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Future supernovae observations as a probe of dark energy
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We study the potential impact of improved future supernovae data on our understanding of the dark energy
problem. We carefully examine the relative utility of different fitting functions that can be used to parametrize
the dark energy models, and provide concrete reasons why a particular ¢heseel on a parametrization of
the equation of stajas better in almost all cases. We discuss the details of a representative sample of dark
energy models and show how future supernova observations could distinguish among these. As a specific
example, we consider the proposed “SNAP” satellite which is planned to observe around 2000 supernovae. We
show how a SNAP-class data set taken alone would be a powerful discriminator among a family of models that
would be approximated by a constant equation of state for the most recent epoch of cosmic expansion. We
show how this family includes most of the dark energy models proposed so far. We then show how an
independent measurement Qf,, can allow SNAP to probe the evolution of the equation of state as well,
allowing further discrimination among a larger class of proposed dark energy models. We study the impact of
the satellite design parameters on this method to distinguish the models and compare SNAP to alternative
measurements. We establish that if we exploit the full precision of SNAP it provides a very powerful probe.

DOI: 10.1103/PhysRevD.65.103512 PACS nuni$er98.80.Es, 97.60.Bw, 98.80.Cq

I. INTRODUCTION field, which only interacts with the other fields via gravity.
This field is rolling slowly down a potential or gets trapped
One of the most challenging problems in modern cosmolin a local minimum[23—4Q. Therefore the vacuum energy
ogy is to provide an explanation for the recently observedf the universe becomes important for its evolution and the
accelerated expansion of the univef$e 3. These observa- expansion begins to accelerate, generalizing the concept of
tions have reopened the quest for twsmological constant the cosmological constant. Attempts have been made to con-
which was introduced by Einsteii], but later abandoned nect this field to fundamental physif29,3§ and resolve the
[5] and infamously cited as his greatest blun@éf. The  problem of fine-tuning of initial condition36]. The prob-
cosmological constant can be considered as new kind qbm is that there are a plethora of models which can describe
“world matter” [7] and be identified with the energy density the observed expansion, but with the current available data it
of the vacuun{8]. Explaining and computing it in terms of s ot possible to distinguish between most of them.
particle physics has been largely unsucced$fill0] because To improve the observational situation a satellite
it is very difficult to explain the small vacuum energy density mission—the “SuperNovae Acceleration ProbSNAP)—

of 10~ **M, within fundamental physics; typically it is ei- [41] and other dedicated SNe surveys have been proposed
thelr much Larger orthexatlctly Izero. A andard [42]. This satellite may observe about 2000 SNe within two
n recent years, the type la supernov&he as standar P/ears and therefore increase the number of SNe by a factor

candles have been used to measure the distance-redshift oef'25. In this paper we present the details of a representative

lation in the universe, providing evidence for an energy com—sam le of dark enerav models. discuss how the use of SNe as
ponent in the universe that behaves like a cosmological con-= P gy ’

stant[1-3]. This means the pressure of this component jtandard candles can distinguish the different models and
negative and it appears to be dark in the sense that it is ndyhat can be established about the equation of state of the
recognizable by direct observatiddl]. The Supernovae dark energy component. Current upper bounds from SNe ob-
Cosmology ProjedtSCP [1,3] found evidence for a positive Servations on the equation of state arg< —0.6[11,43,43.
cosmological constant on the 99% level. These findingdn order to reconstruct not only the constant contribution to
seem to be confirmed if one combines the most recent codhe equation of state it is convenient to fit the SNe
mic microwave backgroun@CMB) radiation data from the Mmagnitude—redshift relation with a continuous functida—
BOOMERanG (Balloon Observations of Millimetric Ex- 47,86—88.
tragalactic Radiation and Geomagnekic?2—15, MAXIMA The main purpose of this paper is twofold: First we com-
(Millimeter Anisotropy Experiment Imaging Array16—-18  pare the quality of two different fits to the luminosity
and DASI(Degree Angular Scale Interferomet€t9,20 ex-  distance—redshift relation, where we emphasize the impor-
periments with observations of rich clust¢gl,22. tance of a “good” fit in order to draw conclusion about the
With these observations we need a deeper understandirggality of the experiment. Second, we analyze how SNe ob-
of the cosmological constant and attempts have been made $ervations can constrain the equation of state factor and con-
explain the missing energy as the energy density in a scalaent of dark energy in the universe. A whole section presents
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the different dark energy models which we use for this analy-

sis. 24
The outline of the paper is as follows. In Sec. Il we de-

scribe the current situation of the SNe observations; in Sec.

Il we describe briefly the specifics of the proposed SNAP 22

satellite mission; in Sec. IV we introduce the commonly

studied dark energy models, the parameters we choose for

. : , : = 20
them and their cosmological evolution. In Sec. V we discuss =
how to reconstruct the equation of state by expanding the
equation of state factor as a power series in redshift and fit 18

for the expansion coefficients. In Sec. VI we discuss the
impact of the experimental design and prior constraints on
the matter content. Finally, Sec. VIl presents alternative mea- 16 1 ¥
surements, before we draw our conclusions in Sec. VIII.

o] 0.2 0.4 0.6 0.8
z

—_

Il. THE CURRENT OBSERVATIONAL SITUATION

In this paper we concentrate on the results of the distant Fig. 1. The Cala-Tololo (open circles and SCP data points

type la SNe opservatior[&—S] and we m?mion other indi-  (solid circleg. The curves correspond to the theoretical models dis-
cations just briefly. The SCP and the High-Z Search Teangussed in Sec. IV.

used bright type la SNe as standard candles. These objects

are thought to be thermonuclear explosions of carbon-oxide m(z)=M+5 logD, —5 logH + 25, 3
white dwarfs[50-52. The correlation between the peak lu-

minosity and the decline rate of the luminosity of the SNewhere we have definedl, =H,d, . Forlow redshiftSNe we
[53—-56 makes it possible to estimate its magnitude and withcgn use the linear Hubble relation

spectral information about the host one can determine its

redshift. The correlation can be quantified by the drop in m(z)=M+5logcz—5 logHy+ 25
magnitude 15 days after the peak luminosity is reached. The
SNe observations by the SCP are calibrated using the “low” =M+5logcz, (4)

redshift Cala-Tololo survey[57] which revealed that they
have an excellent distance precision @f,q=0.15 magni- where we have defined the magnitude “zero poinf=M
tude and therefore can, in fact, be usedstdard candles -5 logHy+25. Theoretically, this quantity can be deter-

The apparent bolometric magnitude is given by mined by the survey, but in practice this is just a statistical
nuisance parameter which is marginalized to estimate the
m(z)=M +5 logd, (z) + 25, (1)  cosmological parameters, so thaf (z) can be estimated

without explicit knowledge oH, [3]. In Fig. 1 we plot the
with M the absolute bolometric magnitude atidthe lumi-  effective bolometric magnitudﬁngff data points of the SCP
nosity distance, which is usually defined with distances inf1,3] and the Cala-Tololo survey[57] as well as the curves
units of 10 pc. However, cosmological distances are meam(z) from the theoretical models we study in Sec. IV. The
sured in Mpc and therefore there is an additional termeffectivemagnitude refers to the apparent bolometric magni-
5log 1#=25 in Eq. (1). Furthermore, the luminosity dis- tude which has been corrected by the light curve width-
tance depends on the cosmological evolution and hence dominosity correction, galactic extinction and tiecorrec-
the cosmological parameters and is definedjﬁ)yt Ll4wF,  tion from the differences of th& andB-band filter[3]. If
where F is the measured flux and the absolute luminosity Wwe just allow a cosmological constant, dark and baryonic
of the object. The luminosity distanck can be expressed in matter content in the universe and assume a flat cosmology,
terms of the coordinate distanad (z)=(1+2)r(z). As  Which seems to be confirmed by recent CMB and large scale
mentioned before the CMB data of BOOMERanG, structure observation22,13,17,58 the best fit values are
MAXIMA and DASI [12-2(] in combination with 2dF ob-  roughly Q,=0.28" 353 and therefore , =0.72[3]. This is
servationg 58] indicates strongly that the universe has a flatin agreement with the analysis of the High-Z Search Team of
topology and therefore we concentrate here on flat cosmold?,,=0.24 and(}, =0.76[2]. The low matter density is con-
gies where the coordinate distance is given by firmed by several observations; by the evolution of the num-
ber density of rich clusterg59], mass estimates of galaxy
2 ¢ clusters, either by the Sunyaev-Zel'dovich eff¢é0] or
r(zy=| ——dz'. (2)  through measurements of the x-ray fll&l] and also the
0H(z") shape of the matter power spectriifii]. Visually, one can
hardly distinguish the different models in Fig. 1 in the sense
In expression1) the quantitiesn, M andd, depend on the that they all seem to fit well. In order to be able to tell more
Hubble parameteid,. From Eq.(2) we see thadL~H51 so we plot the magnitude differencAm(z)=m(z) —m,(2),
we can rewritem(z) in the following way: wherem, is the apparent magnitude of a fiducial model with
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FIG. 2. The relative magnitude with respect to a cosmology With=0.3 and(},=0.7. The SNAP data points are simulated with this
cosmology. The solid triangles are thimneddata points with error bars from the SNAP type specifications as in Table |. We have not plotted
the data in the redshift interval=0—0.2 for the SNAP experiment. On the left the GalEololo (open circles and SCP data pointsolid
circles are not binned and in the right figure they are. The curves correspond to the theoretical models discussed in Sec. IV and the key to
these curves is the same as in Fig. 5. The thick dot—short-dashed line is a cosmological constant madgl=viité and the thick
short-dashed—long-dashed line a model with=0.8. The thick long-dashed line is the “standard cold dark matter” model With
=1.0, which is clearly ruled out by the current data.

