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Abstract. We demonstrate quantitative methods for estimating that part of the elastic 
interaction energy between defects in solids which does not depend on the precise spatial 
arrangement of the defects. This energy involves both the total volume change per defect in 
the finite solid and the purely shear part of the volume change. Several different continuum 
and atomistic modelling methods are used to calculate these volume changes for H in Pd. V, 
Nb and Ta. An estimate of the configuration-independent elastic interaction energy is made 
for the Pd-H system as a function of the H concentration, and is given in a form suitable for 
comparison with statistical models. 

1. Introduction 

The early statistical-mechanical calculation on the Pd : H system by Lacher (1937) was 
based on a lattice-gas model in which pairwise attractive interactions were assumed 
between nearest-neighbour hydrogens. Subsequently Brodowsky (1 966) suggested that a 
direct elastic interaction was responsible for these empirical attractive interactions. Alefeld 
(1972) noted, however, that there were also indirect effects in a deformable lattice with a 
stress-free surface. These indirect attractive terms are configuration independent, i.e., they 
do not depend on the precise arrangement of the hydrogens relative to one another, and 
they make no contribution to solute correlations. Nevertheless, these configuration- 
independent interactions can be a substantial fraction of the total elastic energy, and they 
should be subtracted from experimental data before comparisons are made with results 
from model calculations of the configuration-dependent terms. When comparing model 
calculations with experiment one should not ignore the corresponding purely electronic 
term which would exist even in a rigid lattice. This comes from the hydrogen-induced shift 
in the Fermi level which will itself lead to both a volume change and a modification of the 
defect forces giving the elastic interaction (Stoneham 1983a, b). 

The origin of these indirect configuration-independent elastic interaction terms can be 
seen readily. When a hydrogen enters a lattice with a stress-free surface, it causes a volume 
change AV. This AV is the sum of a contribution AV, dilating the crystal as a whole a.nd a 
contribution AVs from shear alone (Eshelby 1955, 1956). The dilation works against the 
defect forces of other hydrogens already present, so an indirect interaction energy E, per 
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pair of hydrogens results. Simple arguments (e.g., that A V  is the result of a defect ‘pressure’ 
p D  = - B A  V/n,, where B is the isothermal bulk modulus and SZ, is the crystal volume, so 
that the work done is pDAVD) show that EI =-BAVAVD/nZT. The negative sign for EI 
implies an attractive interaction between like defects. 

Two main descriptions have been used to divide A V  into AVs and AV,. The first is 
continuum elasticity theory; in this continuum limit AVs/AV and AV,/AV are simply 
functions of the elastic constants. The second approach uses an atomistic description of the 
host lattice, with pairwise (or possibly more complex) interatomic forces (Horner and 
Wagner 1974, Wagner 1978, Dietrich and Wagner 1979, Futran et a1 1982). In the linear 
approximation the ratios of the sums over interactions (Zob W,$ and Cob of Horner 
and Wagner (1974)) define AVs/AV and AVD/AV. Both approaches have advantages. The 
continuum method models correctly all the long-range interactions, and (with numerical 
evaluation of certain integrals) models correctly the changes with temperature or degree of 
hydrogenation. The lattice methods have the advantage that the configuration-dependent 
and configuration-independent terms are calculated in a consistent and equivalent way. In 
the present paper we shall estimate the elastic interactions which depend on the hydrogen 
concentration but not on its disposition. 

