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DOES COHERENT TUNNELLING OF POSITIVE MUONS CAUSE MOTIONAL NARROWING? 
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Recent work by Yaouanc has suggested that coherent tunnelling has no effect on the linewidth from dipolar interactions 
with magnetic nuclei. We show this is not correct, ultimately because an implicit assumption is not appropriate for the short- 
lived muon. Thus the linewidth does depend on the extension of the muon wavefunction. 

Resonance lines broadened by dipolar interactions 
are a common phenomenon.  The best studied cases 
are the nuclear magnetic resonance lines, for which 
Van Vleck's [ 1 ] classic analysis gives expressions for 
the moments  of  the shape. Recently work on muon 
spin resonance [2,3] stimulated questions of  whether 
the linewidth depended on the number n of  sites over 
which the muon moved coherently.  Yaouanc [2] ar- 
gued that there was no dependence on n, i.e. that the 
extension of  the/a + wavefunction did not matter .  
This appears to be wrong, since it ignores an impor- 
tant difference in the nuclear magnetic and muon res- 
onance experiments.  

Van Vleck's analysis is given most fully for like 
spins interacting. When one considers just a single 
spin A interacting with many spins B of  different g- 
factor, it becomes clear that two types of  ensemble 
average are involved, namely: 

(a) For  a given site of  spin A, there is a sampling 
of  aH possible states of  spins B; 

(b) For a fixed configuration of  spins B, the spin 
A can be moved to moni tor  all sites. 

If  spin A lives long enough for the configurations 
of  spin B to be sampled properly,  these two averages 
should be identical. This is the case in the magnetic 
resonance of  stable nuclei. However, for a muon in a 
typical solid, the muon lifetime (about  2/Is)  is much 
less than typical nuclear magnetic reorientation times 
(normally ms). Thus each muon A samples a frozen 
nuclear spin configuration B, and this leads to two 
distinct types of  sampling. 

In essence (ignoring limitations because only a few 
detectors are used), a muon spin rotation experiment 
monitors the spin reorientation angle and time delay 
between entry and decay for each muon. For present 
purposes one can regard the experiment as a measure- 

ment of  the effective magnetic field (Happtie d + hA) 
in which muon A precesses. There are two distinct 
samplings of  the internal field in the solid: 

(c) For  a given nuclear spin configuration B, h A de- 
pends on whether the muon is localised at a single site 
or whether it tunnels over a group of  N sites ( i ) ,  since 
the nuclear spin environment will differ among these 
sites. This is discussed quantitatively below. 

(d) Successive muons are injected at different times, 
and may end up in different parts of  the target, so that 
the nuclear spin configuration B may change during an 
experiment involving many muons. This sampling par- 
allels that for nuclear spins [(a) and (b) above]. Indeed, 
if the muon localises on a single site, the muon and nu- 
clear cases are equivalent. 

Yaouanc argues that coherent tunnelling, i.e. the ef- 
fect of  (c) above, does not  affect the observed spread 
in h A . We argue now this is wrong, and that tunnelling 
does reduce the observed width. 

The effective local field h A for muon A is the expec- 
tation value (q~A IhB(R)I gPA ) of  a field h B (R) which 
varies in space but  which is constant in time for a fixed 
nuclear spin configuration. For  simplicity, we make two 
working assumptions. We write the muon wavefunc- 
tion q~A in a tight-binding form, with i labelling the 
interstitial sites over which coherent tunnelling occurs: 
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cI) A = ~.= WAi~) i , ( l )  

and assume the field hB(R ) has values hBi which are 
essentially constant over each such interstitial site. If  
the normalised orbitals ~b i localised on each site are 
compact ,  with little overlap (so (¢i I~l~j)  --- 0 if i ~ j ,  
for any operator ~2) then we see at once 

/ /  

(~A IdPA ) --- ~ IwAi 12 (2) 
i=1 

from the normalisation. The weights w are determined 
by local strain, chemical inhomogeneity,  etc. For  the 
present we may assume the IWAi 12 factors to be equal 
to ( I /n ) .  The effective local field h A now follows di- 

rec tly: 

n 

h A = (qb A [hB(R)lqb A) = ~ IWAil 2 (dP i [hB(R i) dP i) 
i=1 

n 

=± %i. (3) 
n i= t 

demonstrates that the mean square value o f h  A and 
that OfhBi are related by 

(h2) = n - l ( h 2 i  ~ . (4) 

Thus motional narrowing does occur when there is co- 
herent tunnelling of  muons. Contrary to ref. [2], but  
in agreement with ref. [3], the linewidth does depend 
on the extension of  the wavefunction. 

The effective value of  n can be limited by several 
factors: spatial inhomogeneity is a common cause; 
interactions which destroy coherence are another fac- 
tor. In general, n will itself have a distribution of  val- 
ues. However, it is onty in special cases, e.g. when a 
muon is localised at a specific number of sites adjacent 
to a point  defect, that the width (h2A ~1/2 will be mea- 
surable in the presence of  tunnelling. Experimental 
checks of  (4) are thus difficult. 

I am most grateful to Dr, A. Yaouanc for discussions 
and correspondence which provided the stimulus for 
this note and to Professor T. McMullen for valuable 
comments.  
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