Q,=0.7 and),,=0.3. We show the relative magnitude in Will be observed 3.8 magnitudes below peak brightness. For
Fig. 2. We can clearly distinguish most of the models of Sec@ large subsample spectral time series and cross-wavelength
IV; however, we already realize the problem with the currentflux calibration will reduce the uncertainties from tKecor-
observational situation that the available data cannot reallyection and cross-filter calibration. The Sloan Digital Sky
differentiate between the particular models. If we want toSurvey (SDSS [62], the Space Infrared Telescope Facility
distinguish the models in the future we have to be able tdSIRTPF [63] observation and SNAP spectra of host galaxy
achieve much smaller error bars than the SCP data has. In tlsebdwarfs will improve the systematic uncertainty due to the
next section we describe the SNAP satellite project which isMilky Way Galaxy extinction. The uncertainty due to gravi-
able to achieve this goal. tational lensing by clumped masses will be averaged out due
to the large statistics. The error due to extinction due to or-
dinary dust outside the Milky Way will be reduced due to the
cross-wavelength calibrated spectra. Also the uncertainties
In order to improve the current observational situationdue to non-SNe contaminations will decrease. Gray dust un-
significantly a new satellite, the SuperNovae Acceleratiorcertainties can be addressed due to large observed redshifts,
Probe—SNAP—has been propogdd], which will be dedi-  with z>1.4, and with broad wavelength measurements into
cated to the observation of SNe. The SNAP satellite ighe near-IR. Because of the large sample size and detailed
equipped wilh a 2 mtelescope with aI1° optical imager, a light curve and spectral information, SNAP will provide suf-
10" near-IR imager, and a three-channel near-UV-to-ficient data to measure second order effects like the uncor-
near-IR spectrograph. Every SNezat 1.2 will be followed rected evolution of the SNe. These systematic errors lead to
as it brightens and fades. The wide-field imager makes ian absolute uncertainty ofrs,<=0.02 mag at redshifz
possible to find and follow approximately 2000 SNe la in=1.5, while the statistical calibrated uncertainty d$,ag
two years, and the 1.8 to 2.0 aperture of the mirror allows=0.15 mag which corresponds to approximately 7% uncer-
this data set to extend to redshif= 1.7. Furthermore, sys- tainty in the luminosity distance. The redshift coverage of the
tematic uncertainties will improve considerably compared toSNAP satellite within two years is shown in Table I. The
the current situation. The uncertainty due to the Malmquisnumbers in Table | are based on thleservedrates of SNe
bias, the fact that the most distant SNe are only the ones witbut to redshiftz=1.7. In the redshift intervaz=0.2 to z
large intrinsic brightness and therefore represent a bery =1.2 we assume that SNAP will observe alPO field
asedsample in brightness, will also improve since each SNewithin two years. At high redshifts there are many more SNe,

Ill. THE SUPERNOVAE ACCELERATION PROBE—SNAP

TABLE |. SNAP specifications for a two year period of observations, with a statistical uncertainty of
omag=0.15 mag and an uncertainty limit 6fsys=0.02 mag at redshift=1.5.

Redshift interval z=0-0.2 z=0.2—-1.2 z=12-14 z=1.4-17

number of SNe 50 1800 50 15
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but SNAP will not have the time for a spectroscopic follow where we have used the Planck maddp=2.44

up on all of them. Likewise, at the lowest redshifts there will X 10'® GeV as a unita is the scale factor of the Robertson-
be more type la SNe, but the limiting factor here is the skyWalker metric andopyy,e, is the total energy density of the
coverage of SNAP. We use these specifications and simulatgther contributing fields or energy components, like dark and
the SNAP experiment assuming a background cosmologiaryonic matter and radiation. The evolution of the dark en-
with Q,,=0.3 andQ ,=0.7. In the simulation we assume a ergy field is given by the field equation

Gaussian distribution of the uncertainties and an equidistant

sampling of the redshifts in the four ranges. We further ne- d+3Hp+V'($)=0, 9)
glected the errors in redshift, since they are expected to be of

the ordersz=0.002 and therefore relatively small. In Fig. 2 with V'(¢)=dV/d¢. If V(¢) is approximately constant and
we show the results of this simulation. For plotting purposeghe other energy components are negligible, the solution for
we bin the data points so the resulting uncertaintyois the scale factor is~exd \Vt] and hence, the expansion of
=0.02. The number of data points @mebin, Ny, is given  the universe is accelerating. This is the same concept as in-
by Npin= gfnag(ggys_ However, the realistic situation is a bit flation[64—66, which also exploits the rapid expansion rate.

more tricky since the systematic error is drifting framys However, in the context of the cosmological constant and
=0 atz=0 t0 o4,=0.02 atz=1.5. For the discussion of dark energy we are interested in a solution where the uni-

systematic errors we assume a linear drift and ugg ~ Verse is vacuum dominated only in recent times and not in

=zfrsy5[1.5. In the right plot in Fig. 2 we also bin the SCP the early universe as in |.r?fllat|onary models. L

and Cala-Tololo data. One clearly recognizes in Fig. 2 that . 1€ré are two possibilities to neglect the kinetic energy
one can distinguish some of the models with a SNAP typep”/2: either the field rolls down very slow the potential
observation, while the current data does not allow any dif-hill" or it is trapped in a local minimum, which is illus-
ferentiation. In the next section we will present the dark entrated in Fig. 3. On the left side we plot an exponential
ergy models we studied and then in Sec. V we will quantifypotential as discussed j25-28,31-3Bwhich gives rise to a

how SNe observations can distinguish these models. slow roll of the dark energy field. On the right side we plot
the model proposed i¥0] which is a potential with a local

minimum. In Fig. 4 we show the evolution of the densities
relative to the critical density.=1/3H?(z) for the model
As mentioned in the Introduction one possibility to gen-described in[40]. This example shows the generic feature
eralize the concept of a cosmological constant is by introducthat the universe first is radiation dominatéthshed ling
ing a scalar field which only gravitationally interacts with the then matter dominateddotted ling and finally becomes
other fields. The dark energy field is supposed to slowly rolldominated by dark energy just before the present (galid
down the potential or is trapped in a local minimum. Thisline).
leads to a vacuum-dominated state of the universe which In the following discussion we present the dark energy
hence leads to an accelerated expansion. The energy densitypdels we will use to test the opportunities of future SNe
of the field is given by its kinetic and potential component, observations. The specified parameters of the models below
all lead to Hy=65 km/sec/Mpc,Q,=0.3 and(2,=0.7,

IV. DARK ENERGY MODELS

1. where() , is the relative energy density of the dark energy
_ T2 ¢
Py=59"+V(4), (®  component today.
Pure exponentialThis potential appears naturally in com-
while the pressure is given by the difference, pactified higher dimensional Kaluza-Klein theories as well as

in certain supergravity models. This model was discussed in

1., the context of a dark energy field [85-28,31-33,7Band is
Ps=5¢"—V(¢). (6)  given by the potential
V(¢)=Voe M. (10)

Note that we assume that the field is homogeneous on large

scales. The proportionality factor For a range of parameters and initial conditions this solution

exhibits an attractive behavior whereby the field tracks the

Wy= %, 7) dominant component of the background cosmology, i.e. mat-

P¢ ter or radiation. However, in order to satisfy the observa-

) ) ) ) ) tional constraint of the SNe experiments the model param-
in the equation of statey,=Wypy, is W,=—1 if the ki-  eters have to be chosen from the transient, non-attractive,

netic term¢?2/2 is negligible. This is exactly the equation of branch and the model needs fine-tuning of initial conditions:
state for a cosmological constant term. In this paper we studin our discussion we used the valu¥g=10"2Mp,, A
the behavior of the magnitude-redshift relation, and, there— 1M,;|1, #(0)=0.138Mp, and ('15(0):0_ The magnitude-

fore, we have to solve the Friedmann equation redshift relation for this model corresponds to the thick long-
S\ 2 dashed line in Figs. 1, 2, and 5. Note that this model is
E) :E slightly below the zero line of th& model in Fig. 2 and just

a 3

1.
20\ — 42
HY(2)= Pother™ 2¢ +V(e) ®) outside the & errorbars of the SNAP satellite.
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FIG. 3. On the left side is the pure exponential poterj2&—28,31—33 which is an example for a slow roll dark energy model, and on
the right side is the exponential with a polynomial prefactor as proposptDinwhich gives rise to a local minimum in which the field is
trapped.

