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Abstract. Alternative forms for the radiationless transition rate in the adiabatic coupling 
scheme are derived, with a minimum of special assumptions, for the case of coupling to 
several distinct promoting and accepting coordinates. Their relation to the static coupling 
scheme is discussed. The resulting expressions are suitable for use with state-of-the-art 
electronic structure calculations, i.e. not merely model systems. The appropriate application 
of pseudopotential theory in this context is considered. 

In the conventional description, radiationless transitions between adiabatic states are 
mediated by the kinetic energy operator (Huang and Rhys 1950, Lax 1952). However, 
several authors have advocated an alternative coupling scheme in which radiationless 
transitions between static states are mediated by off-diagonal elements of the potential 
energy operator (Helmis 1956, Passler 1974, 1982). Since no radiationless transitions 
are possible between true stationary states, the choice ultimately depends on which non- 
stationary state is prepared in a given experiment (Bixon and Jortner 1969). It has been 
demonstrated recently by several authors (Huang 1981, Gutsche 1982, Burt 1983) that 
the two coupling schemes lead to equivalent predictions at a certain level of approxi- 
mation, although they cannot be precisely equivalent (Denner and Wagner 1984). It has 
been demonstrated further that, within the adiabatic coupling scheme, the popular 
‘Condon’ approximation introduced by Huang and Rhys (1950) is internally inconsistent, 
as usually applied, and predicts transition rates which are too small by three orders of 
magnitude. 

Comparisons of the two coupling schemes have been presented within the context 
of a highly idealised model, involving a single configuration coordinate Q and two static 
electronic states, which are assumed to provide a complete set for expansion of adiabatic 
states with Q-dependent coefficients. This idealised model is well adapted to clarification 
of matters of principle, but tends to obscure the procedures appropriate to more realistic 
models. Generalisation of the idealised model to encompass a larger basis set and several 
configuration coordinates was undertaken by Gutsche (1982). 

The object of the present work is to extend these considerations to more realistic 
models. We proceed from a somewhat different set of assumptions than Gutsche (1982). 
In particular, we exploit a common feature of symmetrical systems: the distinction 
between promoting coordinates, which mix the symmetries of initial and final states, 
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and accepting coordinates, which absorb the excess electronic energy (Lin and Bersohn 
(1968). As a consequence, we do not require any restriction on the anharmonicity of 
accepting modes. Several alternative forms for the promoting interaction are presented, 
all derived within the adiabatic coupling scheme with a minimum of special assumptions, 
by a method which does not rely on expanding adiabatic wavefunctions in a static 
basis. These forms should prove convenient in calculations with detailed many-electron 
wavefunctions of the sort obtained from state-of-the-art electronic structure codes, 
coupled to several configuration coordinates. Incidentally, these alternative forms pro- 
vide still another demonstration of the approximate equivalence of adiabatic and static 
coupling schemes. 

In the adiabatic coupling scheme, radiationless transitions are presumed to occur 
between Born-Oppenheimer states Wnv(v ,  e ) ,  given by 

'J'Vnv(T, Q )  = Q)n(r, Q > O n v ( Q >  (1) 
where q n ( r ,  Q )  is an eigenfunction of the electronic HamiltonianH,( Q) for fixed nuclear 
coordinates Q ,  

He(Q> = TE + V(r,  Q> 
He(Q)qn(r ,  Q> = un(Q)qn(r ,  Q) .  

(2) 

(3) 
The electronic eigenvalue U,,( Q )  then serves as the potential energy of interaction of the 
nuclei 

[TN + u n ( Q ) l O n u ( Q )  = Enuenv(Q)* (4) 
In these equations, r and Q denote respectively all electronic coordinates and all sym- 
metry-adapted combinations of nuclear coordinates, and TE and TN are the respective 
electronic and nuclear kinetic energy operators. 

Radiationless transitions between Born-Oppenheimer states are mediated by the 
non-adiabaticity operator HNA, defined by 

HNAynv(r,  Q )  = [TN, Q)n(r, Q > l @ n u ( Q > *  ( 5 )  
The operator HNA can be expressed as a sum over symmetry-adapted nuclear coordinates 
Q, and the promoting coordinates Qp are just those for which matrix elements of HNA 

are non-vanishing for the electronic states of interest. It is convenient to assume that 
q n ( r ,  Q) depends only linearly on Qp, which is equivalent to neglecting a2qn/dQ2,; in 
many cases this follows from symmetry alone. No such assumption is made concerning 
accepting coordinates Q, since, for them, large displacements from equilibrium associ- 
ated with avoided crossings of adiabatic potential energy surfaces are of special import- 
ance in the theory. 

The radiationless transition rate, in first-order time-dependent perturbation theory, 
is given by 

WNR = (2n/h) C C C PaI(efpIRp(f,i; Q>[TN, Q p l I e i a > 1 2 4 E p p  - Eia) 

pa = exp( -Eia/kB TI/ E exp(-Eiy/k, T )  

Rp(f, i; Q> = (qf(Q)Ia/aQpIqi(Q>>. 

