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Abstract. The ability to deploy Grid infrastructure and services across organi-
zational boundaries (rapidly, reliably, and scalably) is critical for the success of 
large-scale service based grids such as OGSA. We report the results of the UK-
OGSA Evaluation Project infrastructure and services deployment experiments, 
and analytically compare application versus service deployment. The use of a 
3rd party component deployment technology to remotely automate installation 
and service deployment is discussed, and outstanding problems and potential 
solutions and benefits are presented. We conclude that grid deployment must be 
treated as a first-order activity by integrating secure deployment capabilities 
into the middleware, to enable deployment of secured infrastructure and serv-
ices across organizations. 

1 Grid Deployment Introduction 

The UK Open Grid Services Architecture (OGSA) Evaluation [1] was a one year 
project to establish an experimental OGSA-based [2] grid for the UK E-Science 
community. The novel focus of the project was to gain insight into issues related to 
deploying OGSA across organizational boundaries from software engineering and 
architectural perspectives. Globus Toolkit 3.2 (GT3.2 [3]) was chosen as the exemplar 
OGSA technology, but the evaluation was designed for the conclusions to be valid for 
other Service Oriented Architecture (SOA) infrastructures, including GT4. This paper 
is based on reports and presentations documenting the experimental outcomes of the 
project [4, 5] and an analytical evaluation of Globus mechanisms [6]. 

A SOA supports distinct lifecycle steps, namely service development, service de-
ployment, service registration, service discovery and service consumption.  In an 
intra-organizational enterprise context, there are two distinct roles associated with 
these steps: Provider and Consumer.  The provider is responsible for development, 
deployment and registration of services behind a firewall. The consumer is typically 
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external to the organization, outside the firewall, and discovers and consumes serv-
ices. The provider role is therefore intra-organizational, while the consumer role is 
inter-organizational. However, in the Grid community the role division is different.  
End-user scientists typically develop their own applications, locate resources to run 
them on, deploy and execute them on these resources, and manage them.  The focus is 
on end-user development, deployment and use, resulting in an overlap of provider and 
consumer roles, crossing organizational boundaries and firewalls. 

GT3 supports end-user deployment of applications using mechanisms including: 
Grid Services, Grid Security Infrastructure (GSI), Master Managed Job Factory Serv-
ice (MMJFS), Resource Specification Language (RSL-2), data transfer services (Grid 
File Transfer Protocol - GridFTP, Global Access to Secondary Storage – GASS) and 
index services (Globus Monitoring and Discovery System - MDS3).  For authorized 
users these allow: job submission services (MMJFS) to be discovered; applications 
and data to be transferred onto the target machine; resources requested, scheduled and 
allocated; jobs submitted, run and monitored; and end-users notified upon completion 
- across organizational boundaries and firewalls. 

However, GT3 does not support cross-organizational end-user deployment of grid 
services. This means that an end-user can not easily deploy their science code to re-
sources behind firewalls as a “1st order” grid service.  A grid service is an implemen-
tation of a Grid Service port type, described (with GWSDL a grid extension of WSDL 
1.1), packaged (in a Grid Archive “GAR” file), deployed across organizations to all 
the containers available to a Virtual Organization (VO), registered in a VO index 
service, and is discoverable and callable by all the users in the VO who are authorized 
to use it. 

Support for end-user deployment of applications, but not services, reflects two dif-
ferent ways of using a SOA for Grid computing: resource-centric versus service-
centric. Scientific applications have typically been large monolithic applications writ-
ten in legacy languages (e.g. Fortran), for proprietary high performance computing 
(HPC) architectures.  GT3 is designed as a resource-centric infrastructure to allow 
legacy applications to portably utilize heterogeneous Grid resources.  GT3 uses serv-
ices as infrastructure services, to resource science as applications. End-users are not 
expected to deploy new services, but to use pre-existing services to deploy and run 
their applications.  This approach is resource-centric, resourcing by services, Web 
Services enabling of Grids. We define this as a “2nd order” approach, since science is 
not exposed directly as grid services, only indirectly via infrastructure services.  The 
other approach is service-centric, resourcing of services, Grid enabling of Web Serv-
ices. We define this as a “1st order” approach, since it enables science to be deployed, 
resourced, and used directly as distinguished grid services. 