Pseudo-Nambu-Goldstone boson (PNGB)is potential does not require fine-tuning. However, we studied a param-
can arise as potential energy of very light axions if thil) eter branch where the equation of state factor oscillates, as
Peccei-Quinn symmetry is brok¢29,30,34,39 The poten- seen in Fig. 5. We use this particular setup because it will be
tial is given by used later to illustrate a case in which the reconstruction of

the equation of state could be troublesome. We uskd
V(¢)=M*cog ¢/f)+1], (1)  =1.001x10 *?M¢, and f=0.IMp,. In this parameter
branch it is also necessary to tune the initial conditions to
W%e(r)% YI iosoolf th\c;)ordzr. otha very Iig?t nbeutrikryo maS?g (( fulfill the observational constraints to¢(0)=1.184
—OLUYL=0.0L V) andis the symmelry breaking sca X 10" *Mp; and ¢(0)=0. In the magnitude-redshift relation
~10°-10° Gev). Fpr a wide range of Jparameters the f Figs. 1, 2, and 5 the thick solid line represents this model.
model can behave like a pure cosmological constant ange note the oscillatory nature of the potential is also ob-

served in the apparent magnitud€z). For this choice of

o R o '/’ ] parameters the model is almost ruled out already by the cur-
- N / rent SCP and CafaTololo data.
o8 L \ ] Cosmological tracker solutionsThese solutions are a
L \ generalization of the attractor behavior of the pure exponen-
- \\ tial potential [27]. The potentials have a functional form
06 \ ‘1 f(M/¢) and the most studied examples are the inverse
L \ tracker potential
c : k\ A

[ M +a

0.4 I \ V( d’): —, (12)
I ; ¢

0.2 |- and the exponential tracker potential
I : V(¢p)=M4*eM'?, (13)

o L | I T T Y TOUUT A POl W S N S R

-10 -8 -6 -4 -2 0

log(a) The notion oftracker solutions refers to the fact that these

solutions evolve on a common evolutionary track indepen-
FIG. 4. The evolution of the densities relative to the critical dent of the initial conditiong36,35. The inverse tracking
density for the trapped minimum model0]. The long-dashed line Ppotential is motivated by supersymmetric QCD. The com-
is Q,, the energy density in the radiation, the dotted ling, for ~ mon feature of these models is that the density in the dark
the matter fields, and the solid lif,,, the dark energy contribu- energy field at late times dominates over all the other energy
tion. contributions and therefore the expansion of the universe be-
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gins to accelerate. The cosmic coincidence probl86] is  through this potential. The parameters used here Xare
the fact that one still has to adjust the parameters of the-gM 1, B=33.98M;, and A=0.0IM%,. This model is
model to determine the time when the dark energy compOshown as a thin short-dashed line in Figs. 1, 2, and 5 and we
nent begins to dominate. However, as mentioned above, thecognize that it is completely indistinguishable from a pure
initial conditions are almost arbitrary. For the inverse trackefcosmological constant. It is possible to generalize the poly-
potential we used the parametevk=2.11x10"**Mp and  nomial prefactor and allow rational functions and there
a=6.In Figs. 1, 2, and 5 the inverse tracker model corremight be a possibility to connect the dark energy potential to
sponds to the thick dotted line. This model seems also to bghe interaction of two separated 3-dimensional branes from

marginally disfavored by current data as evident from thestnng theory[?l,sq A promising candidate for such a po-
right panel of Fig. 2. The only parameter to adjust for thetential is

exponential tracker potential M =9.09x 10~ 3Mp, and this

model is plotted as a thin long dashed line in Figs. 1, 2, and Mgl
5 and behaves in the shown redshift range almost entirely V()= oo o
like the cosmological constant model. (¢—B)°+4

Supergravity potentialThis model is inspired by super- where & regularizes the singularity ab=B. As with the

(17)

symmetry breaking in type | string theory and supergravitytrapped minimum model this potential also has the feature
[37,38 with the potential given by that the field gets trapped in a false vacuum state. We take
M4+ 1/ ¢ \2 the parameters of the model to be=8M,!, =B
V(g)=— ex;{z(M—> . (149 =35.1628p, and 5=0.01M§,|. This brane model is de-
¢ P picted as a thin short-dashed-dotted line in Figs. 1, 2, and 5
. _ and is also not distinguishable from a pure cosmological con-
Since supersymmetry breaking should occur above the ele%’tant model. A model with different parameters but very
troweak scale and in order to avoid fine-tuning of initial similar behavior is discussed ii72]. In both models the
conditions, the parameters of this model have to fulfill theinvolved parameters are of ord@(l)'in units of the Planck
constraintse=11 and M=10"8Mp,. These requirements massMp,. The parameteB needs to bedjustedthat the
;eené;o It()—:-a}[d to anthuTnatutrr?l way dOfI sypersymnsﬁtrty_:)(eakt—field gets trapped in the local minimum at the right time to
ing [67] but nevertheless this model is rare in that it is & account for the observed density in the dark energy field of
least related to a fundamental theory, and recent work showa —0.7 tod
that it(SUGRA) t this type of diffi- ¢ O/ today. . L
ellt sggergraw X Il val maytr;])reven 'St. 3{96; 1A' Two exponentialsThis type of potential could arise in
cu y[ ]'. or small values of the exponential in q . ) string theory as a possible result of Kaluza-Klein-type com-
is approximately constant so at early times the evolution be- actification and is given by
haves like an inverse tracker model and has, therefore, all the
advantages of the tracking solutions. The parameters we V() =V[e+ef?] (18
chose for our discussion afél=1.611x10 8Mp, and «
=11 and the model is plotted as a thin solid line in Figs. 1,and there iso fine-tuning problem of the initial conditions
2, and 5. We recognize that although this model is clearly73]. The parameters in this model are chosen toVie
different from a cosmological constant, we cannot distin-=g 2x 10‘121M§|, )\=20M;|1 and B=0.5Mp. In [73]
guish this model from a pure cosmological constant with theyther possible parameter choices are discussed. In Figs. 1, 2,
current data. and 5 the model is drawn as a thin short-dashed—long-dashed

Exponential with polynomial and rational prefactofhe  |ine and we note that this model's apparent magnitude

problem with the models discussed so far is that the involve@yolves almost like a cosmological constant in the observed
mass scales seem not to atural in terms of Planck scale redshift range.

physics. The model proposed by Albrecht and Skofd Periodic potential The common feature of most of the
addresses this issue by multiplying an exponential potentighodels discussed so far is that the parameters have to be
by a polynomial prefactor adjusted in a way that the dark energy component only be-
B N comes dominantoday, which means we live in a special
V(#)=Vp(d)e "% (19 epoch. The only exception is theure exponentia[27,32]

which has an attractor behavior and follows the dominant

component of the background component, which is matter or
(¢p—B)“ radiation. However, the pure exponential models in the at-
Vp()=A+—0(—. (16)  tractor branch of the parameter space are ruled out by big
PI bang nucleosynthesi@BN) and the SNe observations. A

) . . ) sinusoidal modulation of the pure exponential can resolve
In the right panel of Fig. 3 we show this potential i@~2.  this problem[74] and such potential is given by
In this example the field gets trapped in the local minimum

of the potential independent of the initial conditions, so no V(¢)=Vo[1+sin(Be)le . (19
fine-tuning of them is necessary. [I69] it is shown that this

false vacuum state of the field is stable to quantum decaylhere is only an adjustment of the parameters necessary to
while [70] discusses the possibilities of a classical rollfulfill the BBN constraint and the parameters used in our

whereV,(¢) is chosen to be
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L L L L B s B B B B plicity. More recent work suggest to fit the luminosity dis-
| ] tance by a rational function with three free coefficieg].
—oz | h This fit has the advantage that in extreme cases it behaves
U _ like the analytical solutions for a pure cosmological constant
1 R T — ] cosmology or a completely matter-dominated universe.
0.4 W There have also been other suggestions with different fitting

functions[48] and it may to be possible to fit directly for the
evolution of the dark energy densif9].
The polynomial fit of the luminosity distance is defined

by

5 LA L .

-0.8

N
dL(z)=i§0 ¢z, (20)

[ T where we will truncate the power series at an appropiiate

0 0.5 1 1.5 2 Since the luminosity distana (0)=0, for all cosmological
z models, we can saiy=0. In order to study this fit we use

FIG. 5. The redshift evolution of the equation of state factorth® proposed dark energy models from Sec. IV and create

