
Fundamenta Informaticae XX (2006) 1–20 1

IOS Press

Comparing BDD and SAT based techniques for model checking
Chaum’s Dining Cryptographers Protocol

Magdalena Kacprzak
Bia!ystok University of Technology, email: mdkacprzak@wp.pl

Alessio Lomuscio ∗

University College London, UK, email: a.lomuscio@cs.ucl.ac.uk

Artur Niewiadomski
University of Podlasie, email: artur@iis.ap.siedlce.pl

Wojciech Penczek †

Institute of Computer Science, PAS and University of Podlasie, email: penczek@ipipan.waw.pl

Franco Raimondi∗

University College London, UK, email: f.raimondi@cs.ucl.ac.uk

Maciej Szreter
Institute of Computer Science, PAS, email: mszreter@ipipan.waw.pl

Abstract. We analyse different versions of the dining cryptographers protocol by means of auto-
matic verication via model checking. Specically we model the protocol in terms of a network
of communicating automata and verify that the protocol meets the anonymity requirements speci-
ed. Two different model checking techniques (ordered binary decision diagrams and SAT-based
bounded model checking) are evaluated and compared to verify the protocols.

∗The authors acknowledge support from EPSRC (grants CN04/04 and GR/S49353/01) and the Royal Society.
†The authors acknowledge support from the Ministry of Science and Information Society Technologies under grant number
3T11C01128 and the Royal Society.

1. Introduction

A key interest in the analysis of security protocols concerns being able to verify formally and automati-
cally that a protocol meets its intended specications. This approach differs from the other main stream
of research in computer security, namely cryptanalysis, in that it assumes perfect (i.e., unbreakable) cryp-
tographic algorithms and focuses on the properties that a protocol achieves. Formal analysis of security
protocols has permitted to nd bugs in a variety of security protocols, including the Wide Mouthed Frog
[14].

The technique of model checking [5] has recently been used with considerable success [3, 1, 21] to
verify properties such as authentication, integrity, secrecy, anonymity, etc., of particular security proto-
cols. Typically, security protocols are analysed in terms of reachability and, occasionally, in terms of full
temporal logic. While this is adequate in many instances, the validation of particular properties, such
as anonymity, benet from richer approaches. In particular, the protocol of the dining cryptographers
[4] has been successfully analysed [15, 20] by considering a temporal and epistemic language. In this
paper we intend to make two contributions in this line. First, we suggest an alternative, often more ef-
cient, formalisation of the dining cryptographer in terms of a network of automata. Second, we compare
experimental results for variants of this protocol when analysed by two different model checking tech-
niques: ordered binary decision diagrams and SAT-based bounded model checking. This comparison
offers results giving guidance in terms of model checking technology for the security protocol under
consideration but also more in general for any verication problem via model checking.

From a technical point of view, we will be working on networks of communicating automata to
model the protocol (Section 2). These will generate a branching time semantics on which temporal,
epistemic, and correctness modal operators will be interpreted [12], as in Section 3. This syntax will be
used as specication language for the properties to be checked in Section 5, by means of VerICS [6] and
MCMAS [18], two model checkers for deontic interpreted systems [12], based respectively on bounded
model checking (BMC) and ordered-binary decision diagrams (OBDD), techniques briey summarised
in Section 4.

2. Modelling protocols

This paper is concerned with the verication of the protocol of the Dining Cryptographers. This protocol
has been modelled in the past by R. van der Meyden and K. Su in [15], using the class of synchronous
interpreted systems [9] with perfect recall. In [20], the encoding of the protocol has been extended to
deontic interpreted systems [12] to reason about correct behaviour.

In the present work we employ an automata-based approach. Specically, we interpret formulae
of a logic to reason about time, knowledge, and correct behaviour on traces generated by networks of
automata. Our choice is motivated by two reasons:

1. We show that an automata-based approach provides a more efcient (i.e., faster) framework for the
verication of protocols, as it can be seen by comparing the results in Section 5.3 with the results
presented in [20].

2. It provides a common ground for the comparison of experimental results obtained using different
model checkers.

Notice that there are formulae that are satised in this alternative encoding but not in the former one,
especially when reasoning about the temporal evolution of automata. Nevertheless, the key epistemic
properties of the protocol are satised in both the encodings. A formal proof of the above statement is
not presented here as it is not essential for our task.

Formally, we proceed as follows. Since our aim is to analyse variants of the dining cryptographers
protocols where some participants may cheat, in line with [12, 20], we dene a notion of deontic automata
by colouring the states as either red or green; we refer to [12] and related papers for an exploration of
these concepts. We assume that each agent in the system is formalised by considering a number of
automata.

