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The self-trapped hole in caesium halides 
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Abstract. The equilibrium lattice configuration, electronic excitation energies and activation 
energies for hopping motion are calculated for a self-trapped hole in simple cubic CsC1, CsBr 
and CsI. The defect is regarded as a X; molecular ion (X = Cl. Br. I) whose bond-length has 
been modified by the crystalline environment. Agreement with the experimental ultraviolet 
transition energies is good. Excitation energies deduced from measurement of g shifts in 
CsBr and CsI are too low, a feature common to all alkali bromides and iodides, and attri- 
buted to the approximations involved in their derivation. The initial calculations predict 
lower activation energies for 90" jumps than for 180"jumps, in contrast with what is observed 
in CsI. An alternative model is presented, which reproduces the correct trend. Comparison 
of the actual numbers with experiment is hampered by the fact that the latter are done at low 
temperature (60-90K), the calculations being done in the high-temperature limit. 

1. Introduction 

Spin resonance data (Pilloud and Jaccard 1973, and private communication) indicate 
that the hole in simple cubic caesium halides is localised on two neighbouring halide ions, 
with the axis of the centre pointing in the [loo] direction, as illustrated in figure 1. This 
sharing of the hole between two adjacent anions (the V, centre) is typical of all alkali 
halides and alkaline earth fluorides and has been observed in more complicated com- 
pounds like e.g. KMgF,, RbCaF, and the ammonium halides. It has led to the develop- 
ment of a theoretical model for the hole centre known as the 'molecule in the crystal' 
model (see e.g. Stoneham 1975). Its basis assumption is that the electronic (i.e. optical 
and spin resonance) properties of the centre are those of an X; molecular ion, the crystal 
environment only affecting the interatomic spacing within the molecule. It has been 
applied successfully to the alkali fluorides and chlorides (Jette et a1 1969, Adrian and 
Jette 1974) as well as the alkaline earth fluorides (Jette and Das 1969, Norgett and Stone- 
ham 1973). It should be particularly adequate for simple caesium halides, where the high 
symmetry of the V, centre (D4, as opposed to D,, in the other cases mentioned) ensures 
that certain electronic states of the molecular ion will not be split by the crystal field. 

Only very recently did potential curves for the heavier molecular ions Br; and I; be- 
ccme available (Tasker et a1 1976), and previous treatments of the self-trapped hole in the 
corresponding caesium halides had to resort to an alternative small polaron approach 
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Figure 1. Geometry of the V, centre in the CsCl lattice. The open circles are halide ions. the 
full circles are caesium ions. 

(Iida and Monnier 1976a, b). These calculations further supported the ‘molecule in the 
crystal’ hypothesis by explicitly showing that two-site self-trapping is energetically more 
favourable than trapping on a single site or complete delocalisation. 

The purpose of this paper is to take advantage of the newly published results on Br; 
and I;, and to present a unified treatment of the static and dynamical properties of the 
self-trapped hole in all simple cubic caesium halides based on the ‘molecule in the crystal’ 
model. Specifically, we shall be concerned with the lattice distortion around the V, centre 
and the corresponding relaxation energy, as well as with the evaluation of activation 
energies for the hole’s hopping motion. 

2. Model potentials 

Our calculations follow many of the ideas of Mott and Littleton (1938). Ions in an inner 
region were relaxed explicitly until they experienced no net resulting force, while ions in 
the remainder of the lattice were displaced until the polarisation of the crystal was the 
same as that of the material regarded as a dielectric continuum. 

To describe the interaction between ions of the perfect lattice we used a shell model. 
which gives a realistic description of both elastic and dielectric properties, and guarantees 
a continuous behaviour of the latter between the inner and outer Mott-Littleton region. 
The model parameters were obtained from Muller and Norgett 1973 for CsCl; exactly 
equivalent results for CsBr and CsI were obtained from M J Norgett (private com- 
munication), who fitted the interionic potentials to the lattice constants and shear con- 
stants cii-cI2 and c44 at 0 K, and calculated the shell parameters from the transverse 
optic frequencies, dielectric constants and ionic polarisabilities. The choice of Van der 
Waals parameters follows the full discussion by Catlow et a1 (1977). The results are 
collected in Appendix 1. 