W,=p,/pgy for the discussed models. The thin short-dashed line ilata sets with the SNAP-type specifications from Table |

the trapped minimum model; the thin dotted—short-dashed line igvith @ Monte Carlo simulation. We assume that the errors

from the brane inspired potential, the thin short-dashed—longdm in the magnitude are Gaussian distributed with a zero

dashed line is from the potential which involves two exponentials;nean and a variance @f,,. Furthermore, we impose an

the thick short-dashed line is from the periodic potential; the thickequidistant sampling in redshift, which seems to be the opti-

long-dashed line is from the pure exponential; the thick solid line ismal sampling[84], and neglect the uncertainties in redshift

from the pseudo-Nambu-Gotu boson potential; the thin solid line isspace. The simulation is repeated and the fitting procedure

from the supergravity inspired potential; the thin long-dashed line isN_,= 1000 times to obtain the appropriate statistics and we

from the exponential tracker solutigonderneatiw=—1), and the  find that the distribution of the coefficients is Gaussian.

thick dotted line is from the inverse tracker. We will now discuss how to reconstruct the equation of
state factow,, from the measured magnitude or luminosity

discussion areV,=2.55<10°Mp, A=4.0My', 6=0.98 distance. The conservation of energy in the dark energy com-

and 8=0.5IMp*. This model corresponds to the thick ponent yields

short-dashed line in Figs. 1, 2, and 5. )

In Fig. 5 we show the evolution of the equation of state Po _ _3H(1+w,) 21)

factorw,, of the dark energy component. We recognize that Py 2

most of the models have a smooth behavior, apart from the

PNGB model. For this modeft,, oscillates betweer1 and  with H=a/a=(py+ py)/3, a~t=1+z and the definition of

1. We have now a fairly representative sample of dark energyhe coordinate distanagz) in Eq. (2) we obtain[46]

models though it seems impossible to include the rapidly

increasing number odll suggested models. Two classes of ) P

models which are entirely missing in our discussion are the 3QpHo(1+2) "‘2_,

ones where the dark energy field is non-minimally coupled to 1+2z rs

gravity [75—77), where the field is directly coupled to matter L+wy= 3 1 (22
[78,79 and where the dark energy field is kinetically driven QmHg(1+z)3——

[80,81. The reconstruction of the equation of state for these r'2

models is discussed if82,83. In the following we will
show which of the presented models can be distinguished byherer’ denotes the derivative of the coordinate distance
SNAP-type SNe observations. with respect to redshifz. Since the coordinate distance is
r(z)=d_(2)/(1+z) we can calculate the derivatives from
V. A FIT DESIGNED TO RECONSTRUCT THE EQUATION the fit in Eq. (20), although we will need to quantify the
OF STATE matter contenf) , in order to do this. Since the errors in the
coefficientsc; are Gaussian we can calculate the error in the
In order to distinguish between different dark energyreconstructedv, by ordinary Gaussian error propagation
models we have to be able to quantify how well SNe obser-
vations with a SNAP-type experiment can map out the 2_ 3 oWy IWy
magnitude-redshift or the luminosity-distance-redshift rela- ¢ 47 ac JcCj i
tions. There has been a suggestion to fit the luminosity dis-
tance by a polynomigl6]. This fit is motivated by the need with oj; the covariance matrix of the simulated sample;of
of a smooth function to reconstruct the equation of state In Fig. 6 we show the reconstructed equation of state
factor of the dark energy component and by its obvious simfactorw, for different values oN. The background cosmol-

(23

103512-7
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FIG. 6. The reconstructed
equation of state factaw,, for the
cosmological constant model with
the theoretical value ofv,(z)=
—1. In the top left panel we show
the mean values for the recon-
structedw, with the dotted line
for the N=3 polynomial fit, the
solid line for theN=4 fit and the
dashed line for theN=5 fit. The
top right panel is th&l =3 fit with
the shaded region representing the
1o uncertainty levels. The lower
left panel is the same plot fax
=4 and the lower right panel for
N=5.

N=4 (solid line) andN=5 (dashed lingfit, however, repro-

0,=0.7. In the top right panel we plot the mean values ofduce, at least in the relevant redshift range, the theoretical

the reconstructed/,,. We note that for th&\=3 fit (dotted

value ofw, to a satisfactory level. Th&l=5 fit naturally

line and top right panglthe mean value does not representreproduces thav, better than theN=4 fit; however, the
the theoreticalw, well. This is because in order to recon- error bars for théN=>5 fit (lower right pane) are much larger
structw, we need the second derivative of the coordinatethen for theN=4 fit (lower left pane). A fourth order poly-
distancer (z) [Eq. (22)]. The coordinate distance is already nomial, therefore, yields the best reconstructionvigy with
reduced by one order in compared to the luminosity dis- the SNAP-type specifications from Table I. We note, how-
tance so theN=3 fit might not represent sufficiently the ever, from the lower left panel in Fig. 6 that for the fourth

evolution inr(z) to produce a second derivative i{z)

order polynomial fit we can only reproduce, in the re-

which represents the theoretical value at least roughly. Theuired range if—1.3<w,<—0.7 at the Ir level.

1.5

1.6

(am — d,)/d, %

o
T T T
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FIG. 7. The fit from Eq.(25)
for the periodic potential as the
cosmological background. We
plot the fittedd™ with respect to
the theoretical luminosity distance
d, in percent(%). The dotted line
is the N=0 fit, the solid line the
N=1 fit and the dashed line the
N=2 fit. The left panel is the one
with Q,,=0.3 as a prior and the
right one has just the constraint
that 0<Q,<1.
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As we saw in Sec. IV it seems nearly impossible to make22). A further problem is that in order to reconstrueg, we
any predictions about the equation of state fastgiwith the  have to calculateecondorder derivatives im(z) which will,
SNAP-type specifications. However, the problem could bean general, increase the error bars on the reconstructed equa-
the polynomial fit andhot the SNAP experiment. If we as- tion of state factor. We propose a fit which has been dis-
sume, for example, a constamt, and try to reconstruct it cussed recently86—-8§ allowing one to read off the equa-
with a polynomial fit of the luminosity distance, we can tion of state factor directly witmo reconstruction as in Eq.
show analytically thaho finite order polynomial can do this (22) and also includes the possibility to fit fér, in a more
exactly. Even in the extreme case of just a pure cosmologicalatural way.
constant model with),=1 or the SCDM model with},, We expand the equation of state factor into its redshift
=1 the polynomial cannot fit it exactly. This problem was evolution
recognized inM46] and they suggested to use Paggroxi-

mants or even splines. IM7] a rational function is used N
which at least allows that the extreme cased)af=1 and w¢=2 wi(1+2)', (24)
Q.,=1 to be fitted with an exact relation. This method has =0

been improved due to the introduction of a more complicated

rational function with more free parametéB5]. A problem  where we chose the expansion inH1) for computational
with all these reconstruction methods is that we need theonvenience. With this expansion and E(.and (21) we
matter density),, as another input parameter, as seen in Eqobtain the luminosity distance in a flat universe:

dz', (25

, 1+2) [z 1+z)732
flt(Z):C( Z)f (1+2)

0 N
\/Qm+Q¢,(1+z’)3W0exp{ 3> ?[(1+z’)i—1]
i=1

with Q 4,=1-Q. We note that fow;=0 fori=1 andw, first order fit seems to be sufficient. If we release the prior on
=—1 we obtain the standard result for the cosmological(},, and just constrain the matter contents of the universe by
constant. In the following discussion we talg,=0.3 fixed 0=<Q,=<1 theN=1 andN=2 fit are indistinguishable and
and later we examine the fit with different prior information fit reasonably well. It appears that thg, fit [Eq. 25 leads to
on Q. more accurate results than the polynomial . 20 with
The fit is done by minimizing the? function less free parameters.
In Fig. 8 we plot the relative accuracy of the different fits,

N fit 2 . . . .
2 |di(z)—d(z) for an unweighted sampling points. We recognize that the
Xwih=2 | =5 (26)

with  8d; (z,) = omaddi(24)IN(10/5), the uncertainties in - .

d, (z) as the weight on the particular data points. The sum 2 _ n
runs over the whole redshift range from Table |, wNh the I AN ]
overall number of measurement redshifts. Again we assume L / \ i

that the redshift range is split into equidistant samples in the
four ranges from Table I. We minimize this rather compli-
cated expression with theiNuiT routine from the CERN
program library which also delivers the covariance matrix on
the parameters. In Fig. 7 we plot the fit for different values of
N for the periodic potential as the dark energy model. We
choose this model because we see in Fig. 5 that the equation
of state factor for this model is evolving within the relevant
range. For a cosmological constant model a fit witk O i 7
should be the best, because it is exact and we do not gain any

information by going to higher order. In Fig. 7 we note that 0 05 1 1.5
the N=0 fit, with x>~31, is a relatively poor fit of the z
theoretical values if we set a prior 6f,=0.3 (left pane). FIG. 8. Relative accuracy of the rational fdotted ling, the

The first order results in a satisfactory fit wif~0.47 and  quadratic and cubic polynomial filashed lingand the linear and
N=2 improves this result only slightly, withy?=7.3 quadratiov expansior(solid ling). The cosmology is taken from the
%1073, So in order to study the luminosity distandg the  periodic potential.

103512-9



JOCHEN WELLER AND ANDREAS ALBRECHT

0.5

1t
Amg

-0.5

0.5

e p—

.