Definition 2.1. (Deontic automaton)
A deontic automaton is a four-tuple A = (Act, L, s0, T), where

• Act is a nite set of actions,

• L = LG ∪ LR is a nite set of states, which is divided into two disjoint sets of green LG and red
LR states,

• s0 ∈ L is the initial state,

• T ⊆ L × Act × L is a transition relation.

A set of automata, called a network of automata, can be composed into the product automaton by a
standard multi-synchronisation approach: the transitions that do not correspond to a shared action are
interleaved, whereas the transitions labelled with a shared action are synchronised. A synchronised
transition is enabled if it is enabled in all the synchronising automata.

Definition 2.2. (Product automaton)
Given a network {A1, . . . ,An} of deontic automata, where Ai = (Acti, Li, s0

i , Ti) for 1 ≤ i ≤ n, the
product automaton of the network is dened as a four-tuple A = (Act,G, s0, T), where

• Act =
⋃n

i=1 Acti is a nite set of actions,

• G = GG ∪ GR is a nite set of global states composed by two disjoint sets of green GG =
LG

1 × · · · × LG
n and red GR = (L1 × · · · × Ln)\GG states,

• s0 = (s0
1, . . . , s

0
n) ∈ G is the initial state,

• T ⊆ G×Act×G is a transition relation such that ((l1, . . . , ln), a, (l′1, . . . , l′n)) ∈ T iff (∀i ∈ A(a))
(li, a, l′i) ∈ Ti and (∀i ∈ {1, . . . , n}\A(a)) li = l′i, where A(a) = {1 ≤ i ≤ n | a ∈ Acti}.

Observe that every automaton can perform a local action as soon as it is allowed. However, as we have
mentioned before, some of local actions are synchronised and must be executed together. The synchro-
nisation of automata is done via shared labels of transitions. Moreover, two or more unsynchronised
actions cannot be realized at the same time. So, we explore the interleaving model of computation.

A global state is coloured green if it consists of green local states only. All other global states are
coloured red. Moreover, a global state (l′1, . . . , l′n) is the result of executing the action a at a global state

(l1, . . . , ln) iff for every automaton Ai whose set of actions contains a, we have (li, a, l′i) ∈ Ti, and for
all the remaining automata we have l′j = lj .

In what follows we denote with Ix (A) a set of the indices of the automata of A, i.e., the set
{1, . . . , n}.

The product automaton extended with a labelling function is used as a model for interpreting our
specication language, but it is not built explicitly for verication purposes as we use symbolic ap-
proaches.

In order to reason about multi-agent systems we assume that automata of the network represent
agents. However, we do not require a one to one correspondence between automata and agents. In-
stead, we assume that the behaviour of an agent can be modelled by several automata of the network or,
equivalently, by the product automaton of these automata.

Now, let Agt = {1, . . . , k} be a set of indices of agents. We dene a function Obs : Agt → 2Ix(A),
which assigns to each agent the indices of the automata of A that are assumed to represent its behaviour.

Let loci : G →
∏

j∈Obs(i) Lj , for i = 1, . . . , k, be a function which for each global state s of G
returns the local state of s for the agent i, i.e., projects s on the components of Obs(i). Notice that a
single automaton of Amay be used for representing a part of the behaviour of several agents. Intuitively,
this means that agents can observe and change the same fragments of a world. In such a case, to avoid the
agents losing their autonomy, we could require that they are represented by duplicated automata whose
appropriate actions are synchronised; we do not insist on this for efciency reasons.

Interpreted systems [9] are commonly used to interpret temporal and epistemic modalities. Their
deontic extensions incorporate the idea of a correct functioning behaviour of some or all the components
of systems examined. Following these ideas we dene the notion of a model.

Definition 2.3. (Model)
Let Agt = {1, . . . , k} be a set of indices of agents, A = (Act,G, s0, T) be a product automaton. A
(deontic) model is a tuple M = (G,W, s0, TR,∼,∼O,Obs ,V), where:

• W is a set of reachable global states from s0, i.e.,W = {s ∈ G | (s0, s) ∈ TR∗}1,

• TR ⊆ G × G is a binary relation on G such that (s, s′) ∈ TR iff there exists a ∈ Act such that
(s, a, s′) ∈ T ,

• Obs : Agt → 2Ix (A) is a function that assigns a nonempty set of indices of automata to every
agent,

• ∼= {∼i}1≤i≤k, where ∼i ⊆ W × W is an epistemic accessibility relation for each agent i
(1 ≤ i ≤ k) dened by: s ∼i s′ iff loci(s′) = loci(s),

• ∼O= {∼O
i }1≤i≤k, where ∼O

i ⊆ W × W is a deontic accessibility relation for each agent i
(1 ≤ i ≤ k) dened by: s ∼O

i s′ iff lij ∈ LG
ij
for every lij of loci(s′) = (li1 , . . . , lit),

• V : G −→ 2PV is a valuation function for a set of propositional variables PV such that true ∈
V(s) for all s ∈ G. V assigns to each state a set of propositional variables that are assumed to be
true at that state.