Tasker et a1 (1976) obtained potentials for Cl;, Br; and I; using the orthogonalised 
Moffit method. Their results for Cl; are in good agreement with the self-consistent field 
molecular orbital calculation of Gilbert and Wahl (1971). They have fitted their ground 
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state ('E,') potential curves to sixth-degree polynomials in the internuclear distance?. 
This form is appropriate for separations close to the equilibrium bond-length. At large 
distances, which are important when the hole is in a thermally activated state, it breaks 
down and we have used the following Buckingham form : 

V(r)  = A exp ( -  r / p )  - c/r6 

where the three constants were fixed by asking that the equilibrium bond-lengths, 
dissociation energies and harmonic frequencies by the ones given by Tasker et a1 (1976). 
The parameters are again listed in Appendix 1. In order to check (2.1) we have computed 
the lattice distortion and relaxation energy for the ground state of the V, centre in all 
three caesium halides, using both Tasker et al's parameterisation and ours, and found no 
significant differences. 

Finally we have to specify the interactions between the defect and the lattice. In our 
model the hole is spread evenly between the two ions forming the v k  centre. giving each 
of them a net charge of -+]el. Due to the contraction of the electron cloud upon formation 
of the molecule, the defect ions should be less polarisable than ordinary lattice anions. 
Following Diller (1976) we take this effect into account by assuming that the two ions of 
the centre have the same polarisability as the isoelectronic rare gas atoms. The resulting 
spring constants and shell charges are also listed in Appendix 1. (Calculations done with 
unpolarisable V, ions showed that the results are insensitive to the choice of polarisabili- 
ties, the maximum difference in relaxation energy being less than 0.1 eV, with a negligible 
change in lattice distortion). The last problem is to define the short-range (i.e. non- 
electrostatic) interactions between lattice and defect. In our first calculations, we regard 
the V, ions as ordinary lattice anions in that respect. A second model in which some 
anisotropy is built into the X-1'2-anion interaction is briefly discussed in the last section. 

3. Hopping motion 

The hole's motion through the crystal is a hopping process. The simple cubic anion lattice 
allows for two types of jumps : those in which the orientation of the centre is not altered 
(180" jump) and those in which the initial and final configuration are at right angles (90' 
jump). Both have been observed in CsI and their respective activation energies measured 
(Pellaux 1976) and a lower energy found for the 180" jumps. In a previous theoretical 
treatment of the problem, Iida and Monnier (1976a, b) predicted that the 90" energy 
should be lower, most of the difference between the calculated activation energies being 
due to the interaction of the hole with the longitudinal optic modes of the lattice. They 
worked in the harmonic approximation, expanding the ionic displacements in phonon 
coordinates of the perfect lattice in the long-wavelength limit, and treated the hole- 
lattice coupling to linear order, using a point-ion model. Our approach differs from theirs 
in that we work in real space, use better interatomic potentials and go beyond the har- 
monic approximation. A concise exposition of the theory of hopping within the small 
polaron model as well as useful references can be found in the paper of Norgett and Stone- 
ham (1973). Here we shall content ourselves with quoting the main results. 

Our activation energies are calculated as differences between two energies : 

E,  = .!?,(activated) - E,(ground) (3.1) 

+ Their coefficientf for I; should read -0.95324356 instead of -0.95824356. 
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where E ,  (ground) is the relaxation energy for the equilibrium configuration of the v k  

centre, and E,  (activated) is the relaxation energy of the hybrid defect configuration which 
minimises the potential energy in a force field equal to the average of the fields in the 
initial and final equilibrium configurations (Norgett and Stoneham 1973, pp 240-1). 
E, is the activation energy in the high-temperature limit. Experiments are usually done at 
temperatures well below this limit and the jump probability is fitted to an expression : 

Wobs = WO exp ( -  UobsikT). (3.2) 

In order to compare our calculated activation energies with the experimental ones, we 
have to assume a form like (3.2) at any temperature, which leads to an effective activation 
energy : 

d 
d T  

U = kT2-In [P&(T)]. (3.3) 

The problem of relating E,  to U for an arbitrary phonon spectrum is still open. From the 
work of Yamashita and Kurosawa (1958) who treated the simplest possible case, i.e. the 
coupling to phonons of a single frequency w, we can extract the following relation : 

U = E,2 cosech' ( y )  cosh(y) - 1 (3.4) 

where I, and I, are modified Bessel functions, y = hoi2kT and S 4E,/hco is the Huang- 
Rhys factor (see e.g. Stoneham 1975). We shall use (3.4), with w equal to the longitudinal 
optic frequency to relate our data with experiment, although the procedure is extremely 
unsatisfactory, in view of the important role played by the acoustic phonons in the self- 
trapping process. 