SOAs exhibit a number of desirable features that are lost if direct execution of sci-
ence as 1st order services is not supported, including: rich SOA patterns (e.g. proxies 
for monitoring service use); work-flows for the design and execution of flexible and 
portable applications and services (through recursive composition); loose coupling of 
client and service by registration/discovery of services and service descriptions and 
dynamic binding; and interoperability by conformance to Web Standards. 

The original intention of GT3 was also to enhance the implementation of Grid 
services by extending Web Services with a rich component model. In fact, OGSI [7] 
was explicitly based on J2EE [8]. The OGSI component model includes a set of con-



ventions for service naming and reference, common and extended interfaces and be-
haviour support for dynamic instance-specific meta-data, and run-time support to 
manage service lifecycles. Service level security provides a fine-grained security 
model allowing different levels of access to services, instances and methods. The 
component model can be used for the development of 1st order science services as 
well as infrastructure services.  

A non-trivial aspect of deployment is Grid infrastructure installation.  We consider 
this to be in the scope of deployment requirements since correct installation and con-
figuration of infrastructure is a precondition for service deployment. 

This paper focuses on GT3 infrastructure, application, and service deployment by 
end-users across organizational boundaries.  Sections 2 and 3 compare GT3 installa-
tion and deployment for 1st and 2nd order approaches. Scenarios for installation and 
deployment for each approach are described and an analysis is performed based on 
the impact of GT3 components and mechanisms on quality attributes.  Section 4 de-
tails the results of experiments to automate remote installation and deployment, and 
section 5 reviews related work. Finally, in section 6 we conclude with outstanding 
problems, potential solutions and benefits of supporting deployment as a 1st order 
activity in OGSA.  

2 Installation of Grid Infrastructure 

The grid infrastructure installation scenario steps are as follows: obtain infrastructure 
components (Globus, and supporting software); discover and select hosts to install to; 
determine host specific configuration information; install on selected hosts; configure 
installation on each host; secure installation on each host; start/stop container and 
services. Related tasks include: Validate installation; discover installation state (what 
is installed, versions, and configurations); trace installation progress; detect and debug 
installation failures; reinstall selected components; un-install selected components; 
install client-side infrastructure and security. 

Several months were spent installing GT3 infrastructure across the project’s four 
test-bed sites [4].  The installation experiences varied because of a combination of 
factors including: platform heterogeneity; site-specific security, and access policies; 
degree of familiarity with Globus technology; and GT3’s fragile build process and 
complex package structure. Consequently, substantial effort was expended diagnosing 
and rectifying installation, configuration and access problems, resulting in the follow-
ing insights. 

2.1. Common infrastructure for 1st and 2nd order approaches: Core package, 
Tomcat container, security, Globus Monitoring and Discovery System (MDS3). 

Core package.  Installation of the Core package (pure java container related services) 
and container (e.g. Tomcat) is relatively straightforward, but requires understanding 
and configuration of Globus and site-specific requirements and policies for installa-
tion, access, accounts, and security. On some sites Globus was treated as production 



software and installed by systems administrators, entailing extra effort to separate and 
support roles (for installation, configuration, container management, and deploy-
ment).  Testing the core installation without security is feasible and is an important 
step, since it is critical to ensure basic access and functionality before enabling secu-
rity, as security interferes with remote testing. 

Security.  Security infrastructure is required for the 2nd order approach, but only 
for a secured production version of the 1st order approach.  In theory the 1st order 
approach does not require the complete “All Services” package to be installed (the 
complete middleware stack, which is not pure Java), but some sites installed it for a 
variety of reasons making security more difficult to install, configure and use than 
expected [4]. 

In order to emulate a realistic production grid environment we requested and ob-
tained host and client certificates from the UK e-Science Certification Authority [9]. 
Accounts were requested and created for users on each site, and client certificate 
subjects and account mappings configured in “grid-map” files on all nodes.  Hosts 
were configured to use host certificates, client-side security infrastructure was in-
stalled and configured, and client-side code was modified to call services with the 
required security protocol.  Unfortunately there is no portable client-side package 
including security and we were unable to get secured client-side code working under 
Windows. There are significant problems with certificate management, including the 
application, acquisition, storing, use, renewing, and revocation processes.  A major 
problem is the lack of scalability of installation and management of security, particu-
larly due to the necessity to provide a unique local account per user, and to map user 
certificates to local accounts in grid-map files. 