=~

eff
Amg

-0.5

PHYSICAL REVIEW D65 103512

FIG. 9. The relative magnitude
plots for theN=0 fit in the left
panel and théd=1 fit in the right
panel. The light gray lines are the
theoretical values and the dark

lines are the fitted results. The line
styles are the same as in Fig. 5.

1.5

cubic polynomial and quadratie expansion lead to the best dashed line is for théi=0 fit and we recognize thata,
fit. This results holds also if we use the weights from the—y = const fit cannot reproduce the evolving model. The
SNAP specifications. We performed this comparison for they=1 fit (solid line) already represents some evolution, so
SUGRA and the periodic potential models as well as for &or z>0.6 the fit becomes fairly poor. The dashed line is the
toy model [88]. For the cosmological constant the quadratic,N=2, fit, which leads to a better result than the
w-expansion results by construction to the best results béinear fit. In the top right panel we show the constalt,
cause the fit is “exact.” We expect that this behavior holds as=0 fit, with its very small error bars, in the lower left panel
well for the nearly constant models, like the two exponen-we show theN=1 fit and in the lower right panel we show
tials model. the N=2 fit with the error bars. We recognize that the error
In Fig. 9 we plot the results of the constaNt=0, fit and  bars for theN=1 andN= 2 fit are roughly on the same level
the linearN=1, fit for a few samples of dark energy models for z<0.7, but then the error bars of tié=2 fit increase
that we have discusséblack lineg and their theoretical val- rapidly. In general the error bars on the=1 fit are smaller
ues(gray lines. We note that for the models which do not then the ones on thd=2 fit, since there are less degrees of
evolve much, such as the inverse tracidatted ling and the ~ freedom. o )
pure exponentiallong-dashed ling the constant fit seems to I Fig. 11 we plot the periodic potential modgbp left
be sufficient. However, for the SUGRA modéhin solid ~ Pane), the inverse trackeftop right panel and the SUGRA-
line) and the periodic potentigshort-dashed lineonly the ~ inspired dark energy modébottom left panel The light

first order fit is acceptable. Note that both orders are not £haded regions are therlconfidence levels. In each plot we
good enough fit to the PNGB modéhick solid line. show the cosmological constant model for compari&ark

In the following we will discuss the resulting,(z) from shaded f.eg.io)'“ We recognize that' for the fit from E‘QZ.S)
the fit. First, we have to know the error matrix which is W& ¢@n distinguish the/,(z) evolution from a cosmological

calculated as the inverse of the second derivative ofythe constant on the & level. We also performed the fits for the
function at its minimum N=2 approximation and got still better results as for the

polynomial fit, despite the increased size of the error bars. In
Uflzw o the lower right panel we show the mean of the fit for the
! IWiIW; |, i

Wi,j:Wi,j}

PNGB model(solid line). We recognize that the, it is not
appropriate for the oscillating PNGB modélotted line.
This behavior does not improve much if we apply a second
which is a valid approximation if the¢? function has an order fit. The polynomial fit hardly can distinguish the recon-
approximately parabolic shape around its minimuwmuIT structedw,, of the inverse tracker, the periodic and the
also calculates the marginalized errors on the parameters ISUGRA potential from a cosmological constant, although
calculating the values of the parameters fGf,+Ax? with  their theoreticalv , is completely different fronw ,=—1 as
Ax?=1. We used both methods and found that they giveevident from Fig. 5.
consistent results. The errors wy, are then given by Gauss- We will now examine the question of whether we can
ian error propagation reconstruct an evolving, with the SNe observations. Since
the x? values for theN=1 fit were sufficient and the error
Sw2 = z % % bars on this fit are relatively small we will concentrate on the
¢ ow; aw; following in this linear fit. In order to be able to decide if a
model is evolving we perform a change of variable to more
convenient expansion. We can rewrite E2¢4) as

Uijzz (l+Z)i+j0'ij- (28)
1]

In Fig. 10 we plot the resultingv,, for different ordersN
of the fit in Eq. (25) with the periodic potential as back-
ground cosmology. In the top left panel we plot the mean

values and the theoretical curvg¢hin dotted ling. The 29

N N
Wd,(z):izo Wi(1+z)i=i:EO Wiz,

103512-10
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FIG. 10. The equation of state
factor w,, for the periodic model.
The theoretical valuew,(z) is
given by the thin dotted line. In
the top left panel we plot the mean
values for the fittedw, with the
dotted line for theN=0 fit, the
solid line for theN=1 and the
dashed line the foN=2 fit. The
top right panel is th& =0 fit with
the shaded region representing the
1o uncertainty levels. The lower
left panel is the same plot fax
=1 and the lower right panel for

N=2.
with like a cosmological constant, sineg,~ — 0.4, which is con-
N sistent with the result in Table Il. In Fig. 12 we show the
W= (l-()Wk- (30)  loint probability contours in thev,—w, plane, for the 68.3%
=AY and 99% confidence levels. The confidence levels for the

~ ~ joint probability are calculated as the regions wiif
For theN=1 fit this leads t0N0=W0+Wl~andWl=Wl. The :sznin+AX2 with Ay2=2.3 andAy2=9.21, respectively,
errors in the new expansion coefficies can, again, be which is valid since the errors are symmetric. The shaded
found by Gaussian error propagation region is the 68.3%, respectively 99%, confidence region for
K\ /1 —1<w,=consk0. In this plot we see that only the
a\"/i/f:E ( oy - (31)  SUGRA (thin solid ellips¢ and periodic potentialthick
ko short-dashed ellipgecan be distinguished from a constant

lculated th . ffici d thei w,, at the Io level (left pane). At the 99% levelright pane)
We calculated these expansion coefficients and thellef: s ayen harder to extract evolving models and only the

rors f.o.r all the models. In Table Il we present the EXpansIon, g g dic potential can be distinguished from,= const.
coefficients for the dark energy models we have discusse

) . ) owever, if we are just interested in whether a model is
We note that we obtain evidence at the [Evel for evolution . J ~
for the SUGRA and periodic potential. The only model €V0IViNg we have to concentrate on the parametgrand

which is not reproduced correctly in the context of an evolv-marginalize ovew,, which corresponds to the projection of
ing w,, is the brane-inspired model. This is because equatioff’€ confidence region witih y“=1 for the 1o error bars

of state factor for the brane model changes only relatively:89,90. But even if we consider the marginalized errors on
early (z>0.8), where the data does not have so muchw, in Table Il the only model for which we can find evidence
weight. Note although we get a consistent result for thefor evolution with 99% confidence is the periodic potential.
PNGB model, the fit ofw,, is relatively bad(Fig. 11, lower  Note that we have omitted the PNGB model in this discus-
right pane) and it has withy?~24.8 an unacceptable lumi- sion because the reproducedq, for this model is not valid.
nosity distance fit. We also note in Fig. 11 that the inverse Up to now we have used a fixed prior &by, to fit the
tracker model is not only evolving, but also does not behavéuminosity distance and reconstruct the equation of state fac-
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tor w, . We will now discuss how our results will change if
we have no prior information of},, and use just the con-
straint 0<Q,,<1. In Table Il we show the results of the fit
with N=1 and no prior information or),,. Note that we

show the quantities; andnot w; . The reason for this is that

PHYSICAL REVIEW D65 103512

FIG. 11. The fittedw,, for dif-
ferent dark energy models. The
solid lines and the dark shaded re-
gions correspond to the mean and
1o error regions of the pure cos-
mological constant model. The
dashed lines and the light shaded
regions correspond to the periodic
potential (top left pane), the in-
verse tracker potentialtop right
pane) and the SUGRA potential
(lower left panel. In the lower
right panel we show the theoreti-
cal (dotted ling and reconstructed
(solid ling w, of the PNGB
model.

study two models which are theoretically not evolviny,
and the inverse tracker, and two models which have an
evolvingw,,, the periodic and SUGRA potentials. First, we
note that the error bars on the fitted value(df, are large,

and that the mean value, in the case of the periodic and

if we include (), as parameter to fit, the errors on the fitted inverse tracker potentials, is displaced from the theoretical
w; are not symmetric, and therefore not Gaussian. Therefor&alue by over 25%. Although, due to the large error bars the

we cannot perform the error propagation using €4). We

TABLE Il. The evolution coefficients with error bars for the Iinear\iﬁi[,5=\7v0+\7vlz. “+" denotes evolution,

“0” marginal evolution.

mean value and the theoretical value always lie within the

no evolution and

Theoretical Evolution
Wo SWo W, W, evolution reconstructed
A -1.00 0.035 -0.011 0.16 - -
trapped minimum —0.99 0.035 —0.0057 0.16 - -
Brane -0.97 0.034 0.028 0.16 + -
two exponentials -0.95 0.034 -0.016 0.16 — -
periodic -0.30 0.027 —-0.60 0.11 + +
pure exponential -0.84 0.033 -0.14 0.15 0 0
PNGB —0.00 0.025 —-0.94 0.10 + +
SUGRA -0.81 0.029 0.31 0.13 + +
exponential tracker —1.00 0.035 —-0.011 0.16 - -
inverse tracker —0.40 0.025 0.054 0.10 - -

103512-12
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FIG. 12. The joint confidence regions in thg—w, plane. In the left panel we show the 68.3% confidence regions and in the right panel
the 99% region. The shaded region is the uncertainty region for an arbitrary but constant equation of state factbrwith<<0. The thin
short-dashed ellipse is for the trapped minimum models; the thin dotted—short-dashed ellipse is for the brane inspired potential; the thin
short-dashed—long-dashed ellipse is for the potential which involves two exponentials; the thick short-dashed ellipse is for the periodic
potential, the thick long-dashed ellipse is for the pure exponential, the thin solid ellipse is for the supergravity-inspired potential; the thin
long-dashed ellipse is for the exponential tracker solution, and the thick dotted ellipse is for the inverse tracker.