2. Calculations of AV, AV, and AV, 

In discussing the different volume changes it is convenient (Eshelby 1956) to introduce the 
coefficients y and y’ where 

y = A V/A Vs (1) 

y‘=AVD/AV= 1 -(lkj). (2) 
Several approaches for calculating the volume change AV, the uniform dilatation 

component AVD and the pure shear component AVs are possible. In most of the examples 
given below we shall refer to Pd : H, using a nearest-neighbour model potential due to von 
Heugten (published by Stoneham and Taylor (1 98 1)) which was also adopted by Oates and 
Stoneham (1 983). These provide a convenient reference case, although, for reasons 
discussed by Oates and Stoneham, one should be cautious of expecting detailed agreement 
with experiment because of the limitations of the potentials. In other cases we have used 
the experimental elastic constants of Hsu and Leisure (1979) which are given in table 1 .  
There is clear anisotropy, shown by the deviation from unity of the ratio 2c4,/(c,, -c,~), 

Table 1. Elastic constants and their ratios. Experimental values are from Hsu and Leisure 
(1979), ‘model’ values are from Oates and Stoneham (1983). All elastic constants are in 
loi2 dyn cm-2.  

c11 2.05 2.34 2.24 2.21 2.11 
h l l  -c12) 0.31 0.29 0.25 0.33 0.27 
cu 0.89 0.71 0.7 1 0.69 0.63 
Bulk modulus 1.64 1.95 1.90 1.83 1.75 

Anisotropy ratio 2.87 2.45 2.8 1 2.1 1 2.34 
f h l  f c12) 

2C44/(Cll -c12) 
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and there is a distinct Cauchy violation for c I 2  Zc , , .  The model potential for Pd gives a 
similar elastic anisotropy to that observed. 

In the presence of significant anisotropy we must go beyond the classic analysis of 
Eshelby (1956). The critical fact is that if we write the displacements due to a defect in a 
harmonic crystal of any symmetry in the form 

~ ( r )  = u D ( ~ )  + Asr / r3  (3) 

where the average over angles of uD only contains forms falling off faster than F 2 ,  then 
the second term leads to a volume change 4 d S  but no dilatation. It is the second term, 
and only this term, which contributes to AVs. This is a mathematical result, unconnected 
with elasticity theory or any specific assumptions about the elastic constants. Only the 
term us(r), proportional to r/r3,  has the properties of a finite value of r2(r/r)  us@) and 
zero dilatation (U, +up + uzz). In practical terms, we should want to estimate A ,  at 
distances not too close to the defect (where parts of uD may be hard to separate from u s )  
and not too close to any real surface (where the precise topography may matter). 

We now consider several different methods for obtaining AV,, AV,, AV, and their 
ratios. 

2.1. A V  as the pressure derivative of the formation energy 

It is a general result that in a finite crystal the volume of formation is given (Finnis and 
Sachdev 1976) by 

AV=-(aU,/a In R),/B 

where U, is the formation energy, B = (cI1 + 2cI2 ) /3  is the bulk modulus and a is the lattice 
parameter. U, is found readily using the Harwell HADES or DEVIL codes (see Oates and 
Stoneham (1983) for details) and the derivative is obtained simply by numerical 
differentiation. A comment on the potentials is made in the appendix. Values are given 
in 0 2.4. 

2.2. AVfrom the virial of the defect forces 

Oates and Stoneham (1983) fitted the defect forces F to the experimental result of Peisl 
(1978), A V =  2.8 A3, using the well known virial form 

(Eshelby 1956, Kanzaki 1957, Hardy 1968, Temkin 1970, Stoneham 1975 p 185). One 
problem results, for equation ( 5 )  omits important terms. This has been noted previously for 
ionic crystals (Flynn 1971, Lidiard 1981, Gillan 1983, Stoneham 1983b) and for metals 
(Schober 1977, Schober and Ingle 1980, Gillan 1983, Stoneham 1983b). The correction is 
A V , ,  in 0 2.4. In the present case AVre, is only a small correction (0.28 A3 out of 
3.05 A3). 
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2.3. Values of y and  y’from elasticity theory 

Isotropic elasticity theory gives directly (see, e.g., Stoneham 1975 p 185) the ratios 