It may be possible to run services securely without having individual client ac-
counts on the host machines, making the security process more scalable. It is also not 
obvious that the GSI approach to security is either sufficient or necessary for a 1st 
order approach, since GSI was designed for the 2nd order approach and supports proxy 
certificates, single sign-on, and delegation of credentials.  A different security infra-
structure may be more appropriate for a 1st order approach, for example, one support-
ing role based authorization. 

Testing and debugging the installation with security enabled is difficult. It is im-
possible to determine the security configuration of containers and services remotely 
and to debug calls to secure stateful service instances, since these preclude the use of 
non-invasive tracing techniques such as proxy interception of calls.  It is essential to 
install infrastructure with tracing and debugging components enabled (E.g. the Axis 
SOAP handler, SOAPMonitor, and remote Tomcat management; although these have 
their own security requirements). 

MDS3.  MDS3 supports a rich index service model, allowing Service Data Ele-
ments (SDEs) to be collected, updated, aggregated, cached, persisted and queried for 
service instances in a variety of configurations. MDS3 was relatively easy to install, 
configure and test across sites, although it is not part of the core package, many man-
ual configuration and testing steps were required, and configuration errors were not 
discovered until run-time. 

Data transfer.  For 1st order services we assume that SOAP attachments are suffi-
cient for data transfer. In practice they are unlikely to be adequate due to bugs in 
SOAP attachments in Axis/Globus, a practical upper limit to attachment sizes of 1GB, 



limited scalability, and incompatibility with security. Otherwise the OGSA data trans-
fer services must also be installed (but are problematic to use with services, see [5]). 

2.2  Extra 2nd order infrastructure: “All Services”, and data transfer 

The 2nd order approach needs the “All Services” package to be installed and config-
ured, including MMJFS (the Job Manager, part of the Web Service Globus Resource 
Allocation Manager, or GRAM, component), a resource scheduler, and data transfer 
services.  We did not attempt to use a real resource/batch scheduler as Globus does 
not come with one by default, but used the simpler MMJFS fork instead. 

The non-Java packages, and even some of the Java packages, require compilation 
as part of the installation process. Correct versions and in some cases “brands” of 
supporting software must be used to guarantee a successful build. Globus is primarily 
targeted at Linux and support for other flavours of UNIX and other platforms is lim-
ited. We experience compilation issues on both Linux and Solaris and the build proc-
ess was fragile and error prone.  Due to version churn and build problems this process 
had to be repeated frequently, starting from a clean slate each time to eliminate de-
pendencies on previous attempts. Some sites reported issues installing different ver-
sions of “All Services” on the same machine.  

GridFTP is a legacy Globus component and not well integrated with GT3 services 
and the container.  To support file staging with MMJFS, GridFTP, or a GASS server 
(for smaller files) must be installed on both server and client machines [10].  Due to 
problems originating from poor documentation, lack of example code, bugs in the 
GridFTP server, and certificate issues, we were unable to get data transfer working 
correctly across sites [5]. 

2.3 Analysis 

Infrastructure weaknesses include portability, build-ability, and packaging. There is a 
need for well-supported binaries or portable code (i.e. pure Java), better integration 
and packaging of components, support for adding (or removing) selected components 
from a working installation, and a portable client-side package (including security). 
Portability contributes directly to the ability to automate the installation process re-
motely and therefore scalability of installation. The 1st order approach is intrinsically 
more portable, since only a container and security are essential, whereas the 2nd order 
approach relies on legacy non-Java components which are less portable and require 
more effort to build, install, configure and test before use. 

Support for remote viewing of installation state is minimal, with no way to deter-
mine what packages and versions have been installed, or how far the installation has 
proceeded. One obvious problem for security scalability is creating and mapping user 
certificates to local accounts. Security infrastructure processes and management, in-
cluding certificates and accounts, need improvement in order to be more useable, 
scalable and easier to automation. Apart from security, any organization, machine or 
site-specific configuration makes it more difficult to automate a scalable installation 



process.  For example, installation location, port number, user access, and site-
specific security policies must be successfully negotiated and configured. 

