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Abstract. The theory is given for the electron diffraction by the void lattice in molybdenum, 
recently observed by Sass and Eyre. The results are analysed to see if this method can give 
useful new information about the voids and their ordering. 

The predictions of the positions and intensities of the extra peaks agree with observation. 
However, the quantitative theory shows that void shapes cannot readily be found from the 
diffraction data Nor is it easy to get accurate information about void sizes or the nature of 
the disorder in the void lattice, mainly because of the problems of measuring intensity 
profiles. The effects of the various forms of lattice disorder are discussed qualitatively. 

1. Introduction 

Recent work has established that periodic arrays of voids are formed in metals after 
suitable irradiation (Evans 1971, Eyre and Evans 1971, Wiffen 1972, Kulcinski et a1 
1972). The regularity of these remarkable three dimensional arrays was exploited 
recently by Sass and Eyre (1973) who observed electron diffraction from void and 
bubble lattices in irradiated molybdenum. 

The theory of electron diffraction by the void lattice is discussed in the present paper. 
In principle the observed diffraction patterns contain useful information about the 
voids and about their ordering. The main aim of the present paper is to examine the 
possibility of obtaining this information in practice. One might hope to obtain estimates 
of the sizes of voids and the nature of their faceting, for example. Or one might want to 
judge the degree and nature of the imperfection of the void lattice. Sass and Eyre used 
their data to obtain accurate estimates of the spacings of the voids in the lattice; here 
we concentrate on the other aspects. 

2. General theory 

The diffraction will be discussed using kinematic theory. Naturally one has reservations 
about using a theory assuming only weak diffraction and absorption for an electron 
beam in a metal. But the approximations are not violated too strongly for the thin 
films used, and, in any case, the main qualitative features should be given adequately 
by the simple theory. In particular, negative conclusions will surely hold in both theories : 
if kinematic theory indicates some parameter cannot easily be obtained from observed 
patterns, the same should be true for dynamical theory. 
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In the kinematic theory, diffracted intensities are proportional to the square modulus 
of a matrix element M ( K )  where K is the scattering vector. If the electron is scattered 
by some array (however imperfect) of N o  identical scatterers, then M can be factorized : 

M(K) = W Q S ( K )  (2.1) 

(eg Ziman 1964, $2.7). One factor, V(K),  depends only on the nature of the scatterers. 
The other, the structure factor S, depends only on the spatial arrangement of the 
scatterers : 

1 
S ( K )  = -zexp(-iK .Rl). 

No I 

Two consequences of the factorization are important here. First since only one species 
is present in the systems of interest, one may usually concentrate on the structure factor 
only. Secondly, the structure factor of a system with vacancies can be written as the 
difference of two terms. One describes the lattice with no vacancies, and the other is 
determined by the distribution of the n vacancies. This leads to a great simplification, 
since it is then straightforward to separate the contributions of the lattice defects to 
diffraction : 

1 
S(K)  = - 1 exp(-iK.R,) - exp(-iK.RJ 

NO allsites1 emvw 
(full or sites i 
empty) 

where N = N o  + n is the total number of sites. Here the structure factor of the perfect 
lattice is 

and that of the vacancy array is 

1 
n empty 

a(K)=- exp( -iK.R,J. 
sites m 

There are two implicit assumptions. One is that form factors V ( K )  of the atoms are 
unaltered by the presence of nearby vacancies. Whilst this is hard to assess, it is unlikely 
to be so important as to affect the present work greatly, and it is straightforward in 
principle (if not in practice) to verify. The other assumption is that we ignore interstitials, 
dislocations, impurity atoms and other defects. The reason is that there is no evidence 
for ordering and its consequences associated with these other imperfections. Their main 
effect is to broaden the observed peaks and to set bounds on the resolution of the experi- 
ments. 

We now calculate structure factors a(@ in a number of cases of interest. It is useful 
to recall that the structure factor of a perfect infinite crystal is 

SO(W = &,BH (2.6) 

where gH is a reciprocal lattice vector for the host crystal. 
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3. Structure factors for perfect void arrays 

For simplicity, an array of isolated vacancies is discussed first. None of the experimental 
results fits this picture, but the vacancy array is a useful reference system for the cases 
discussed later. The array is assumed to have the same structure as the host (eg bcc or 
fcc), but the spacing of the vacancy lattice is a factor L larger than that of the host. 
Thus N / n  is gH/L. 
The defect structure factor a(K) becomes : 

and the reciprocal lattice vectors for the vacancy lattice are gD 

ao(K) = (3.1) 

When K coincides with a host vector gH (and hence also with a gD> the total structure 
factor is 

S ( K ) = - - - -  N n  - 1. 
N o  N o  

(3.2) 

Thus the vacancy array does not affect the intensity of the main peaks. The additional 
peaks occur when K coincides with a defect lattice vector gD only, when 

n 
S ( K )  = -. 