Y=3cll/(c,l + 2c1,) 

f =  ~ ( C I  1 - ciz )/3c1 I 

and these expressions lead to the ‘isotropic’ values of table 2. Liebfried and Breuer (1978) 
give a list of these for many metals. They also quote expressions appropriate for weak 
anisotropy. These results have been extended to anisotropic cases by other workers (see, 
e.g., Dederichs and Pollmann 1972, Liebfried and Breuer 1978). AVs can be 
expressed as an integral which is evaluated analytically for small cubic anisotropy 
(c, = c l 1  -c Iz  -2~4 ,  is small). By a variational procedure it has been shown that y 
can be expressed to first order of the anisotropy factor c , / c ~ ~  by a formula of the 
form of equation (7) using the effective isotropic elastic constants (Voigt averages) 
C,, = cl1 - 2c,/5, Cl, = c 1 2  + c,/5, C44 =cq4 + c,/5. For most metals the difference between 
the exact value of y and the effective isotropic one is less than 5%. 

Following Dederichs and Pollmann (1972), the shear component of the volume change 
of a point defect in a cubic crystal may be calculated from 

AVs = 1 d3r  div u(r) 

- d o  t(K) 
~ = G  .!m=] 4?7 1 + k 4 4  +c,z) t (K)  

where G6, is the double force tensor and the function t i s  defined by 

(9) 

Bansil’s ( 1975) ‘special directions’ method may be used to evaluate this integral, since the 
integrand has full cubic symmetry. Thirteen directions within the irreducible & of the 

Table 2. Elasticity theory for 7, y’. Other estimates of y’ for Nb are 0.26 (Wagner and Horner 
1974) and 0.425 (Zabel and Peisl 1979). 

FCC Model Pd (0 K) Pd (300 K) PdH0,66 (0 K) PdH0.66 (300 K) 

j(AV/AV‘s) isotropic 1.25 1.20 1.18 1.08 1.21 
Anisotropic 1.34 1.33 1.37 1.34 
Effective isotropic 1.52 1.43 1.43 1.47 1.43 
y’(AVD/AV) isotropic 0.20 0.17 0.15 0.07 0.17 
Anisotropic 0.25 0.25 0.27 0.25 
Effective isotropic 0.34 0.30 0.30 0.32 0.30 

BCC v Nb Ta 

y 1.403 1.290 1.468 
y’ 0.287 0.225 0.319 
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Figure 1. Eshelby's (1956) coefficient y for a cubic crystal obeying the Cauchy relation 
c12  = c ~ ~ .  The value of y is given as a function of the ratio p'/p of the two shear moduli 
p f =  i(ci ,  -e i2)  and p 

Brillouin zone were used. Figure 1 shows the results for a Cauchy solid ( c I2  = c ~ ~ )  for 
various ratios of the two shear constants (p'=i(cl, - c l2 ) ) / (puc44) .  Values for the BCC 
metals V, Nb, Ta and for Pd are given in table 2, together with the effective isotropic 
values. 

2.4.  Calculations of AV by computer simulation 

The double force tensor Gij (equation (6)) can be calculated easily by computer simulation 
techniques. Two possible techniques have been discussed by Schober and Ingle (1980) and 
a third method will be discussed later in this section. In the first method G, is calculated as 
the moment of the forces exerted by the movable atoms in region I, because of their 
relaxation, on the fixed atoms in the surrounding region 11. For pair forces this gives 

G, = c RymFj(Rm - R")  
me11 
n G I  

where Ron and R" denote the ideal and displaced positions, respectively, of atom n. The 
second method uses the displacements calculated in region I to define generalised Kanzaki 
forces K which contain the contributions of the host lattice anharmonicity : 

where 9 is the ideal lattice harmonic-coupling matrix and 

G,= RymK;". 
m e 1  

Both methods converge rapidly with increasing number of atoms NI in region I but require 
a higher-accuracy energy minimisation than is needed if one is interested in the energies 
only, in common with all methods for calculating G or AV, For the model of H in Pd 
considered here we have calculated a value of Glj = 2.856, eV, and hence AV= 2.77 A3. 
Using the zeroth-order formula (1 1) we would have obtained G i  = 3.136, eV and 
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A V o  = 3.05 A3 instead. The relaxation of the Pd lattice therefore causes an anharmonicity 
correction AV,,, =-0.28 A3.  With the ‘effective’ isotropic value of y we obtain 
AVS = 1.82 A3. 

