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Abstract. We demonstrate the quantitative prediction of Hugoniots for an ionic crystal 
(NaCI) using the shell model with the best available potentials. Our  calculations show that 
these shock wave datacan be predicted quite accurately by relatively simple use of established 
computer codes. The Hugoniot results, together with static phase-change data, also provide 
a very severe test of interatomic potentials. The two sets of empirical potentials ((i) Catlow. 
Diller and Norgett. (ii) Sangster and Atwood) both perform much better than electron gas 
potentials. The same approach can be used to test potentials and to make predictions for the 
behaviour of solids for extreme conditions of temperature and pressure. 

1. Introduction 

Equations of state at very high temperatures and pressures have many uses. These 
include applications in mineralogical and geophysical studies of planetary cores, and 
descriptions of the behaviour of nuclear fuels in studies of hypothetical faults, the 
transient high-temperature behaviour needed in materials processing, and aspects of 
phase changes. In all these cases, knowledge of material behaviour is needed outside 
the regimes in which measurement is possible. The extrapolation from data for readily 
accessible conditions is an important area for theory, and the validation of such theory 
is itself of especial importance. Central to this theory are interatomic potentials, together 
with various prescriptions for estimating thermodynamic properties. These potentials, 
however, are often based on experiments or calculations corresponding to low- 
temperature, low-pressure conditions. We shall demonstrate that shock wave results 
can be used as a stringent test of different potentials and as a check of theoretical methods 
for materials under extreme conditions. Our results centre on the Hugoniot data, 
available from shock wave experiments for many important systems. 

Computer codes that calculate lattice or defect properties in ionic solids, such as the 
Harwell HADES code (Lidiard and Norgett 1972; for a recent survey of applications and 
background, see references in Catlow and Mackrodt 1982) require knowledge of the 
interionic potential at various distances. The HADES code uses the shell model, and 
assumes that the crystal potential may be written as a sum of pair potentials. The 
interaction between cores and shells on different ions is assumed to be purely coulombic 
except for the shell-shell interaction. For this shell-shell contribution there is also a 
short-range interaction. qms(r ) .  which is supposed to model Pauli repulsion between the 
ions. van der Waals terms and small covalent interactions. It is common practice 
to assume that the short-range interaction has a simple analytic form. such as the 
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and to fit the parameters of the potential to bulk-crystal data such as elastic constants or 
the phonon spectrum. It has often been pointed out that this only determines the 
potential at the equilibrium lattice spacing whereas many calculations, especially those 
involving interstitials, require a knowledge of rpnp(r) far from this distance. This has 
prompted many attempts to calculate short-range potentials, usually using the electron 
gas approximation (Catlow et a1 1982, Harding and Harker 1982). However, again, the 
adequacy of such potentials has been tested directly only by their ability to reproduce 
equilibrium lattice properties. 

The calculation of Hugoniot trajectories offers a way of testing the validity of the 
various potentials used over a range of interionic distances. It is also possible to use other 
data either in conjunction with or instead of Hugoniot results. In particular, the static 
pressure-volume data obtained with a diamond-anvil high-pressure cell are especially 
useful. In this paper we discuss the possibility of using such data to discriminate between 
various potentials available in the literature by considering the specific example of 
sodium chloride, using both the shock wave Hugoniot data collected by Marsh (1980) 
and the static pressure investigation by Bassett et a1 (1968) and Sato-Sorensen (1983) of 
the phase transition from the rock salt to the caesium chloride structure. Our discussion 
provides both a check of the potentials and a verification of the methods that we use in 
predicting properties of solids under extreme conditions. 

2. The Hugoniot equation of state 

We outline here the basic equations and assumptions we shall use, together with the 
methods used to obtain key quantities. Reviews of the approximations used in analysing 
shock wave data are given in the articles of Rice eta1 (1958) and Marsh (1980). Certain 
central results (notably the Rankine-Hugoniot relation) can be obtained from simple 
arguments based on one-dimensional fluid dynamics. We assume that mass and energy 
are conserved across the shock front and further that the shock may be considered to be 
an adiabatic process. This means that when we consider the possibility of a phase change 
in the sodium chloride system the relevant thermodynamic potential is the enthalpy, H .  