4. Calculations and results 

We have calculated the ionic configuration and relaxation energy of the V, centre in its 
equilibrium and thermally activated state in the Mott-Littleton approximation, using 
the HADES (Harwell Automatic Defect Evaluation System) program (see e.g. Lidiard and 
Norgett 1972). In our final computations the number of explicitely relaxed ions was typic- 
ally of the order of one hundred. 

4.1. Equilibrium properties 

In table 1 we present the Vk formation energies. They correspond to the work required to 
move two X-  ions separately to infinity and then to introduce an X i  molecule, originally 
with the atoms separated, into the crystal. For comparison, the energy of a hole at the top 

Table 1. Energy of V, centre, compared with that of a hole at the top of the valence band in an 
undistorted crystal. 

CSCl CsBr CSI 
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Table 2. Displacements of a few selected ions. The coordinates refer to the cores. The origin is 
at the midpoint between the two V, ions. The labels refer to figure 1. 

Undisplaced site Displaced site 

0,334 0 0 CSCl 
vo, 0,O) 0,343 0 0 CsBr 

0,362 0 0 CSI 

0 0.557 0.557 
V(O,+, i, 0 0,557 0.557 

0 0,554 0,554 

1.467 0 0 

1.467 0 0 
E($, 0,O) 1,467 0 0 

1,013 0,515 0,515 
C(1, ;> i, 1,013 0,515 0515 

1,013 0.5 15 0515 

of the valence band of an undistorted crystal is roughly equal to : 

E ,  = EM - + E ,  

where EM is the Madelung potential at the anion (29.3 1 eV/a, where a is the lattice constant 
in A), and E, is the width of the valence band in the undistorted crystal with the spin-orbit 
contribution subtracted. Table 1 also contains estimates of E, based on bandwidths 
deduced from photoelectron spectra (Poole et a1 1975). As expected, the self-trapped 
configuration is more stable in all cases. In table 2 we show the displacements of a few ions 
in and around the Xi molecule. They are very similar for all three substances, their 
amplitude decreasing slightly with increasing anion size. Finally, in table 3, we list the 
separations between the two ions of the V, centres and compare them with the equilibrium 
bond lengths for the free molecular ions. Once these separations are known, the transi- 
tion energies to electronically excited states of the centre can be read off Tasker et al’s 
potential curves, which we reproduce in reduced form in figure 2. The calculations which 
led to these curves did not include the spin-orbit interaction. This should be kept in mind 
when comparing the results for the infrared excitation ( 2 X ;  + 211s in the standard 
notation) with experiment : the 213g state is spin-orbit split, and almost all the intensity 
goes into the transition to the 211ig component, which lies higher in energy than its 
2133g counterpart. The computed curves represent an average between the two transition 
energies. This last remark also applies to the energy E,  deduced from spin resonance data, 
and corresponding to the transition + =P. 

Table 3. Atomic separation of V, centre (shell-shell distance), compared with the equilibrium 
bond-length for the free molecular ion computed by Tasker et al. 

CSCl CsBr CSI 

E22 
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Internuclear d i s tance  (8) 
Figure 2. Excitation energies as a function of internuclear distance in the 'molecule in the 
crystal' model. Shown are the ultraviolet (Euv) and infrared (Ei,) optical transition energies, 
and the energy E, derived from the g factor. The vertical broken lines correspond to the 
calculated equilibrium separations. The full circles are experimental results (Euv from Sidler 
1976, E, from Pilloud and Jaccard 1975 and private communication). 

