r s .  

The  m o m e n t s  of the  s p e c t r u m  can be c a l c u -  
l a t ed  f rom 

where Wij i s  the  t r a n s i t i o n  p robab i l i t y  between 
l e v e l s  i and j and coij the co r r e spond ing  f requency.  
There  i s  no d i f f icu l ty  in t r e a t i n g  the case  q = q(co); 
fo r  the  ma in  l ine  we u s e  q = q(wo) and fo r  the 
s a t e l l i t e s  q± = q(co4_). To order  (q.a) 2 (1) and (2) 
y ie ld  

<coN} N I if~N 

The denomina to r  of (2) i s  independent  of q.a, as  
the  a p p e a r a n c e  of t r a n s i t i o n s  involving [a) s l igh t ly  
d imin i she s  the  in tens i ty  of those  involving I s>. If 
the  phonon wavelength does  not change with f r e -  
quency, i .e . ,  q+ = q . ,  then the f i r s t  moment  <co> 
i s  s imply  coo and <co2> = coo 2 ÷ ¼ ]2(q.a)2, in 
a g r e e m e n t  with the  r e s u l t  of [ 1]. Thus  in th i s  
s imp le  c a s e  the changes  c o r r e s p o n d  so le ly  to the 
a p p e a r a n c e  of s a t e l l i t e  l ines .  If co = vlq I the l i nes  
at  co+ and co_ have d i f fe ren t  in t ens i t i e s ;  <co> i s  
r a i s e d  f rom conby }(qfl.a) 2] when coo < J and co. = 
J+- coo, and by~(qo.a)~2/co o when coo > J and - 
co+ = coo *-j" 

In p r a c t i c e  the s a t e l l i t e s  wil l  be  ha rd  to de tec t ,  
a s  they a r e  much weake r  than the ma in  r e sonance  
l ine.  If j i s  s m a l l  the  s a t e l l i t e s  wil l  l i e  under  the 
main  r e sonance  l ine ,  with negl ig ib le  effect  on 
both the l ine  shape and i t s  moments .  When j i s  
l a r g e  (as in the  example  given in [ 1] they will  l ie  
outs ide  the f requency  range  in which the l ine  
shape i s  m e a s u r e d ,  and the shape ac tua l ly  m e a -  
s u r e d  wil l  p robab ly  be the s a m e  as  that  of the 
photon r e sonance  l ine  given by o r d i n a r y  spin  r e s -  
onance e x p e r i m e n t s  [3]. The changes  in the ob-  
s e r v e d  l ine  shape  a r e  unl ike ly  to be  o b s e r v a b l e ,  
de sp i t e  the l a r g e  i n c r e a s e s  in the momen t s ,  in 
analogy with o the r  s i tua t ions  in both p a r a m a g -  
net ic  and f e r r o m a g n e t i c  r e sonance  [2, 4]. In ex-  
cep t iona l  c i r c u m s t a n c e s  the s a t e l l i t e s  will  be in 
a r eg ion  where  t h e i r  in tens i ty  i s  suff ic ient  fo r  
de tec t ion ,  j being s e v e r a l  t i m e s  the l inewidth of 
the  ma in  l ine.  As  t h e i r  in tens i ty  i s  quadra t i c  in 
a th is  f avour s  c a s e s  where  j has  such a value 
fo r  widely  s e p a r a t e d  sp ins .  F o r  a given coo the 
dependence  of in tens i ty  on q f avour s  c r y s t a l s  
with a low sound ve loc i ty .  In th is  c a se  the p o s i -  
t ions  of the s a t e l l i t e s  give  the magni tude  of the 
.exchange in t e rac t ion  d i r e c t l y ;  t he se  mus t  be 
m e a s u r e d  fo r  s e v e r a l  magne t ic  f i e ld  o r i en ta t ions  
ff an i so t rop ic  exchange o r  d ipo l a r  i n t e r ac t i ons  
a r e  a pp re c i a b l e .  
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