The Rankine-Hugoniot relation states that 

(El - Eo) = &(PI + PO)(VO - V,) (2) 

where E.  P and V are the internal energy, pressure and volume (per cell, where 
appropriate) and the subscripts one and zero refer to the solid behind the shock front 
and in the undisturbed solid respectively. We shall normally take Po as 1 atm and Vo as 
the equilibrium volume of the cell with a temperature of 300 K. VI will be chosen, and 
values of El and P I  obtained as functions of the final temperature, which can itself be 
found from (2). 

In calculating the pressure, we shall use the Mie-Gruneisen equation (Rice et a1 
1958, Decker 1965): 

P =  -dg?/dV+ y(V)kT/V. (3) 
Here Q? is the static part of the crystal internal energy per cell and y ( V )  the mean 
Gruneisen constant. It has been common to assume a particular form for the volume 
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dependence of y( V). Examples include a Taylor expansion in which second-order and 
higher terms are neglected (Decker 1965). and a simple analytic form obtained from 
thermodynamic arguments such as that of Bassett er a1 (1968): 

Y = Y"(V/Vo)A (4) 
with yo the Gruneisen constant at volume VO and A a fitting parameter. Such methods 
take no explicit account of differences in crystal structure at the phase change. 

The Mie-Gruneisen equation has been compared with molecular dynamics simula- 
tions for Lennard-Jones and Morse potentials (Paskin et a1 1978) and shown to give 
reasonable estimates of the shock-front temperature. 

In our calculations we do not impose a particular analytic form on y (  V )  but obtain 
it by averaging the mode Gruneisen constants calculated over a mesh of points taken in 
the Brillouin zone. The mode Griineisen constants are defined by 

yf = -d In w,/d In V = -( V / ~ , ) h w , / h V .  ( 5 )  

It is found that quite a coarse mesh (about 2000 points in the fundamental wedge of 
of the zone) is enough to ensure reasonable accuracy. 

The accuracy of this method of calculating the mode Gruneisen constants may be 
checked by comparing the results with those obtained from considering the pressure 
derivative of the elastic constants (Daniels 1963). The results are shown in table 1 and 
demonstrate that this method of estimating yi is fully acceptable. 

Table 1. Calculation of mode Griineisen constants and comparison of Daniel's results without 
data. 

Direction Calculated Experimental y 

(100) optic 1.02 
2.81 

acoustic 2.67 2.6.1 
0.18 0.14 

2.81 
2.80 

acoustic 1.84 1.87 
2.87 2.72 
0.19 0.14 

2.81 
acoustic 1.54 1.57 

2.18 2.05 

(110) optic 1.04 

(111) optic 1.04 

The final relationship uses the high-temperature form of E .  the internal energy per 
cell in (1): 

E =  q +  E b l b =  q +  3NkT (6) 
with N the number of ions in the unit cell. 

We see now that we must calculate three important quantities: q ( V )  for equations 
( 2 )  and (6) and both dq(V)/dVand f iV) = (yf(V)) for (3). Given these quantities. we 
may calculate the temperature, pressure and other thermodynamic variables behind the 
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shock. The static terms g, and d q/d V are obtained using the Harwell PLUTO program 
(Catlow and Norgett 1976), and the lattice frequencies needed in (4) are found using the 
lattice dynamics package developed by Sangster and Rowel1 (1983) from the Harwell 
PHONONS program. 

3. Calculations of Hugoniot trajectories 

3.1. Interatomic potentials 

In this study we shall consider three potentials: those of Catlow et a1 (1977; CDN). 
Sangster and Atwood (1978; SA) and Mackrodt and Stewart (1979; MS). The first two 
were obtained by fitting to bulk-crystal data, whereas the third was obtained from an 
electron gas calculation. All three potentials have been used in defect calculations. 
Further details of the potentials, their assumptions and their applications are listed in 
the handbook by Stoneham (1981). 