4.2. Hopping motion 

Our calculated activation energies are collected in table 4. In all cases the 90" jump has a 
lower value of E a  than the 180" jump. By fitting to (3.2) thermoluminescence data for CsI 
doped with F centres and submitted to a 30 min p irradiation, Pellaux (1976) obtains the 
following values for the observed activation energies : 

Linear motion (55 K < Tfi, 6 66 K): U:::' = 0.13 i 0.01 eV 

90" jump (84 K < Tfit < 90 K): = 0.20 i- 0.01 eV. 

A crude estimate of the corresponding values for E, can be found by inverting equation 
(3.4) and the result is : 

E,[180"Jump] = 0.17 k 0.02 eV Ea[90"jump] = 0.23 k 0.01 eV 

Table 4. Activation energies for the two types of allowed jumps in a simple cubic structure. 

CSCl CsBr CSI 

E,(eV) 

EAeV 
(180" jump) 0.98 0.90 0 74 

(09" jump) 0.76 0.73 0.64 
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where the errors allow for both quoted experimental errors and for uncertainties in the 
choice of effective frequency. In view of the oversimplified form of (3.4) and the ambiguities 
connected with the determination of activation energies from glow curves, the discrepan- 
cies in magnitudes between the experimental and computed results are not surprising. Of 
more concern is the fact that our calculations predict a lower activation energy for 90" 
jumps. A remedy to this situation is presented below. 

5. Discussion 

The good agreement between the calculated separations of the two ions forming the V, 
centre and those obtained from ultraviolet transition energies supports the 'molecule in 
the crystal' picture. The excitation energies deduced from spin resonance data are too 
low (see figure 2), a feature common to all alkali bromides and iodides (Tasker and 
Stoneham 1976). This is certainly due to the approximate derivation of E, from the shift 
in g,,, the g component parallel to the axis of the centre (Schoemaker 1973), which 
involves a perturbation expansion to second urder in (A/Eg)  where A is the spin-orbit 
parameter. (For Br; and I ;  the expansion parameter is respectively equal to -0.15 and 
-0.33, as opposed to -0.03 for Cl;.) 

We also considered the hole's hopping motion and our results, which predict a lower 
activation energy for 90" jumps than for 180" jumps, are in contradiction with what is 
observed in CsI. Faced with the same situation in the case of the alkaline earth fluorides 
Norgett and Stoneham argued that, upon formation of the molecular bond the contrac- 
tion of the electronic cloud should be much larger in the direction parallel to the axis of 
the molecule than in the direction perpendicular to it. Accordingly, they suggested a 
model in which the short-range repulsion between the V, ions and the nearest-neighbour 
anions along the molecular axis was reduced by one half, and which predicted the correct 
trend. Their argument should a fortiori apply to the larger anions considered here, and 
we have performed calculations along these lines. In all three cases we find that a decrease 
in the short-range repulsion between ions V and B (see figure 1) by 50 % brings the activa- 
tion energy for linear motion below the one for 90" jumps, without introducing any 
significant change in the latter and in the equilibrium properties. 
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Appendix 1. Model parameters 

AI.1 .  Perfect lnttice 

Repulsive and Van der Waals potential Y,(r )  = Ai j  exp( - r / p )  - ci j /r6 - Dij / r8 ,  

Spring constants k ,  k -  
Shell charges Y, Y- 
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CSCl CsBr 

r 

8908.0 
5602.0 
3523.0 
411.0 

0.0 
349.0 
751.0 
0.0 

702.5 
0,3234 

- 6.25 
- 1.64 
220.0 

11.5 

5815.0 
5815.0 
5815.0 

390.0 
0.0 

550.0 
714.0 
0.0 

1258.0 
0,3348 

- 6.08 
- 1.69 
198.0 

8.90 

CSI 

3599.0 
6563.0 

11965.0 
359.0 
0.0 

1002.0 
657.0 
0.0 

2813.0 
0,3496 

-6.13 

187.0 
- 1.87 

7.25 

A1.2. X i  molecule potential and shell parameter 

V(r) = A exp ( - - r / p )  - C/r6 ,  shell charge Y,,,, spring constant k , , ,  

Cl, Br; 12 

A(eV) 11956.7 11640.7 11554.0 
P(A) 0.3339 0,3554 0.3936 
C(eVA6) 1913.7 2693.5 4803.0 

k,,2(eVA-2j 54,216 42,485 59,532 
y, 12(Ie/) - 2.485 - 2,705 - 4.087 
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