We conclude that the infrastructure for 1st order services is amenable to automatic 
remote installation since it can be better packaged, requires less building, is more 
portable, requires less configuration, is easier to test incrementally (without security, 
and then with security), and in theory can utilise a simpler security model.  However, 
improvements in processes, tools and technologies are also required to support: re-
mote automatic installation and configuration; separation of installation roles; moni-
toring of installation progress and state; visibility of components installed and ver-
sions, and security infrastructure; and debugging of installations.  

3 Deployment of Services and Applications 

In the standard 1st order SOA world, services are deployed within an enterprise, be-
hind firewalls, by enterprise developers and deployers. End-users typically do not 
(and can not) deploy services. However, in the grid community deployment needs to 
be supported across firewalls and enterprise/organizational boundaries (i.e. inter-
enterprise), for different types of deployers, some of whom are essentially end-users. 
For the deployment scenario, we assume: a set of Grid resources (possibly heterogen-
eous); shared by a number of VOs, but with at least one centralised index service for 
each VO listing the resources available to the users of that VO; end-user deployment; 
portable service/application code; and, manual deployment of 1st order services by 
Systems or Grid Administrators on each site. 

3.1 Grid Service Deployment (1st order) 

The scenario for grid service deployment is as follows: Configure service specific 
security; validate deployment; discover hosts available; select hosts to deploy to; 
deploy service to selected hosts; register the services in an index service; enable or 
disable the services. Related tasks include: Test to ensure that services are registered, 
discoverable and callable by specified users; un-deploy service; redeploy service; 
trace progress of deployment; debug deployment failure. 

Security configuration.  Given a GAR file, the deployer unpacks it, configures 
security for the target host, and then repacks ready to deploy.  We assume that authen-
tication is specified at development time in a custom service security configuration 
file. This allows the developer to specify the minimum level (and other permissible 
levels) of security for each service and method, but not who is authorized to use them.  
Authorization is specified in service specific gridmap files. A gridmap is an Access 
Control List that specifies which users have access to a service. It has a list of distin-
guished names and maps each name to a user account.  The requirement to map user 
certificates to unique local accounts in gridmap files reduces the scalability of the 
deployment process. This is the default approach, but a number of alternatives are 
possible. Using role based security would reduce the complexity of managing grid-
map files, but authentication is still a problem, requiring user certificates, proxy cer-



tificates, and certificate subjects. One simplification is to allow anonymous users 
(users who share the same credentials) so that nodes only need to know about the 
mapping between classes of anonymous users and roles. However, this allows the 
possibility for rogue users to misuse their roles without being able to be traced as 
individuals. It is possible that a common account could be used in gridmap files 
(every user would still have a unique certificate). Even though there would then be no 
privacy or isolation between users mapped to the same account (the common account 
functioning more as a “role”) this may be a reasonable compromise. 

Validation and Testing.  Ideally the GAR file, deployment descriptors, and secu-
rity configuration, could be validated before deployment, but this is not supported. 
Errors may be discovered during deployment, or worse, at run-time, which impinges 
on scalability, availability and reliability of deployment and use.  

Host discovery and selection.  We assume that services are portable, and that they 
will be deployed to all resources in a VO without reference to the base capacity, cur-
rent resources, or load on each machine.  This is a reasonable assumption since newly 
developed Grid Services are more likely to be portable compared with legacy applica-
tions deployed using MMJFS. 

Deployment.  For the experiment deployment was initially performed locally on 
each machine with the GT3 deployment scripts.  The mechanism for manual deploy-
ment is to make the GAR file available to the deployer on each site and then wait for 
them to deploy it, restart the container, and register the service in the central VO in-
dex service. Restarting the container is problematic if services are in use unless they 
support persistence across container restarts.  So-called “hot” deployment would be 
an advantage; otherwise a workaround is to have separate containers (or multiple Web 
Application Contexts using Tomcat) for each service, user, or VO. To un-
deploy/redeploy a service, the container is stopped, the service un-deployed, a new 
version of the service deployed if required, and then the container is started again.  
The MDS3 entry for the service must be updated or removed. 