3.2. Calculation of static pressure-volume curves 

Bassett et a1 (1968) have investigated the rocksalt-caesium-chloride transition in sodium 
chloride using a diamond-anvil high-pressure cell. They find a transition pressure of 
about 30 GPa and a transition volume of -1.0 5 0.05 cm3 mol-' (-3.5%). More recent 
experiments (Sato-Sorensen 1983) confirm this value of the transition pressure, but give 
a larger transition volume (-5.8%). In this experiment the relevant thermodynamic 
potential is the free energy, G. 

The vibrational contribution to the free energy is given by the expression 
Gblb = - kT  ln Qvlb  (7) 

where Qblb is the vibrational partition function. We have estimated this term by taking 
points at random in the Brillouin zone and constructing an average over them, in a 
similar manner to that used in calculating the Gruneisen constant. At 300 K the contri- 
bution of this term is about 0.06eV, varying only slowly with lattice volume. We 
therefore ignore it, assuming that the free energy is given by the expression 

We have calculated the variation of this for the three potentials and find that the electron 
gas potential completely fails to predict the transition. 

The CDN potential predicts a transition at 30GPa with a transition volume of 
-1.2 cm3 mol-', while the SA potential also predicts a transition at 30 GPa, but with a 
transition volume of - 1.1 cm3 mol-'. Considering the approximations involved, both 
results must be considered very reasonable. The calculations are less satisfactory, if we 
consider the lattice parameters at which the change takes place. These results are shown 
in table 2. Here the errors in the calculation are about 5 %  , the CDN potential giving the 
closer agreement. There are no signs of further phase changes in the predictions. This 
is in agreement with experiment for NaCl, although further changes have been noted 
for NaBr and NaI (Yagi et a1 1983). 

G = q + P V .  (8) 

3.3. Shock-inducedphase changes of NaCl 

We calculate the Hugoniot trajectories for both the rocksalt and caesium chloride 
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structures. These are shown in figures 1-3 for the three candidate potentials. Calculations 
of the enthalpies for the two structures give an estimate for the position of the 
rocksalt-caesium-chloride phase transition. For the CDN potential this occurs at about 
18 GPa. For the SA potential the pressure is about 20 GPa. The result is not precise 
because the slopes of the enthalpy curves at this point are very similar. The electron gas 
potential again fails to predict a transition at all. 

0 I 

10 20 30 40 
Volume m 3 )  

Figure 1. Hugoniot tralectory. for the CDN potential: full curve, stable phase: broken curve. 
unstable phase; crosses, experimental. 

Evidence for a phase transition in dynamic shock experiments has been given by 
Christian (1957), Alder (1963) and Kuzubov (1965) in the pressure range 22-27 GPa. 
The data from Marsh (1980) also show a pronounced change of slope at about 28 GPa. 

Of the three potentials, it is clear that thc SA one gives the best representation of the 
curve as a whole. However, it should be pointed out that in defect calculations the 
electron gas potentials are normally used with adjusted lattice parameters to ensure that 
they produce an equilibrium lattice. This adjustment has not been considered in figure 
3, and its inclusion would have the effect of shifting the calculated curve to the left. Such 
a change does not improve the static results, although the use of electron gas potentials 
might well be a more accurate procedure (with special precautions) than figure 3 would 
suggest. 

All three potentials give a fall in the calculated mean Gruneisen constant. This is 
shown in figure 4 for the Sangster and Atwood potential. This agrees qualitatively with 
the empirical potential of equation (4). Examination of the individual mode constants 
(see table 1) shows that they are highly anisotropic and that the optic constants are very 
different from the acoustic ones. As the volume falls the optic-mode yl tend to rise, but 
the acoustic-mode ones, especially those near the (100) and (110) directions, fall. The 
behaviour of these modes dominates the average. 
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Figure 2. As figure 1, but for the SA potential. 
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Figure 3. As figure 1, but for the MS potential. 