(6) 

(7) 

(8) 

f f B P  

Y 

Equations (6)-(8) provide the point of departure for the derivation of several alternative 
forms below. 
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We proceed by employing the identity 

[TN, Q p l  = - f i 2 a / a Q p  (9) 
in equation (6) to obtain 

WNR = (2n/h) C C C Pal(6fgl - h2Rp(f, i ;  Q)a/aQpI~ia)126(Epg - Eia). (10) 
a B P  

Equations (10) and (8) together comprise the first form. The quantity Rp(f, i; Q) can be 
evaluated for a range of values of coordinates Q,  by performing the required overlap 
integrals in the approximate expression 

Rp(f, i ;  Q) =z (qf(Q>Iqi(Q + A Q p ) ) / A Q p  (11) 

for a small finite value of AQ,; see Galloy and Lorquet (1977) and Hirsch er a1 (1980) for 
a comprehensive discussion of such integrals. The quantity Rp(f, i; Q) is a sensitive 
function of the accepting coordinator, and is particularly enhanced near the avoided 
crossing of adiabatic potential energy surfaces. It remains to evaluate the integrals 
over configuration coordinates in equation (10) by some suitably chosen approximate 
procedure, e.g. Monte Carlo integration. 

Another form is derived by differentiating both sides of equation (3) with respect to 
Qp for the case N = i ,  multiplying left by qf(r ,  Q), and integrating over electronic 
coordinates to obtain 

Rp(f, i; Q) = [ui(Q) - uf(Q)I-'Sp(f, i; Q) (12) 

Equations (lo), (12) and (13) together comprise the second form. Since only nuclear 
potential energy terms depend on Qp, only one-electron integrals are involved in the 
approximate expression 

Sp(f, i; Q> (qr(Q)IH,(Q + AQp)Iq:,(Q>)/AQp. (14) 

This integral is expected to be relatively insensitive to Q,  but the adiabatic potential 
energy functions are required in equation (12). Note that, in this form, the same potential 
energy term governs both the avoided crossing and the radiationless transition rate; no 
double counting is involved, however, since in the latter instance the term in question 
arises from a transformation of the nuclear kinetic energy operator. Again, one is left 
with an integral over configuration coordinates in equation (10). 

An alternative transformation of the integral in equation ( 6 )  can be effected by 
employing closure, as follows: 

From equation (4) we obtain 
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Energy conservation requires that E,  = Ei,. Since the final state vibrational wavefunc- 
tion 8, is highly excited, and therefore much more rapidly varying than RP( f, i; Q), only 
a small range of intermediate states will be important and one can safely neglect Ef, - Ei, 
compared with Ui(Q) - Uf(Q) in equation (15). With this approximation, we obtain 

Equations (18) and (13) together comprise the third form. A similar transformation was 
employed by Peuker et a1 (1982), in the context of a single-coordinate model, where it 
was necessarily restricted to the Condon approximation. 

In all three forms, one is left with a difficult integral over configuration coordinates. 
However, the relative insensitivity of Sp(f, i; Q) in equation (18) encourages one to 
replace the configuration coordinates Q in this expression by some arbitrarily selected 
set of constant values Qo, such as their equilibrium values in the initial state, so that the 
factor Sp( f, i; Q,) can be removed safely from the integral. (Note that the corresponding 
substitution in RpF, i ;  Q) in equations (10) and (12), including the factor [Ui(Q) - 
Uf<Q)]-l, is the now discredited 'Condon' approximation (Huang 1981). If one makes 
the additional assumption that it is feasible to separate variables in equation (4), and 
that the chosen configuration coordinates are identical with the normal coordinates, 
then the vibrational wavefunctions may be written as 

enu(Q) = II ~nup(Qp) II Xnva(Qa) (19) 
P a 

and equation (18) becomes 

W N ~  = (2n/h) C I(CP i (Qo > I a H e  /a Q p <Qo > I  CP i (Qo ))I * 
P 

Finally, if one adopts the harmonic approximation in order to facilitate the evaluation 
of integrals over vibrational wavefunctions the radiationless transition rate predicted by 
equation (20) becomes identical with that appropriate to the static coupling scheme. 
Equation (20) with the harmonic approximation, which is a simplification of our third 
form, is by far the easiest to use and will be preferred in most applications. 

A word of caution is in order concerning the application of these alternative forms 
to model systems. Very often, electronic structure calculations rely on some sort of 
pseudopotential or frozen-core approximation, in which the requirement that valence 
orbitals be orthogonalised to occupied core orbitals is reformulated in terms of an 
effective potential. The formal development presented here wouldgo throughidentically 
if V(r,  Q) were replaced by a pseudopotential and q n ( r ,  Q) by a pseudowavefunction; 
however, the predicted radiationless transition rates would be very different. The dis- 
crepancy arises because different physical assumptions are involved in the two cases. 

Radiationless transitions between adiabatic states are manifestations of the failure 
of the electronic wavefunction to adjust to the instantaneous positions of the nuclei. In 
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the pseudopotential approximation, the frozen cores are assumed to follow the nuclei 
with no difficulty, and only the valence pseudo-wavefunctions do not. Accordingly, the 
radiationless transition rate is grossly underestimated. In our first form, this under- 
estimate arises from the smoothness of the pseudo-wavefunction, which diminishes the 
value of the integral in equation (8). In our third form, it arises primarily from the 
weakness of the pseudopotential in comparison with the nuclear potential. In any case, 
it is clear that one must orthogonalise the pseudo-wavefunction to occupied core orbitals 
before employing any of the formulae presented here for the calculation of radiationless 
transition rates-the situation is analogous to the ‘Adrian effect’ in the calculation of 
spin-Hamiltonian parameters (Adrian 1957). 
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acknowledges the hospitality of the Theoretical Physics Division, AERE, Harwell. 
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