Service registration.  MDS3 is designed to support a meta-data oriented registry 
service, various topologies (e.g. hierarchical aggregation), and soft-lifecycle man-
agement/update of service instance state changes.  This makes it more than a simple 
UDDI registry service. It takes multiple steps to register a service in one container 
into a remote index service. This requires manual local server-side editing of configu-
ration files, and information entered during configuration is not checked until execu-
tion time. In a typical SOA the directory service contains information about the ser-
vice location, along with service description (WSDL). Our experiments did not re-
quire dynamic discovery of service descriptions since client-side code (including 
stubs) was developed at the same time as services.  However, this capability is critical 
for scalable, flexible and robust SOAs, and we are obliged to assume that MDS3 
supports registration and discovery of GWSDL service descriptions. 

Non-functional deployment attributes.  Using a manual deployment process the 
performance (time to deploy to a node), scalability (how many nodes can be deployed 
to with increasing nodes, services, and users), reliability, repeatability, traceability, 
and debuggability are all extremely poor. The security of deployment is only moder-
ate since the process is manual and error-prone. It assumes secure transfer of GAR 
files to the deployers, that they are not tampered with by the deployers, and that only 
services from permitted developers are deployed. Validating the security configura-



tion of deployed services remotely is non-trivial.  Scalability of security configuration 
maintenance is an issue, requiring authorized users to be added/removed from service 
specific security configuration files. This currently entails editing of grid-map files 
and then redeployment and restarting of the container. More seriously, in the absence 
of automated/remote deployment there is no formal security model for inter-
organizational/VO deployment. 

In the absence of any other resource management mechanism, deploying a service 
on a machine and giving users permission to use it gives them the “right” to consume 
resources on that machine simply by invoking it.  The default service resourcing 
model is shared, not exclusive, but with no guaranteed QoS unless the hosting envi-
ronment can provide it at the time of use taking into account both base-level capabil-
ity and actual load. Extra resource scheduling or load-balancing mechanisms are re-
quired to ensure QoS, fair sharing of resources, and to prevent resource saturation.  

3.2 2nd Order Application Deployment 

The 2nd order application scenario is different, as using MMJFS an executable is de-
ployed (or “staged”) immediately prior to use as part of the same invocation of 
MMJFS by the same user.  The steps are as follows: Prepare RLS-2 file based on 
application requirements; discover and select MMJFS services; call selected MMJFS 
with RSL-2 file; wait for success of staging, notification of job submission, and even-
tual termination. 

MMJFS.  MMJFS/GRAM is a basic job submission service (without scheduling) 
that takes an RSL-2 XML file and a user certificate as input, and submits the job to 
the underlying queue with the proper invocation syntax, running as the user account 
mapped to the certificate. MMJFS supports staging of executables using a GASS 
server which runs on the GRAM client and negotiates data transfers with the remote 
MJS service [12].  MMJFS services are assumed to be registered in a VO index serv-
ice to be discovered at deployment time.  We assume that deployment occurs to all of 
the resources available to a VO simplifying the problem of matching application re-
quirements to resources (for example, platform and concurrency). Otherwise, the 
resource management system in each organization is responsible for discovering and 
allocating appropriate resources, although how this is coordinated globally across 
organizations is unclear.  The distinction between Deployment and Use phases is 
somewhat artificial as file staging (i.e. deployment) is just one of the operations per-
formed by MMJFS once invoked. The MMJFS Start Operation steps are as follows: 
client credential delegated to MJS instance, file staging performed, submit job to 
scheduler. There is a strong assumption that an application is deployed and then used 
immediately by the same user, although there may be a substantial delay before the 
job is executed if using a job scheduler. This limits the options for deploying/staging 
an executable in advance, splitting deployer and user roles, and may impact scalabil-
ity, performance and flexibility [11].  

Security.  One distinction between the 1st and 2nd order approaches is security re-
lated to deployment – both configuration of security during deployment for subse-
quent use and security of deployment. The 1st order approach enables services and 
methods deployed in a container to have different security settings.  Due to the lack of 



an automated/remote deployment mechanism there is no explicit security model for 
deployment. The 2nd order approach imposes one security model on deployment and 
execution, due to the use of one mechanism for both tasks – i.e. the security configu-
ration of MMJFS. Therefore only one set of security policies can be applied, to both 
the deployment and execution, of all jobs in a container. If a user has permission to 
use MMJFS in a given container, then they can deploy and use any application in that 
container.  However, finer grained security may be provided by a resource manager 
and the use of virtual containers as sand-boxes would reduce security problems. 