We can also exploit the explicit volume dependence of the model to calculate y by 
computer simulation with elastic boundary conditions. The energy of the crystal is given 
by 

E = f  1 d R - R ’ ) + p , V  
RR‘ 

where pc = 4(c12 - c ~ ~ ) =  0.178 eV A-3 is the Cauchy pressure. We now impose continuum 
theoretical displacements on the atoms in region 11. The energy change in region I can be 
expanded in a power series in Tr G (note G is isotropic in our case) as 

A E = E ~ ( T ~ G ) + E ~ ( T ~ G ) ’ +  . . . .  (15) 
The equilibrium condition of the ideal lattice gives 

and hence y and are related by the expression 

3B 
y=- -E , .  

Pc 

We have evaluated this formula for a number of crystal sizes and geometries (see table 3). 
The anisotropic elastic continuum model displacements of atoms in region I1 were 
calculated by a one-dimensional numerical integration routine (Deutz and Schober 1983). 
Region I was taken either as cubic with the dilatation centre at (OSa, 0,O) or as spherical 
with the dilatation centre at the origin. To estimate the lattice surface effects, A E  included 
either the full 1-11 bonds (AE, )  or half the bonds (AE2). The resulting values of y are 
compiled in table 2. The difference in the y values obtained from AEl and AE2 shows the 
importance of 1-11 cross bonding. There is also a pronounced dependence on the shape of 
region I and a less pronounced dependence on its size. This has to be expected since, due to 
lattice anharmonicity, a point-dipole force is smeared out over a large area (Schober 1977). 
The difference between the values of y including a single H defect and those excluding it is 
less than 0.01, showing that y is indeed a host lattice property as predicted by theory. 

Another method for calculating AVs has been used by Seeger and Mann (1960) 
and Johnson (1 964). They make an effective isotropic ansatz for the displacement field in 
region 11, 

~ ( r )  = (AV,/4n)(r/r3), 

Table 3. Values of y deduced from equation (1 7 ) .  

Model N I  From A€, FromAE2 

Effective isotropic value 1.52 1.52 

Cubic inner region 655 1.46 1.65 
1687 1.41 1.56 

Spherical inner region 466 1.31 1.53 
682 1.30 1.50 
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Table 4. Summary of AV estimates for H at octahedral sites of Pd. The forces were fitted by 
Oates and Stoneham (1983) using B =  18.05 x 10" Pa, whereas the virial estimate is 
obtained using B =  16.40 x 10" Pa consistent with the potential. 

A V  (A') 

Experiment 2.9 
Virial AV 3.05 
- (CLI , /B In n ) / B  2.77 
A VS 1.82 
A vReI - 0.28 

and AVs is calculated as a variational parameter in addition to the displacements of the 
ions in region I. The total energy for this ansatz is given by 

AE=i  1 1 q(Rm - R " )  + b(AVS)' 
m s 1  n E 1 , I I  

where the last term is the elastic energy stored in the infinite crystal outside region I. For a 
spherical region I (of volume VI) the constant b can be calculated easily (Johnson 1964) as 

b = 4 k 4 ,  + f ( C I  I - C12)1/VI- (19) 