NO 
(3 .3)  

This is independent of which gD is involved The diffraction pattem expected consists 
of the usual and dominant host peaks, regularly interspersed with weaker peaks which 
are all of the same intensity. 

3.1. Infinite array of iioids 

We now show that o(K) for an array of voids can be written as a product of two factors. 
One of the factors is BngD oo(K) and this simply reflects the regularity of the void array. 
It is the same as the structure factor (3.1) for the array of vacancies. The other factor in 
a(K) for the void array, F,(K), depends on the structure of the individual voids and not 
on their arrangement in space. It is just the structure factor of an isolated void, so that, 
in principle, F,(K) contains information on the size and faceting of the voids. 

The expression for the defect structure factor 

can be derived by noting that the sum over the empty lattice sites (2.5) can be written 
as a double sum over the n, voids and the ii vacant sites for each void Thus the defect 
structure factor is 

1 
a ( K ) = - - _  1 exp(-iK.R,, ,)  n,n empty 

51158 

1 1 
n, volds emply s l ta  

= -  1 i 1 exp( - iK.(Ri  + P A ]  
i m as void I 

where Ri refers to the centre of the void, and pm is relative to this centre. 
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Rewriting, the expression becomes 

at one void 

= oo(K)F,(K) 

where oo(K) is the same as in (3.1) and F,(K)  is 

1 
- exp( - iK.pJ. 
11 empty sites 

at one void 

Equation (3.4) explains one of the striking results of Sass and Eyre, since it predicts 
that only a few extra peaks should be observed. For an extra peak to be observed, o(K) 
must be large compared with the general background. Clearly oo must be finite, which 
means K must correspond to a gD But F,(K) must also be sufficiently large. Since F,(K) 
decreases rapidly away from reciprocal lattice vectors gH of the host lattice, the way in 
which the observed peaks cluster around the perfect host peaks can be readily under- 
stood. This is shown quantitatively in figure 1. 

t- - - . . . . . 
'. 

K 
Figure 1. Intensities of void lattice spots. The predicted intensities are shown here for K in 
the [110] direction and for a void spacing corresponding to the helium bubbles in MO seen 
by Sass and Eyre. The dimensions of the helium bubbles are not accurately known, but the 
mean radius is of the order of 4 nearest neighbour distances and is much less than that for 
the voids in neutron irradiated samples In the figure a radius of 3.42 nearest neighbour 
distances was used. 

3.2. Dependence of F,(K) on void size and shape 

The void structure factor, F,(K), has been calculated numerically for a range of void 
sizes and shapes. One naturally exploits symmetry in performing the sum over sites, but 
no approximations are involved in the sum. Two limiting cases can be obtained analyti- 
cally. For ti = 1 one has isolated vacancies, and F,(K) = 1. For very large 9 if one can 
use a continuum limit in evaluating the sum, then 

(3.5) 
sin x - x cos x 

x 3  F,(K) = 3 

for a sphere of radius R = x/ 1 K 1. This second limit is important only for extrapolating 
some of the results for smaller voids. Comparing (2.4) and (3.4) one can see that F,(K) 
tends to S,(K)  at still larger f i .  
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Values of F,(K) have been obtained for voids of various sizes and for three types of 
shape : spherical, faceted along { 1 lo}, and faceted along I loo} (cubic). Some of the results 
for bcc lattices are given in figures 1 to 3. 

Figure2. Effects of void shape on intensities. I F,(K)I2 is given for K along the [110] direction, 
the units of K are the separation of the adjacent spots for the perfect host lattice. The full 
line is for a spherical void of 363 vacancies. Points Dare for a cubic void of 341 vacancies, 
and 2 for a void with I 1  10) facets containing 369 vacancies. Similar results have been found 
for larger voids. 

I O  

N - 
h 

?s 0 5  
k - 

0 005 0 IO 0.15 
K 

Figure 3. Variation of lF , (K)I2  with void radius. The scattering vector K is in the [110] 
direction, and given in units of the separation between adjacent spots for the perfect host 
lattice. The details of the voids (ii a the number of vacancies per void ( h .  k. /) coordinates 
of the outermost shell of vacancies and R the radius of the voids in units of the nearest 
separation of the host) are as follows : 

A n = I ( 1 1 .  k ,  I )  = (0, 0, 0) K = 1.0 
B 59 (2, 2. 2) 2.31 
c 113 (4, 2, 0) 2.83 
D 157 (4. 4, 0) 3.42 
E 363 (7. 1, 1) 4.16 

G 645 (6, 6, 0) 5.00 
F 537 (8, o3 0) 4.73 

H 749 (8, 4, 0) 5.26 
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The first conclusion is that, for a given number of vacancies per void, the differences 
in F,(K) are far too small to provide a useful determination of void shape. There are 
slight differences from case to case, illustrated in figure 2, but these will surely be masked 
by the limits of experimental resolution and crystal perfection. 