Data transfer, Index Services, and Tracing.  GridFTP and a GASS server must 
be installed and working on servers and client machines. It is unclear if there is any 
explicit un-deployment capability and if/when or how files are cleaned up/deleted. 
MMJFS is already registered in the index service, but MJS instances (returned from 
the MMJFS Create Service operation) can also be registered to enable management of 
individual jobs (allowing for long-running batch jobs).  There is some support for 
tracing the progress of MMJFS events and exceptions since MMJFS was designed to 
manage job execution. However, only minimal information is available remotely. 
 
3.3 Analysis 
 
Remote deployment of “applications” is straightforward with the 2nd order approach, 
although more infrastructure must be installed (MMJFS, security, resource manager, 
data transfer services). There is support for resource matching and some support for 
deployment tracing/debugging. There is no capability for “application” registration, 
explicit deployment packaging, or validation of the deployment prior to use. There is 
an explicit security model for deployment, which is just the MMJFS security settings, 
and therefore identical for deployment and job submission for the whole container.  
Deployment and Use are therefore indivisible, both temporally, for iden-
tity/authentication, and for authorization. There is some support for trac-
ing/debugging, but it is impossible to test MMJFS deployment without security being 
enabled. Deployment at least guarantees job submission and therefore (eventually) 
resourcing. 

There is no in-built support for remote deployment of Grid Services and therefore 
no formal model of deployment security, no support for resource matching (although 
portability of services can reasonably be assumed), and very poor non-functional 
deployment characteristics. There is explicit Grid Service deployment packaging 
(GAR file) and it would be possible in principle to validate at least parts of the de-
ployment prior to, or during, deployment. Service registration is well supported and 
we assume that it is possible to register GWDSL service descriptions. The scalability 
of the default 1st order service security model is poor, requiring configuration for each 
site to map local accounts to user certificates. However, testing service deployment is 
feasible prior to security being enabled and a simpler more scalable security model 
may be possible. Deployment allows for immediate invocation but does not guarantee 
QoS. 



4 Remote Deployment with SmartFrog 

Due to the lack of support for automated remote deployment of Grid infrastructure 
and services across organizations in the Globus middleware stack we trialled Smart-
Frog (a 3rd party component deployment technology [14]) for Grid deployment and 
conducted five experiments as follows: intranet deployment; internet deployment; 
secure deployment; deployment of secured infrastructure; and deployment of services.  

Deployment on an Intranet: Within the laboratory.  A project at UCL [15] in-
vestigated the use of SmartFrog to deploy GT3.2 on an intranet in a laboratory setting.  
This involved: configuring SmartFrog to remotely install and start the core GT3 pack-
age and Tomcat container; deploy sample grid services across multiple machines in 
the laboratory; and the development of a management console to control the process.  
The solution worked well in the laboratory but relied on the freedom to install and run 
a new installation of GT3 and supporting software as an unprivileged user on a public 
file system. It was also constrained to the deployment of core/container infrastructure 
only, over a LAN, with no security (either for deployment, or for the GT3 infrastruc-
ture), with an identical configuration for each installation. A GUI management con-
sole was provided for selecting target machines (based on available resources) and 
installing, configuring, starting and stopping the infrastructure or services.  The pro-
gress of the installation along with any exceptions could be monitored and a partial 
(services) or complete (infrastructure) uninstall performed.  The deployment process 
was scalable for increasing numbers of machines and was portable across different 
versions of Linux/UNIX. 