1TR∗ denotes the reexive and transitive closure of TR.

Epistemic relations. Let Γ ⊆ Agt. The union of Γ’s accessibility relations is dened as ∼E
Γ =⋃

i∈Γ ∼i. By ∼C
Γ we denote the transitive closure of ∼E

Γ , whereas ∼D
Γ =

⋂
i∈Γ ∼i. The above relations

are used to give semantics to the “everyone knows”, “common knowledge”, and “distributed knowledge”
modalities of the logic presented in [9].

Computations paths. A computation in M is a maximal sequence π = (s0, s1, . . .) of states such that
(si, si+1) ∈ TR for each i < |π|, where |π| denotes the length of π dened as |π| = ∞ if π is innite
and |π| = k + 1 if sk is the last state of π.

A k-computation is a prex of length k of a computation. For a computation π = (s0, s1, . . .), let
π(k) = sk, and πk = (s0, . . . , sk), for each k ∈ IN. By Π(s) we denote a set of all computations starting
at s in M, whereas by Πk(s) a set of all the k-computations starting at s. Moreover, let IN+ = IN\{0}.

3. The Logic CTLKD

We use the logic CTLKD to express properties of protocols. This logic is an extension of Computational
Tree Logic (CTL) [8], introduced by Emerson and Clarke, enriched with standard epistemic operators [9]
and correctness operators [12]. This language enables us to represent temporal ows of time, knowledge
of the agents, and what properties hold following the correct execution of prescribed behaviour. We refer
to [13] for a detailed example on the use of this formalism.

Definition 3.1. (Syntax of CTLKD)
The set of CTLKD formulae FORM is dened as follows:

α ::= p | ¬α | α ∨ α | EXα | EGα | E(αUα) | Piα | Kj
iα | Kiα | DΓα | CΓα | EΓα

where p ∈ PV , i, j ∈ {1, . . . , k}, and Γ ⊆ {1, . . . , k}.

Other modalities are derived as follows:

• EFα
def= E(trueUα), AFα

def= ¬EG¬α, A(αRβ) def= ¬E(¬αU¬β),

• AXα
def= ¬EX¬α, Oiα

def= ¬Pi¬α, K̂j
iα

def= ¬Kj
i¬α, Kiα

def= ¬Ki¬α,

• DΓα
def= ¬DΓ¬α, CΓα

def= ¬CΓ¬α, EΓα
def= ¬EΓ¬α.

The remaining boolean connectives are dened in the standard way. Moreover, false
def= ¬true. The

formula Piα stands for ”there exists a state where agent i is functioning correctly and α holds”. As
customary the operators X,G stand for “at the next step”, and “forever in the future” respectively. The
Until operator U, precisely αUβ, expresses that β occurs eventually and α holds continuously until
then. The operators Ki, DΓ, and CΓ denote knowledge of the agent i, distributed knowledge, common
knowledge, and ”everyone knows” knowledge of the group Γ resp. A formula Oiα represents the fact
that following all correct executions of agent i α holds. Moreover, the operatorK̂j

i expresses knowledge
the agent i has on the assumption that the agent j is functioning correctly. A formal interpretation of
these formulae is given below.

Definition 3.2. (Interpretation of CTLKD)
LetM = (G,W, s0, TR,∼,∼O,Obs,V) be a model, s ∈ W a state, π a computation, and α, β formulae
of CTLKD.M, s |= α denotes that α is true at the state s in the modelM. M is omitted, if it is implicitly
understood. The relation |= is dened inductively as follows:

s |= EXα iff ∃π ∈ Π(s) π(1) |= α,
s |= EGα iff ∃π ∈ Π(s) ∀0 ≤ m < |π| π(m) |= α,

s |= E(αUβ) iff ∃π ∈ Π(s) (∃0 ≤ m <|π| [π(m) |= β and ∀j<m π(j) |= α]),
s |= Piα iff ∃s′ ∈ W (s ∼O

i s′ and s′ |= α),
s |= Kj

iα iff ∃s′ ∈ W (s ∼i s′ and s ∼O
j s′ and s′ |= α),

s |= Kiα iff ∃s′ ∈ W (s ∼i s′ and s′ |= α),
s |= DΓα iff ∃s′ ∈ W (s ∼D

Γ s′ and s′ |= α),
s |= EΓα iff ∃s′ ∈ W (s ∼E

Γ s′ and s′ |= α),
s |= CΓα iff ∃s′ ∈ W (s ∼C

Γ s′ and s′ |= α).
For propositions and the boolean connectives the relation |= is dened in the standard manner.