It should be noted that V I ,  the volume of the inner region, is not a well defined quantity 
and the inner region is never completely spherical for a finite NI. Nevertheless Johnson's 
results minimising equation (18) agree quite well with the results given by Dederichs et a1 
(1978), who calculated the dipole force tensor by the surface force and extended Kanzaki 
force (1957) models. In the present case the situation is much worse since AVs is much 
smaller. This results in the linear term in equation (18) being three orders of magnitude 
larger than the quadratic dependence on AVs in the first and third terms. The linear second 
term should cancel exactly with the linear AVs dependence of the first term. This 
cancellation can be made simply for energy calculations (Schober 1983) by comparison 
with ideal crystal calculations with the same boundary conditions. For calculations of AVs 
this is also possible, but very tedious. By very careful minimisation of equation (18) we 
gained a value of y =  1.57. The good agreement with the values in table 4 is perhaps 
fortuitous since a change in energy of eV causes a change of 15% in AVs and hence 
in y. If we count only half the 1-11 bonds towards the first term we find no minimum at all 
with respect to AV,. We may conclude that the determination of AVs by direct energy 
minimisation is highly unreliable, especially for systems with small AV and largep, , Whilst 
the other methods, based on surface forces or generalised Kanzaki forces, can become 
inaccurate, they cannot fail catastrophically like the direct energy minimisation. 

2.5. Other methods 

The most simple atomistic method, though regrettably unreliable, is to look at values of 
47rr(r U) from a typical HADES runt.  Here U is the outward normal displacement of atoms 
at distance r from the interstitial. The problems are clear: at small r various small short- 
range effects confuse the results and at large r the displacements are constrained to fall to 
zero at a chosen distance. We plot some results in figure 2 for illustrative purposes. Clearly 
this approach to AVs is not too useful. 

f' HADES IS the Harwell code for defect studies (Norgett 1974). 
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0 

n 0 0  

U 

0 

- 2 0 -  
2 '  

0 

I 1 Zero constrained 

Figure 2. Values of AVs as deduced from the displacements of shells of atoms. The values 
plotted are 4nr(r .  U) where U is the outward normal displacement of the shell initially at r. 
Note that for some values of r there are two inequivalent shells of atoms, and these are both 
indicated. (a)  The displacements in the outer region have the form A s r / r 3  with chosen A , ;  the 
value as constrained in the outer region is given (- - -). (b)  A s  is zero; the value for the 
relaxed outer region is shown (- - -). The fall-off at large r results from the constraint U = 0 
outside the 267 atoms explicitly relaxed. 

3. The configuration-independent interaction energy 

In terms of the Eshelby coefficient y' (equation ( 2 ) )  the non-configurational interaction 
energy per pair, E , ,  may be written 

Suppose there are N defects present and that the non-configurational interaction energy 
is E, per pair. If E, is independent of N then the total energy from these interaction is 
E,, ( N )  where 
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We can also define an equivalent chemical potential pNC (N) as 

= -y’B( A V)’( e/ Vs ) 

= -y’B(A V)’(x/R). 

Here Vs  is the volume per hydrogen site, R is the atomic volume of the host and, as 
measures of concentration, x = hydrogen/metal ratio and 8= fractional occupancy of the 
interstitial sites. AV is, of course, the partial molar volume of hydrogen. 

If we assume that E, varies slowly with N, i.e. 

E ,  ( N )  = E, (0) + (a, / W N ,  (24) 

then we find that 

where we introduce ,!? = i(E, (0) + 2E, (N)) as the appropriate average energy. For the 
chemical potential, if we ignore terms in d2EI/dN2, we have 

In principle, this equation could be used in conjunction with equation (20), but there 
remains the problem of knowing y’ as a function of H concentration. Of the methods 
outlined in 0 2, only the isotropic continuum calculations can be used (see table 2 for 

An alternative approach to obtaining the non-configurational contribution at high H 
concentration is to consider the difference between the total and configuration-dependent 
interaction energies. 

The total elastic interaction energy, E T ,  is known exactly for an arbitrary lattice of any 
shape (see Wagner and Horner 1974, equation 4.44): 

PdH0.66 1. 