1o error bars. In the case of the periodic potential we carability contours in thew,—Q,, plane. The solid line is the
recover evolution marginally, sinos;=—1.10"553. How-  pure cosmological constant and the dotted line is the SUGRA
ever, at the 99% level we cannot gain any evidence for evomodel. We note that even for a marginally evolving model
lution. For the SUGRA model we cannot reconstruct evolu-ike the SUGRA model théN=0 fit gives a reasonable re-

tion since the obtained value fav, is consistent with no Sult. Note that we did not impose a constraining= —1 for

evolution {,=0) already on the & level. We conclude, the N=0 fit. This constraint basically results in a cutoff of

therefore, that if we fit simultaneously f@, andw; it is iiigﬁjgf;d\?vche:ﬁgmi;? hg. Iltﬁej"rer']‘;"g;'“a@:x_e : “:‘ig'(;;
poor and has large error bars. P

In Table IV we show the results for the constaht O fit. g/g\a/ir?bleotrov\t/zllovr:Ihetéfr:stiz(;re&l;atcl:grrls?;r?ttaégnfterl?:)vgtrign to
First, we note that the error bars ewy, and ), are much 9. y

; A w,, which would allow us to establish bof,, andw ac-
smaller than for the lineaN=1 fit. However, we do not . . : 4
S . . curately. In Sec. VI we will now investigate how different
expect that this will work for models which are evolving. In

fact, we recognize that for the periodic potential we Gef satellite designs and priors dh,, may change this behavior.

=0 where this is only the “best fit” value because of the

constraint orﬂm. If we release thga constraint for.thlls o, V1. IMPACT OF EXPERIMENT DESIGN PARAMETERS

floats tc_) n_egatlve a_md non—phyS|caI_ values. This is bgcause AND PRIORS ON THE MATTER CONTENT

the periodic potential has an evolvivg, and anN=0 fit

cannot reproduce such an evolving model. The purehe We will now discuss the impact of the specific SNAP
SUGRA and the inverse tracker model seem to give reasorsetup on the estimation ow,. In Fig. 14 we show the
able results, apart from the SUGRA model results in a toalependence of the error matrix; on the experimental pa-
large value foK},,, where the true value @&, is outside the rameters using thdl=1 fit for the periodic potential model
1o errorbar. This is again due to the fact thgf is evolving  with (,,=0.3 fixed. The dotted line igo, the dashed line
for the SUGRA model. In Fig. 13 we show the joint prob- — o and the solid line igrq;. In the top left panel we show

TABLE IIl. The expansion parameters from E@4) for an N=1 fit, where(},, is only constrained by € ,=<1. The underlying
theoretical models all hav@ ,=0.3.

Wo OWg Wy =W, SWy= 6w, Qp o
A —0.04 +108 ~0.063 oo 0.31 R
inverse tracker —0.44 e —0.01 ‘o8 0.38 0%
periodic 0.75 o8 —1.10 o83 0.41 iy
SUGRA ~1.10 53 0.21 e 0.34 e
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TABLE IV. The fit results for(},, andwg using theN=0 fit. (thick long-dashed line, Fig.)5at the 68.3% level With7v1
=-0.14 andéw,=0.09.

o OWo o O In the lower left panel of Fig. 14 we plot the dependence
A -0.99 0.06 0.30 0.02 on the maximal observed redshift where we keep the number
inverse tracker —0.45 0.11 0.37 0.12 of observed SNe redshifts fixed to 2000 ang,q
periodic -0.28 0.01 0.0Q!) 0.03 =0.15 mag. It is evident from the plot that we can gain the
SUGRA -0.91 0.07 0.38 0.03 most accuracy if the observations are done up to a redshift of

Zmax™=3. Beyond this redshift there is no further improve-
ment. In the lower right panel we show a more realistic result
of increasing the maximal observed redshift on the statistical
error. In this plot we assume that there is a fixed threshold
numberAn of photons which have to arrive in the detector in

Wi e that th . | ted Wit 1/ order to observe an SNe. We neglect the effects of color in
€ recognize that (e variances scale as expecte h this analysis. The brightness or flux of a SNe &

or the errors with MN—Z. In the top rlght_panel we show that =£/4wdf and the measured flux in the detector &
the dependence on the absolute magnitude erggg, where «(An)/(AAAL), whereAA is the effective area of the de-
the maximal redshift is fixed t@ana,=2 and the number of (oc1or. From this relation we can work out the timé for
observed SNe isl,=2000. We note that the error matrix is \hich we have to measure the flux from a SNe at a particular
increasing asry,g increases as expected. The conservativgedshift in order to observe it. We assume that for a fraction
limit on the total dispersion isr,,;=0.15 mag as stated in p of the total observation tim& we find SNe in a low red-
Table I, which includes using the best currently known meth-shift region 0<z<z and a fraction (+ p) in the high red-
ods of standardizing and calibrating the luminosity of type lashift regionz,<z<zn,. In order to calibrate the relation we
SNe with a residual dispersion of 0.12 mag and a measurdix the low redshift region witrz;=1.2 and the number of
ment uncertainty of 0.09 mag after correcting for extinctionobserved SNe in this region i#;=1850 as in Table I. The

and using the color of the SNe. Optimistically view that with humber of observed SNe in the high redshift region is then
new methods and all the additional information which isapproximately

available for the SNe with SNAP might reduce the residual

dispersion from the standardization and calibration to 0.05 1-p

mag, although we do not expect to the improvement in the Nh“MT

measurement uncertainties to be more then 0.08 mag. There-

fore, the most optimistic choice results in,,;=0.09 mag. (142 +2%3)
We see in the top right panel of Fig. 14 that if we improve 2 PP
the statistical error from o,g=0.15 Mag to omag (142)"+ (14 2) (Zmax—2) + (Zmax=21) /3

=0.09 mag the uncertainties on the fit parametgysm- (32
prove by 70%. This means we are able to reconstruct evolu-

tion even for the marginally evolving pure exponential modelln the lower right panel of Fig. 14 we assume that for
equivalent to 90% of the total observation time we discover
SNe in the low redshift region €z<1.2. If we choose
Zmax=1.7 we observeM,,=65 SNe in the region 12z
<1.7 in agreement with the values given in Table I. For
redshiftsz<1.2 a similar equation to Eq32) holds, where

in this case the entire observation time is spent in the low
redshift region. If we observe out to a redshift ff,,=2.5

we can observé/;,=48 SNe. From Fig. 14 we recognize that
if we go from z,,,,=1.7 10 2,,,,,=2.5 we improve the statis-
tical error by 10%. We see from Table Il that such an im-

provement of the statistical error aw, is only marginal and

we cannot distinguish more models or establish evolution for
more models when compared to the case when we can just
measure out to redshifts @f,,=1.7.

We notice in Fig. 11, that the “reconstructeV,, has a
region where the error bars are relatively small, which is for
0.2 0.3 0.4 0.5 theN=1 fit in Eq. (25) aroundz;~0.2. We find the position

Q z; of the feature by minimizingw,, in Eq. (28), assuming a
symmetric error matrix and a linear fit

the dependence on the observed number of redshifts
where we keep the magnitude error fixed @ty
=0.15 mag and the maximal observed redshiftzjg,=2.