Deployment on the Internet: Across sites and firewalls.  Given the success of 
the intranet experiment we moved out of the laboratory setting and applied the ex-
perimental SmartFrog infrastructure across the internet to the OGSA test-bed sites.   
However, the new environment introduced a number of difficulties. We were unable 
to get the collection of components developed in the laboratory (a version of Smart-
Frog, Grid specific deployment files, and GUI management console) working to-
gether correctly across sites, although deployment was demonstrated across an unse-
cured port in a limited test situation using the default unmodified SmartFrog package 
and examples.  Because of differences in site security policies and the perception that 
SmartFrog is a perfect virus propagation mechanism it was impossible to open a new 
SmartFrog daemon listener port across all the test-bed sites.  In theory RMI over 
HTTP (tunnelling [16]) could be used over the already open grid container port, but 
secure deployment was still a precondition. 

Secure deployment.  SmartFrog and Globus use different security models and cer-
tificates.  In order to deploy infrastructure securely with SmartFrog an independent 
(and therefore redundant) security infrastructure, process, and certificates is required, 
which introduces yet another layer of complexity into already complex infrastructure 
and security environments.  Nevertheless, the SmartFrog security architecture is rela-
tively sophisticated and includes code signing and multiple trust domains, and is well 
designed for the deployment domain. Issues related to SmartFrog security configura-
tion, use, and debugging prevented us from getting it working correctly across sites, 
illustrating the difficulties of debugging security infrastructure, and secured infra-
structure. Security and debugging are mutually exclusive.  



Deployment of Secured Infrastructure.  The next challenge was to use Smart-
Frog to install, configure and run a secure GT3 installation and container.  The first 
problem is the requirement for the deployment infrastructure to have access to host 
certificates, user certificates, and local accounts, and to prepare customised deploy-
ment configurations (e.g. the gridmap files) for each site. It is possible in theory to use 
a generic single user to run all the jobs for a node and it may even be the case that for 
non-mmjfs services a real user account is not needed at all [17].  However, there are 
significant issues to do with trust, security and auditing if the binding between users 
and accounts is weakened. A role-based security mechanism is an alternative [18]. A 
fundamental obstacle is if the SmartFrog daemon needs to run as a privileged user 
such as “root”, as is the case for configuration of the standard GT3 production se-
curity environment.  The “–noroot” option is an alternative for configuring GT3 se-
curity without root permission, but it is unlikely to be appropriate for production envi-
ronments [19].  One workaround for the security installation problem is for the first 
installation and security configuration to be done locally and manually, enabling sub-
sequent updates or (re-)installations for different user communities to proceed auto-
matically/remotely by reusing the first security configuration. As long as there is one 
correctly installed and secured version, other versions (of at least the GT3 core pack-
age) can be installed by non-root users. 

Deploying Services.  The final goal was deploying services to an already deployed 
infrastructure.  In the laboratory SmartFrog demonstrated the ability to deploy ser-
vices to a container and then start the container. However, because of the lack of 
“hot” deployment in GT3 stopping and restarting a container that is in use is unlikely 
to be acceptable. “Hot” deployment and/or running multiple real (or virtual) contain-
ers (one per user or VO) are possible tactics. However, another problem is deploying 
secured services since these may require both service and site specific configuration. 

5 Related Work 

This section reviews related work in deployment and security. Because of the func-
tionality available at deployment time and the complexity of deployment, deployment 
is an explicit role in the EJB/J2EE specification [20] and is supported in J2EE prod-
ucts. Some products go further than the specification and provide remote deployment, 
automatic updating of client-side code from a server, and one-step deployment of 
components to a cluster.   Java Web Start and the underlying Java Network Launch 
Protocol (JNLP) provide a simple way of end-users installing and running new (cli-
ent-side) Java programs over the Web [21].  Operating System patch management 
systems such as Microsoft’s Windows Update could be applied to middleware [22]. 

In the Java community there is a view that J2EE is too heavy-weight and POJOs 
(Plain Old Java Objects) are enough. With the support of light-weight containers such 
as Spring/Hibernate POJOs can be deployed with close to zero effort, as deployment 
dependencies are resolved by containers using reflection [23].  Inversion of Control 
(IoC) and Aspect Oriented Programming (AOP) approaches to component portability 
could be applied to Grid deployment [24, 25]. 



Problems with deployment in Globus have been documented [26], as have Grid 
deployment Use Cases which complement our deployment scenarios [27, 28]. Other 
approaches and tools for Grid deployment include GITS [29], distributed Ant [30], 
the IBM autonomic deployment framework [31], deployment planning [32], 
PACMAN [33], GPT [34], and Virtual Machines [35]. None of these deal adequately 
with the deployment of services. 