The second conclusion is that the value Ku20fthe scattering vector for which 1 F,(K)/’  
is is roughly inversely proportional to the void radius. This is just the dependence 
expected from (3.5), for example. Quantitatively the results can be expressed by writing 
K1 in units of KH, the difference between the adjacent host spot and its nearest [110] 
host spot. Writing the radius R of a spherical void in terms of the nearest neighbour 
distance a, for the host lattice. we find 

K , , , R  21 024 KHaH. (3.6) 

Figure 3 shows I F,(K)I’ for spherical voids of various sizes. It is worth noting that only 
very small scattering angles are involved, so that the variation of intensity with K is 
determined almost entirely by the structure factor; the variation of the factor V ( K )  is 
completely negligible. Thus equation (3.9 can be used to estimate the void size from 
observed intensity patterns. In principle, the void sizes can also be obtained by comparing 
the total intensities in the void lattice spots with those from the spots also present for 
the perfect hosts. Unfortunately, there are practical problems in measuring intensities, 
and neither method is likely to prove accurate quantitatively. 

Whilst numerical values cannot be obtained easily, the intensities indicated in 
figure 1 are consistent with the experiment reported by Sass and Eyre. For their larger 
void spacing and for a void radius deduced from direct microscopy, a few very close 
peaks are expected In practice, these are smeared together for other reasons, as observed 
by Sass and Eyre. For the small helium bubbles, one spot is clearly resolved experimen- 
tally. This is consistent with figure 1, for the second void lattice spot should have a low 
intensity comparable with the background level. 

3.3.A uoid arrayfinite in one dimension 

The void arrays observed whilst strictly three dimensional, are much more restricted 
in extent in one direction than in the other two perpendicular directions. The array can 
be thought of as a small number, np say, of parallel planes of ordered voids. It is difficult 
to decide how many planes are present from direct image experiments, so here the 
possibility of a determination of np from diffraction data is discussed. 

As in (3.4), the defect structure factor o(K) can be obtained by simple manipulation. 
It is convenient to introduce new variables: K I I  and Kl to describe the components of K 
parallel and perpendicular to the normal of the np void planes, gD, to give the reciprocal 
lattice vectors for one of the void planes, and RI ,  and R, to describe respectively the 
separation and relative parallel displacement of voids in the adjacent planes. The result 
is : 

d K )  = 6KLgDLFs(K)op(K,, K , , )  ( 3 . 7 )  

1 n p  

ap(Kl ,Kl i )  = - 1 exp [ - i(K,.R, + K I I  .R!,)i.] 

1 
n p  planes 

np pfancs 
* = I  

(3.8) = - $ exp ( - ~ A A )  
i = l  



The theory of electron diffraction by the void lattice 1341 

where A is [ K I R I  + KIIRII] .  Apart from an unimportant phase factor, values of ap for 
various np are 

n p  = 1 
np = 2 

ap = 1 
ap = COS (+A) 7 

t np  = 3 
n p  = 4 

up = (1 + 2 COS A)/3 
up = COS A COS +A 

(3.9) 

n p  = CC u p  = ~*,Zfl,. J 
Clearly, if the dependence on (K,R,  + K I , R I I )  E A can be discerned, there is some 

possibility of estimating np provided the number of planes is small. Even at np = 4 the 
predicted diffraction peaks are becoming rather too similar to those for the infinite array 
to be useful. 

If np is very small, say 1 or 2, one might hope to observe extra spots. Unfortunately, 
the only unexpected features observed correspond to streaking in the [OlO] directions 
in figure 1 of Sass and Eyre. These extra features cannot be explained by the finite number 
of planes since, for K , ,  = 0 (as here), the selection rules on K are independent of np.  

In principle, it should be possible to estimate n,, by comparing in detail intensities 
of spots which are equivalent when np becomes infinite. This has not been done experi- 
mentally, and would appear to be difficult technically. 

4. Disorder and the void lattice 

Electron microscopy shows clearly that the void and bubble lattices are imperfect. 
Here we discuss briefly the various forms of disorder on the diffraction patterns. This 
is important because it is by diffraction, rather than by direct microscopy, that the earlier 
signs of ordering are observed Indeed, from direct microscopy of the bubble lattice 
above (eg Sass and Eyre figure 3(a)) it is very hard to tell if ordering has occurred, whereas 
it is very clear in diffraction. 