-0.6 ——————————————

-0.8 -

-12 =

FIG. 13. The joint probabilities fof),, andw, for the N=0 fit
for the A model (solid line) and the SUGRA mode(dotted ling. o
The dark shaded region is the 68.3% confidence level and the 1+z=—— (33
brighter shaded region the 99% level. 011
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FIG. 14. The dependence of the statistical errgyson the SNAP specifications for the linedis= 1, fit. The dotted line igro= (SW(Z), the
dashed line is- og;=(Swyéw,) and the solid line isr;,= 5\/\/% In the top left panel we show the dependence on the number of observed
redshiftsN, where the maximal redshift is fixed &,,=2 and the statistical error on the magnituderig,;=0.15 mag. In the top right
panel we show the dependence @g,,, Where the number of redshifts is fixed to Ng=2000. In the lower left panel we plot the error
matrix as a function of the maximal observed redshift, where we fix the number of observed SNe to 26QQ @15 mag. In the lower
right panel we show the evolution of the statistical error with the maximal observed redshift assuming that 90% of the observations are in
the low redshift region &:z<<1.2.

with o;; the covariance matrix from Ed27). This feature
corresponds to the “sweet spot” {®1] and is also the red-
shift around whicH91] perform thew expansion in order to
obtain uncorrelated expansion coefficients. From this expres-
sion we already expect that the position of the feature will
not vary if we change the number of data poihtsor the
statistical error on the magnitude,,yand this behavior was
established by numerical experiments. In Fig. 15 we plot the
dependence of the position of the featayeversus the maxi-
mally measured redshift for the periodic potential. We plot-
ted the behavior up to the very high redstzft 20 and rec-
ognize that even for such high redshifts the feature is still
below z;=0.7. The transition from matter to vacuum domi- - 1
nation (when the energy density of the dark energy field
dominates over the one of maftdor the periodic model is 0.01 Ll Ce el
aroundz~0.75. So even if one could measure SNe at the 0.1 1 10
unrealistic distance of=20 we still do not have the smallest i

error bars in the interesting=0.75 region. This behavior is FIG. 15. The shift of the minimal error regior; with the
similar for all the dark energy models we studied. change of the maximal observed redshijft,.
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0.006 ———————
' ' FIG. 16. Improvement of the

statistical error orw, and Q) ,, for
the fitted A model. The solid line
is o1,= 602, the dashed line is

served redshift, where we assume
that for 90% of the observation
time we find low redshift SNe. In
the right panel we show the de-
pendence of the statistical error on
the residual magnitude dispersion.

0.004 — 091=(6Wy6Q,,) and the dotted
\ line is ogy= 6W2. In the left panel
—= \ e = we show the improvement of the
50.001 | > ———— 1 = ) .
A ey i uncertainty on the fit parameters
[ 0.002 due to increasing the maximal ob-

We examine now the behavior of the statistical error if weings for the accuracy of the SNAP measurement with differ-
fit for the parametersvy and(},,. In Fig. 16 we show the ent priors onQ,. If we combine these findings with the
behavior of the covariance matrix;; with a varyingz,,, results in Table Il we see that for the periodic potential the
and omag- In this caseor, is the square of the error on the current accuracy ofl, is sufficient to establish evolution at
best fitQ),. In the left panel we show the evolution with the least on the & level; however, for the SUGRA model we
maximal measured redshift where we construct the samplingeed at least the tight prior withQ ,= = 0.05.
rate in the high and low redshift bins with E2) and .\, A further restrictive prior for the linear fit is-1<w(z
=1850,z,=1.2. We recognize that we improve the statistical =0)<<0 which results in the constraint 1<<wg+w;<<0.
uncertainty by 14% if we measure SNe out to redshifts ofThe constraint—1<w, excludes non-minimally coupled
Zmax=2.5 instead ofz,,,,=1.7. In the right panel we change scalar-tensor theorief76,94,93, which we have not in-
the residual dispersionr,,, with the rest of the parameters cluded in our discussion. If we analyze the results for the
fixed to the SNAP specification in Table I. The improvementN=1 fit with fixed (), this prior does not improve the sta-
on the statistical error by going frorr,,;=0.15 mag to tistical uncertainty. If we do not fiX},,, the constraint-1
Omag=0.09 mag is 64%. We will discuss the relevance of<wy+w,;<0 for the linear fit, or—1<w,<0 for the con-
this improvement when we examine different priors on the fitstant fit also does not improve the statistical errors. From this
parametersvy, w; and Q. However we conclude that an we conclude that either we use a tight measuremer pf
improvement of the measurement uncertainties is far more
relevant than the ability to observe SNe at larger redshifts. 0.5

We will now discuss how different priors on the fit pa-
rameter(},, influence the accuracy. We have discussed just
the most extreme cases of priors on the 1 fit with either
0 ,,=0.3 fixed orw;=0 fixed. In Fig. 17 we show the de-

creasing error bars in the,—w; plane with different Gauss-
ian priors onQ),,. Note that we analyzed the full likelihood
function and did not assume a Gaussian shape for the prob- -0.5
ability distribution. The current observations provide either
just a crude measurement or upper limits@g. From[59]
we obtainQ,,=0.2"53 which is too crude to result in a sig- _1
nificant improvement on oumy-w;-Q),, estimation. The
x-ray observation if21] gives an upper limit of),,<0.32
+0.01 and the Sunyaev Zel'dovich results[B0] are Q, L = L.
<0.34'303. Future Sunyaev Zel'dovich survej80,92 can -to08 u_,cl'i 07 706 -05
possibly determin€),,, up to an accuracy of 3% if one con- o
siders in conjunction with CMB measuremei@3]. Future FIG. 17. Error contours of the SUGRA model with different
x-ray surveys could determin@, to even higher accuracy priors on(),, in the wo—w, plane. The solid line contours are the
independent of any other measuremfgg]. 39.3% joint probability regions, which project tarlerrors on the

We observe in Fig. 17 that only very tight bounds of axis and shaded regions represent the68%oojaint probabilities.
QO+ 6O, with 6Q,<0.05 improve the statistical error bars The range of increasingly larger contours represents the result using
which are stated in Table Ill. If we improve the statistical prior knowledge or(},,, with increasingly poorer uncertainty;g
error on the magnitude t@,,,,—=0.09 and double the number =450,,. The unlabeled, black dotted curve corresponds to the
observed SNe we can even further improve the accuracyrojected-b- error contour obtained for more optimistic dataset
(dotted line in Fig. 17. In Table V we summarize our find- specifications and with a prior of 0.29),<0.35.

T T T T T T T T T T T
SUGRA 4%

w1

Oqy~ £0.15

|
—_
—_
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TABLE V. Statistical measurement uncertaintiesvepandwy, from CMB and large scale structure observations &f®,
given supernova magnitude measurement uncertaifyy, and a  =+0.05 on the 2 level [15,58. The long- and short-
range of uncertaintieﬁﬂm, in the independent prior knowledge of dashed lines in Fig. 18 correspond@@= =+ 0.05 and we see
Q. (Asin Fig. 17 , the Supergravity model is used here as thethat with the SNAP data we cannot improve the current con-

example, but the other models give comparable results. straints. The inclusion of a curvature term in the analysis

: presented in this paper in principle increases the uncertainty
Prior dq,, Measurementryag  Ju, S, of the estimated parameters; however, in the light that future
No Q,, prior; w,=0 0.15 0.06 CMB observations su.ch as the Microwave Anisoprop_y Probe
0.15 0.15 0.15 0.6 (MAP) and Planck will provide even tighter constraints on

the curvature(for Planck AQ, = +0.007[96]), we assume,
0.05 0.15 0.06 0.2 . . .
" 0.09 0.05 012 as mentioned before, a fixed prior 8 =0.
We turn now to the question how systematic errors influ-

0.04 0-15 0.05 0-16 ence our ability to distinguish dark energy models and recon-
0 (fixed Q) 0.15 003 012 Y 9 gy

struct the equation of state factar,. The systematic error

in the luminosity distance is related to that in the magnitude

from an independent observation or we cannot establish evésys by

lution of w, for most of the dark energy models. A further sys -
¢ + yS— Osyd5_

prior we have used throughout this paper is the assumption = 007= (1077 = 1)d . (35)

that the universe is flat. For a non-flat universe the luminosgjnce we marginalize over the magnitude zero pditin

ity distance is given by Eq. (4), we expect the systematic error for the magnitude to
be zero for low redshifts. We assume a linear drift of the

c(1+2z) z systematic error by
dL(Z):—/—S(V|Qk|f [Q(1+2)*+Qp(1+2")°
|Qk|H0 0 " a_
asyszfész, (36)

+Q¢(1+Z/)3(Wo+1)e3W12']71/2 dz/) , (34)

where&syS is the systematic error at a redshiftof 1.5. In
with Q,=1-04—0., and S(x)=sinK) for Q<0 and Fig. 19 we show the influences of the systematic uncertainty,
S(x) =sinh() for ,>0. In Fig. 18 we show the magnitude where we plot the 68.3% joint probability regions on the
difference to the fiducialA model for models with non- estimated parameters with the standard SNAP specifications
vanishing curvaturél, , where we fixed the ratié),/Q2 4.  from Table I. The light shaded regions correspond to a sys-

The solid line is for(),=—0.2 and the dotted line fofl,  tematic error ofre,= +0.02 mag, the transparent regions to

=0.2. SNAP could clearly distinguish these models on the&syszio_os mag and the dark shaded region is the result

1o level. However, the current uncertainties on the curvatur%r no systematic error. In the left panel we show the result
for the N=1 fit with a fixed Q,,. We note that the linear

smaller than for thé\ model(solid lineg. But if we take into

account the relative sizes of the statistical error depicted by
the error ellipses, we find that the shift due the systematic
error is roughly in agreement with these errors. In both cases

the systematic error WitB-SyS= +0.05 mag is only in mar-
ginal agreement with the reconstructed values/ofvith no
systematic error. The value of; for the A model isw;=