1186 J H Harding and A M Stoneham 

- a I U 60 LO 

20 

3.4.  Shock-front temperatures 

As outlined in 8 2 ,  we may calculate the temperature and pressure corresponding to a 
given volume change. In the limit of high final temperature, and taking PO = TO = 0, one 
finds simply 

:i/:':i::-::::-;;;;;;;;;; Rocksalt 

I I I 

with subscripts 0 , l  referring to parameters evaluated for the initial and final states. The 
pressure PI  follows directly from (3) and ( 9 ) .  In our actual calculations we took PO = 
1 atm and TO = 290 K, for which more complex expressions result. Figures 5 and 6 show 
the calculated shock-front temperatures from the Mie-Gruneisen equation. We first 
note that the rapid temperature rise justifies the use of the high-temperature approxi- 
mation. The contribution of the corrections for finite temperature are important only at 
low pressures for which the overall contribution of the temperature-dependent effect is 
very small. 

Shock temperatures have been measured by Kormer et a l ( l965 ,1968)  and by Kondo 
and Ahrens (1983). The measurements give widely varying values for the brightness 
temperatures and emissivities. The calculated shock brightness temperatures are sig- 
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Figure 5. As figure 4,  but for the CDN potential 
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Figure 6.  As figure 4,  but for the MS potential. 

nificantly lower than those of Kormer et af (1968) or Kondo and Ahrens (1983). Kormer 
et a1 (1968) have noted such an effect previously, and suggest that electron luminescence 
is responsible for the discrepancy. 

The high temperatures therefore raise other questions, notably those of electronic 
structure changes or of defect production. Ruoff (1980) has discussed the effects of 
defect production, and argues that the defect pressure and the thermal pressure at a 
given volume change and temperature may be comparable. In particular, he suggests 
that the pressure may be increased by typically 20% by the presence of shock-generated 
vacancy defects. Gatilov and Kukshova (1981) note a massive increase in conductivity 
of CsI behind a shock front, which they interpret in terms of a change in character with 
pressure, as the ionic insulator transforms into an intrinsic-defect semiconductor, a 
liquid semiconductor, and finally a metallic liquid. Systems in which cations can change 
valence without great energy cost, so that electronic excitation is relatively easy (e.g. 
UOz, FeO), should show distinctive features as they become conducting. It is just such 
systems that exist with substantialnon-stoichiometry ( U 0 2  + U02,,  ; F e 0  -+ Fel -,O), 
and this aspect will affect any defect pressure. Changes in magnetic and spin structure 
are less important, but have been noted in static experiments (Yagi and Akimoto 1982) 
and in Hugoniots (Ogata et af 1983) for a-Fe203. 

4. Conclusions 

We have calculated Hugoniot trajectories, shock-front temperatures, pressure-volume 
curves and phase transitions, starting from the best available interatomic potentials, and 
exploiting a generalised form of the Mie-Gruneisen equation. No semi-empirical value 
of the Gruneisen parameter is assumed. The broad consistency of both the static and the 
shock wave predictions with experiment verifies that our calculational methods are 
adequate. The precise degree of success offers a very sensitive test of the interatomic 
potentials, and one that is especially appropriate in extrapolating to other high-temper- 
ature, high-pressure situations. The three potentials have varying degrees of success. 
These are summarised in table 2, and show that the empirical potentials have notable 
success even at volumes far from those for which they were fitted. It remains to be tested 
whether this success is typical or not, and also whether the changes resulting from defect 
generation and electronic excitation can be modelled equally well. 
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Figure 7. Plot of mean Griineisen constant against pressure, for the SA potential. 

It is also worth noting that a reasonable approximation is to ignore the volume 
dependence of the Gruneisen constant entirely. The second term in the Mie-Griineisen 
equation only contributes about 1% to the calculated pressure and, as can be seen from 
the denominator of (9), the term involving y is always much less than the other term. 
Thus reasonable estimates of the behaviour of minerals can be made even without a 
lattice dynamical calculation. This is of some importance since the unit cells of many 
minerals are large and the calculation of ythus would be expensive. 
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