E,  =-iB(AV)282/VS. (27) 

Oates and Stoneham (1 983) have demonstrated that the configurational-dependent 
interaction energy, E,, depends on both the arrangement and number of H atoms but, to 
first order, we might expect a simple analytical form for the composition dependence if 
the H-atom distribution is random. In the case of random substitutional solid solutions, the 
local relaxation energy varies roughly as e(1- 8) (Flynn 1972, Froyen and Herring 198 1). 
Since the relaxation energy must also be zero at 8=0 and 8= 1 for interstitial solid 
solutions, we may write 

Ec=-KB(1-8) (28) 

where 
From the difference ET -Ec we obtain the non-configurational energy and, on 

comparing this result with that obtained from a combination of equations (20) and (21) for 

is a parameter to be determined. 
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the dilute solution, the value of 1 is obtained as 

K = ~ B A v , ~ ( ~  -y'oyvs 
where yb is the value of y' in the very dilute solution. Hence for this special case of a 
random distribution of H atoms 

E N C  =[% +(1-yh)elET (30) 

E, - yh - @ET (3 1) 

so that y' = [ y'o + (1 - yh)O] becomes unity when all the sites are occupied, i.e., all the elastic 
energy is non-configurational. 

Taking V ,  =8.87 cm3 mol-' (Pearson 1958), AV/n=0.19 (Peisl 1978), 
B =  1.90 x 10" Pa, dB/de=-0.232 x 10" Pa (Hsu and Leisure 1979) and 76 =0.25 for 
Pd-H alloys at 300 K, equations (27)-(31) may be differentiated, as in (22), to give the 
total ( p T ) ,  configurational ( pc), and non-configurational (pNc)  elastic energy contributions 

1 1 \ ,  
0 2  0 4  0 6  0 8  1 0  

-60 L 
0 

H /Pd 

Figure 3. Contributions to the chemical potential for hydrogen in Pd over a range of 
hydrogen concentrations. The total chemical potential in elasticity theory is pT with 
configurational part pc (equations (27) and (3 1)) and non-configurational part ~ N C  

(equations (27) and (30)). The experimental excess chemical potential, PE. is the sum of the 
total elastic part, p ~ ,  and a chemical part, p c ~ .  The combination of terms appropriate for 
statistical calculations ispcH + p c  which is also shown. 
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to the chemical potential. The difference pE -pT, where pE is the experimental excess 
chemical potential (Kuji et a1 1983), is the chemical contribution pCH to the chemical 
potential. All these quantities are shown in figure 3 for the Pd-H system at 300 K. It is of 
interest to note that the effect of H concentration on p C H  is quite different from that 
expected from simple arguments based on d- and s-band filling. Rather, a strong repulsive 
interaction between H atoms is indicated. Statistical models should be concerned with the 
sum pCH + p c  of the contributions resulting from the direct interactions which is also 
shown in figure 3. It has been noted previously (Oates and Stoneham 1983) that for pc,  at 
least, a pairwise interpretation is inadequate. 

Appendix. Interatomic potentials 

The Pol potential we use is almost exactly that of Van Heughten (listed as his potential I 
by Stoneham and Taylor (198 1)). The small changes we make ensure a smooth cut-off at 
rc = 3.305 A. The coefficient A ,  in V ( R )  = E:= , A,, R" changes from -396.6696 to 
-396.686 1, with a similar small change in A ,  to give V(rc)  = 0. As can be seen from table 
5 ,  there is no significant change in the elastic constants, and we believe the situation will be 
essentially the same for all but special quantities. Our experience has emphasised how 
sensitive one must be in making approximations to these potentials, so the agreement 
indicated is important. 

The total energy of the crystal can be written as 

E = i  1 V ( R - R ' ) + p , V  
R, R' 

where Vis the crystal volume and p c  is the Cauchy pressure 

pc  =f(cI2 - ~ ~ ~ ) = 0 . 1 7 8  e~ A-3 = 10.33 eV a p 3  

where the lattice constant a =  3.872 A. 

Table 5. Elastic constants of Pd (in 10l2 dyn em-*). 

Original Ao, A ,  Modified Ao, A I  Experiment 

C I I  2.05 2.04 2.26 
c12 1.43 1.45 1.76 
c44 0.89 0.88 0.72 
t(c,i -c12) 0.31 0.30 0.25 
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