0.1 T T T T T T T T T T T T T T —~
- ! . drifting systematic error leads to a shift in tlag direction,
I ] but the marginalized error ow, changes only slightly. The
- . shift for the periodic potential modétiashed linesis much
0.05 - —

Amgff
)
o
>—
|
t
\
\
\
i

0.05 -

—0.011 and the one for the periodic potential \ig=

—0.60 if we do not include the systematic error. The 68.3%

joint probability regions forfrsys= +0.05 mag only margin-
L= '015' E— i — 1'5' ' ally overlap with these values in both cases. However, the

z ' 99% confidence regions are all in agreement, even in the

shifted case with the theoretical mean values. We can recon-

FIG. 18. The difference in magnitudes between non-flat modelgy ¢t evolution of the periodic potential model even for
and the fiducialA cosmology, where the ratio betweén, and(Q,,

is fixed. The solid line is ford,= 0.2, the dotted line fo, ~ “sys= —0-05 mag which results iw,=—0.47 and éw,
=0.2, the short-dashed line fd2,=—0.05 and the long-dashed =0.11, which is still in agreement witw,#0 at the 3r
line for Q,=0.05. The data points correspond to the binned SNAPlevel. We also expect that we can distinguish the same mod-
data as in Fig. 2. els without inclusion of a systematic error since the main
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FIG. 19. The effects of the linear drifting systematic error on the fitted parameters. The dark shaded region corresponds to 68.3% joint
probability region of the models without systematic error, the light shaded regiofrgy;@io.oz mag and the transparent regions to
(}Sysz +0.05 mag. The ellipses with a solid margin are the results foAtheodel. In the left panel we show the results for Me 1 fit with
O, fixed. The dashed margins are from the periodic potential model. In the right panel the results(g-thefit are shown, where the
dotted lines correspond to the SUGRA model.

difference of the models is along tiag axis as evident from the orderw;~*1.5 which none of the studied dark energy
Fig. 12. In the right panel we show the results for thg-w,  models fulfill. In order to improve the SNAP proposal even
fit, where the dotted ellipses correspond to the results fronfrther we assume that we are able to measure twice as many
the SUGRA model. As before the estimate valuevgfis not ~ SNe in each redshift interval as for the proposed SNAP
as strongly affected by the systematic error as the fitted valugPecifications from Table |I. F00r3t5h'3 setup we obtain E)hei fol-
of Q. Again the 68.3% confidence levels farg,=  °WiNg parametersyllg.a?b?g_*%oi 0.04, w;=—1.07"¢3
+0.05 mag (transparent regiopsare only marginally in = 0-04 andQ,=0.41 g} o 03. We notice that with thél,,
agreement with the fitte@,, for no systematic errofdark measurement we alr_nost reach the systematic error limit and
shaded region We conclude that the influence of the sys- W€ obtain relatively tight bounds on the matter contents. Fur-
tematics is of significant importance for the estimatgg or thermqre, we have reconstructeq gvolutlon fo'r the periodic
7. onlv at the 1 level but is almost nedligible for the potential at_ the a level gnd the limit on evolution we can

L y ' = glg ) measure with this setup ¥8;~ = 1. So we can conclude that
estimation of the constant contribution, to the equation of ifitis possible to build SNAP withy,,,=0.09 and measure
state factorw,. In order to answer the question as to 5roundN,=3830 SNe out to a redshift,,,=1.7 it is pos-

whether we can reconstruct evolutiandQ, of the periodic  gjp|e o establish evolution of the equation of state faatgr
model with the SNAP experiment we have to take into ac-y, the 3r level, if the slope of the linear evolution |sv, |

count systematic errors. First, we realize that for the standard. 1
SNAP configuration from Table | with a systematic error of

frsys=0.02 and a statistical uncertainty we get for the best fit
parameterw,=0.75 38+ 0.04, w; = — 1.07° 385+ 0.04 and
0,=0.41"398002, where the second error is due to the We examine now the question of whether there could be
systematics. We recognize that we can only reconstruct evan alternative to SNAP. Therefore, we assume that we can
lution, which is the inconsistency @f; with a zero mean, at improve the low redshift results from SCP and measure
the 1o level and that the statistical error @b, is nearly of  about\;=160 SNe in the redshift range= 0.1-0.55, with

the order of the mean (50%). The limited amount of lineara statistical uncertainty af,,5=0.20 mag and a systematic

evolution we can reconstruct at the-3evel with this experi-  error of(}sys: 0.05 mag, where the reference redshift for the
mental setup isv;~ *=2.4 and none of the models we stud- systematic error iz=0.5. For the high redshift region we
ied has such a large linear evolution. If we are able to ingssume that we can obseryé,=100 SNe in a redshift
crease the preCiSion of the SNAP satellite to the limit Ofrangez:2_2_5 with the Next Generation Space Te|escope
o mag= 0.09 the best fit parameters for the periodic model argNGST) and the same statistical and systematic error as in
= 0.49 _ 0.43 . ) .
Wo=0.75035-0.04, w;=-1.07"033+0.04 and O, the low redshift region. In Fig. 20 we show the results of
=0.41° 3057 5:9%. We note that for this setup we can recon- these specifications for th& model, the periodic potential
struct evolution at the @ level, but also that the error bars (dashed ling and the SUGRA inspired modétiotted ling.
on Q, are significantly smaller for this setup as for the con-In the left panel we plot the 99% joint probability regions for
servative SNAP specifications from Table I. In order to es-the linear fit with a fixed prior o) ,,,. With NGST specifi-
tablish evolution on the @ level, we need a linear term of cations we cannot establish evolution even for the strongly

VII. ALTERNATIVES TO THE SNAP MISSION
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evolving periodic potential model. If we study the constantmagnitude-redshift functionsi(z) that result give the best

fit with no constraints o}, (right panel we cannot im- fits to most of the dark energy models actually proposed.
prove current bounds ofd,, as given in[59]. We have not There are two caveats worth noting here. Firstly, there might
included the systematic error of this measurement in thée an even better parametrization scheme out there that has
analysis, which makes the results even more spread out. Aﬂret to be discoveredthat provides even better fitsSec-
together it seems clear that a refined low redshift measureyndly, this scheme is unlikely to provide good fits to all
ment together with the NGST cannot provide the same inforpgssible modelgthe periodic model is an exampleThe

mation concerning dark energy.models.as SNAF_’, alth(_)ug ltimate test for a given model is to simply generatz) for
NGST can complement SNAP in the high redshift region.ih4t model and compare it with the data.

This !ea\_/es the question open .if there_are surveys which We then use the proposed SNAP satellite as a case study
exploit different physics to gain information about the darl(for what might be possible with improved datasets. In three
energy content of the universe. One possibility is future gal-

. . AN recent publications by Macet al. [86], Astier [87] and our
axy cluster surveyg93] either with a Sunyaev-Zel'dovichsz own [88] the prospects of the SNAP mission have been

or an x-ray survey. The analysis for these surveys in the . .
context of dark energy has only been performed for consta%.”e.ﬂy q|scu§sed. Maoet al. [86] argue that SNAP. gannot
istinguish different dark energy models and that it is nearly

w, models. The & errors for the joint probabilities in the . 4 .
Q,,-W, plane for an x-ray survey have roughly the same sizdMmpossible to reconstruct evolution of the equation of state of

as for the SNAP specification in Fig. 13. It is interesting thatth® dark energy component. Our results and Asti€87]
these methods seem to be complementary to the SNAP okesults agree with 'thelr flndlngs., but as seen in Figs. 13 and
servations in the sense that the error contours are nearly pekd, we show that if we constrain the analysis to a constant
pendicular to each oth¢®7]. One of the main drawbacks of W, then it is well within the scope of SNAP to distinguish
this method is the unknown evolution of cluster luminosity- dark energy models, even if we do not impose any priors on
temperature relation. How an evolving,, could influence Q,,. Ifitis possible to exploit the full precision of the SNAP
the estimation of parameters with galaxy cluster abundanci#strument ¢,,,.—=0.09 mag) and to constrail, to 0.05,

is not clear and should be included in a future analysis. Ahen it is even possible to reconstruct evolution at tle 3
different method was proposed [i87] which exploits galaxy level as long as the linear evolution today is above|thg
counts with the planned Deep Extragalactic Evolutionary>0.6 threshold. These results are confirmed[8Y]. As a
Probe (DEEP survey[98]. This survey gives roughly the conclusion we can say that SNAP certainly has the ability to
same error contours as the ones we present in Fig. 13. Agaitistinguish dark energy models from a cosmological constant
the analysis of this survey has not included an evolving  and possibly can put some constraints on the evolution of the
model. Further possibilities to constrain dark energy could bequation of state of the scalar field component. Whether or
the Alcock-Paczynski te§89,100, the evolution of density not alternative surveys, like an x-ray or the SZ sur{@$],
perturbations[44], gravitational waveg§101], lensing sur- or the DEEP survey97] can achieve the same accuracy is
veys or observations of the Lymanforest[102]. currently under investigation.

VIIl. CONCLUSIONS
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