For simplicity we discuss separately several types of disorder and attempt to isolate 
their main features. In the real system, all types will be present simultaneously, giving a 
much more complicated situation than for the simple amorphous or liquid systems 
often treated All types of disorder will cause some broadening of the individual diffrac- 
tion peaks, although this may be hard to separate from the broadening already present 
due to dislocations and to point defects (cf Krivoglaz 1969). 

The first form of disorder comes from the differing sizes and shapes of individual 
voids, even when they are centred accurately on a regular lattice. The distribution in 
sizes has been discussed by Evans (1972), who has given histograms of void sizes distri- 
butions after various irradiation conditions. There is no direct evidence for shape varia- 
tions for voids in the size range of interest, but observations on larger voids make such 
variations probable. The main effects of this form of disorder are on F,(K). Since the 
regularity of the void centres has not been disturbed, the positions of the void spots 
will be unaltered, although there may be some smearing. But the relative intensities of 
the spots, determined by F,(K) will be modified The value of K+ will now reflect some 
average void radius. Simple models, based on (3.5) and analytic fits to the size distribu- 
tions given by Evans, suggest that the inferred value of the void radius will be reduced 
by the spread. 

The second form of disorder involves gaps in the void lattice. Inspection of any of 
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the photographs from direct microscopy shows there are patchessometimes a dozen 
void spacings a c r o s s 4  which there are no voids, or else where the voids are very 
different in size. The patches show no ordering, but are apparently randomly distributed. 
Their main effect on the diffraction is to broaden the individual peaks. If, in addition 
to these large patches, there are also systematically missing voids, then more pronounced 
effects may be seen. For example, regions where every second void was missing could 
contribute to the streaking towards [OlO] seen in Sass and Eyre’s figure (16). 

The third form of disorder involves voids being displaced from their regular lattice 
sites. For simplicity we ignore variations in void sizes and shapes, and assume that the void 
lattice is complete. The effects of displacements of voids are most easily seen by com- 
paring the void lattice with a geometrically similar array of holes in a continuum. The 
structure factor for the perfect array continuum case consists of a set of equal spikes at 
scattering vectors K equal to reciprocal lattice vectors gD of the defect lattice. The effect 
of the underlying host lattice structure in a perfect void lattice is then to alter the relative 
intensities of these spikes, enhancing those for gD close to the host lattice vectors gH. 
Suppose now there are displacements of the voids without any significant changes in 
the distortion of the intervening host lattice. Then it is iikely that the individual spots 
will be broadened to include contributions from k close to g,,, but that there will be no 
major changes in the relative intensities of the different spots. 

The broadening of the individual spots can be treated in the continuum model. As 
is well known in the theory of liquids, for example, the broadening can give a measure of 
the pair distribution function of the scatterers (here the voids, or the holes in the con- 
tinuum). If there is a void centred on the origin, then the pair distribution function, P(r), 
is the probability that there is a void centred at r. It is readily shown that the structure 
factor in the continuum model is related to the Fourier transform of P(r) : 

o(k) = - d3r exp (i k.r) P(r). 
N ‘s 

Thus, if ’the broadening from disorder in position of the voids dominates, the widths 
of the spots give a measure of the order of the void lattice. However, because of the effects 
of the underlying host lattice structure on the spot intensities, it is not possible to invert 
the data satisfactorily to deduce P(r). For the normal void lattice, such an inversion 
would be superfluous anyway, since the individual voids can be seen directly. But for 
the bubble lattice (figure 3 of Sass and Eyre), where the spacings are very small, some 
information about the ordering would be useful. From the one set of spots observed, 
and in the absence of other information about the character of the displacements of 
the voids from their regular sites, one can merely argue that the fractional spread in 
nearest neighbour void separations is likely to be comparable with the observed frac- 
tional spread in scattering wavevector. For the Sass-Eyre data, the spread in separations 
of the helium bubbles appears to be about 20% of the mean separation. 

5. Concllrsion 

Sass and Eyre showed that the diffraction measurements were of value both in estimating 
the void spacings in a lattice and in recognising when ordering had occurred. The 
diffraction method is particularly useful for smaller voids and void spacings. 

The present calculations have discussed three main points. First, it has been shown 
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that the observed positions and intensities agree with the predictions, and that the clus- 
tering of the observed void-lattice spots around the host spots is to be expected Secondly, 
the possibilities of obtaining information about void faceting, void radii and numbers 
of planes of voids were discussed Unfortunately, the accurate measurement of intensity 
profiles is difficult in practice, for the large spacings lead to small Brag  angles and limited 
resolution, and reliable results seem to be ruled out Finally, the qualitative effects of the 
various forms of disorder in the void lattice were discussed, and their various effects 
analysed. 
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