Work that specifically targets Grid service deployment includes model based de-
ployment [35], dynamic deployment [37], QoS-aware deployment [38], dynamic 
service architecture [39], hot service deployment [39], grid service GUI [41], remote 
deployment interface [42], and two projects using SmartFrog [43, 44]. Related work 
on web services deployment includes remote deployment in Tomcat [44], Axis [46], 
and P2P web services deployment [47]. However, despite acknowledging the impor-
tance of the problem and providing a variety of solutions, we do not believe that any 
single existing approach adequately deals with all aspects of secure deployment of 
secured Grid infrastructure and services across firewalls. 

An increasing number of projects are working on solutions to security issues and 
better tools and procedures are likely [11, 18, 47-50]. However, it is critical to ensure 
that these work seamlessly with services. CAS [50] does not work with grid services.  

6  Conclusions 

Remote grid deployment infrastructure needs to: support deployment of infrastructure 
and services across organizational boundaries and firewalls; be secure; be able to 
deploy secure infrastructure; be manageable (deployment state, progress and errors 
monitored, and debugged and fixed); support configuration and version management, 
recovery and audit trails; be reliable and repeatable; maintain consistent versions and 
sets of components and services for a VO across heterogeneous resources; support 
multiple scenarios (e.g. un-deployment), roles, and role/trust delegation; be scalable 
(with increasing users, nodes, and services); be usable (easy to install, use and admin-
ister, portable, GUI tool support). 

A fundamental problem is how to bootstrap the installation process.  Which comes 
first: The deployment infrastructure or the grid infrastructure, the deployment security 
or the infrastructure security? On the face of it, the easiest solution is to start with a 
light-weight, portable, easy to install and secure, deployment infrastructure which is 
then used to bootstrap the installation of the Grid infrastructure, security and services.  
This is the approach we took with SmartFrog and which was demonstrated to work in 
the laboratory albeit with a number of simplifying assumptions.  However, out of the 
laboratory, installing, configuring, securing, and debugging extra and redundant infra-
structure for deployment presents the same types of problems as does the installation 
of grid middleware itself. The duplication of the security infrastructure and extra 
issues of trust by Systems Administrators, and use of the deployment infrastructure to 
secure grid infrastructure are significant barriers to this approach.  

An alternative approach is to first remove the requirement for a redundant deploy-
ment-specific security infrastructure by using a lightweight security mechanism as the 
core of both the deployment and grid infrastructure.  This allows the security mecha-



nism to be set up once correctly and then used as the basis of deployment and infra-
structure security.  We believe this is feasible as the security requirements for 1st order 
service security and deployment are simpler, or at least different, to what the GSI 
model is designed for. Ideally the security model would be composable (or extensible) 
so that its capabilities could evolve [53]. We have observed that the core GT3 pack-
age is relatively lightweight and portable compared with the other packages.  It is 
therefore possible to remove the requirement for a redundant deployment infrastruc-
ture by including basic remote deployment capabilities in the core GT3 package. 
Assuming initial manual deployment of the core grid infrastructure, including basic 
deployment and security, the grid infrastructure itself can then be relied upon to sup-
port subsequent remote automated infrastructure re-installation/updates and service 
deployment. That is, deployment is a first-class citizen and adding it as an after-
thought, or as an extra redundant infrastructure is best avoided. It needs to be built 
into the middleware stack. It would also be feasible to expose the middleware’s re-
mote deployment capability as a “service deployment service” in the container (using 
SOAP attachments to transfer GAR files). Finally, we suggest that the problem of 
debugging and rectifying run-time failures can be (partially) solved by making critical 
deployment context information available at run-time, along with the ability to redo 
some of the deployment steps.  We call this approach “Deployment-aware debug-
ging” which will be addressed in another paper. 

Building a loosely coupled distributed grid system across organizational bounda-
ries using OGSA is non-trivial and different from building a system over a LAN. This 
paper demonstrates that there is a need for better understanding of, and support for, 
cross-cutting non-functional inter-organizational roles such as deployment. There is a 
lot more work to do before we realize the vision of the Grid. 
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