Definition 3.3. (Validity) A CTLKD formula ϕ is valid inM (denoted M |= ϕ) iff M, s0 |= ϕ, i.e., ϕ
is true at the initial state of the modelM .

The logic ECTLKD is the existential restriction of CTLKD such that the negation can be applied only
to elements of PV , i.e., ¬α is replaced by ¬p in the Denition 3.1. The logic ACTLKD is the universal
restriction of CTLKD such that its language is dened as {¬ϕ | ϕ ∈ ECTLKD}.

4. Methods of verification of CTLKD

In this section we present two symbolic methods of verication of properties of systems and proto-
cols. The rst one uses SAT techniques while the second is based on ordered binary decision diagrams
(OBDDs).

4.1. Bounded Model Checking

Bounded Model Checking (BMC) was originally introduced for verication of the existential fragment
of the logic CTL [17], and then extended to ECTLK [16] and further to ECTLKD [22]. BMC is based
on the observation that some properties of a system can be checked over a part of its model only. In the
simplest case of reachability analysis, the approach consists in an iterative encoding of a nite symbolic
computation as a propositional formula. The satisability of the resulting propositional formula is then
checked using an external SAT-solver. We present here the main denitions of BMC for ECTLKD, but
refer the reader to the literature cited above for more details. In order to restrict the semantics to a part
of the model we dene k-models.

Definition 4.1. (k−model)
Let M = (G,W, s0, TR,∼,∼O,Obs,V) be a model and k ∈ IN+. The k−model for M is dened as
a structure Mk = (W, s0, Pk,∼,∼O,Obs,V), where Pk is the set of all the k-computations of M over
W , i.e., Pk =

⋃
s∈W Πk(s).

We dene the function loop : Pk → 2IN as: loop(π) = {l | 0 ≤ l ≤ k and (π(k), π(l)) ∈ TR},
which returns the set of indices l of π for which there is a transition from π(k) to π(l).

Definition 4.2. (Bounded semantics)
Let Mk be a k−model and α, β be ECTLKD formulae. Mk, s |= α denotes that α is true at the state
s of Mk. Mk is omitted if it is clear from the context. The relation |= for modal operators is dened
inductively as follows:

s |= EXα iff (∃π ∈ Pk(s)) π(1) |= α,
s |= EGα iff (∃π ∈ Pk(s))(∀0 ≤ j ≤ k)(π(j) |= α and loop(π) -= ∅),
s |= E(αUβ) iff (∃π ∈ Pk(s))(∃0 ≤ j ≤ k)

(
π(j) |= β and (∀0 ≤ i < j)π(i) |= α

)
,

s |= Kl
iα iff (∃π ∈ Pk(s0))(∃0 ≤ j ≤ k)

(
π(j) |= α and s ∼i π(j) and s ∼O

l π(j)
)
,

s |= Y α iff (∃π ∈ Pk(s0))(∃0 ≤ j ≤ k)
(
π(j) |= α and s ∼ π(j)

)
,

where Y ∈ {Pi,Ki,DΓ,EΓ, CΓ} and ∼∈ {∼O
i ,∼i,∼D

Γ ,∼E
Γ ,∼C

Γ } resp.

Model checking over models can be reduced to model checking over k-models. The main idea of BMC
for ECTLKD is that we can check ϕ over Mk by checking the satisability of a propositional formula
[M,ϕ]k = [Mϕ,s0]k∧[ϕ]Mk , where the rst conjunct represents (a part of) the model under consideration
and the second a number of constraints that must be satised on Mk for ϕ to be satised. Once this
translation is dened, checking satisability of an ECTLKD formula can be done by means of a SAT-
checker. Typically, we start with k := 1, test satisability for the translation, and increase k by one until
either [Mϕ,s0]k ∧ [ϕ]Mk becomes satisable, or k reaches the maximal depth ofM2.

We provide here some details of the translation. We begin with the encoding of the transitions in the
system under consideration. We assume Li = LG

i ∪ LR
i ⊆ {0, 1}ki , where ki = 0log2(|Li|)1 and we

take k1 + . . . + kn = m. Moreover, let Ixi be an <-ordered set of the indices of the bits of the local
states of each agent i of the global states, i.e., Ix1 = {1, . . . , k1}, . . . , Ixn = {m − kn + 1, . . . ,m}.
Then, each global state s = (s1, . . . , sm) can be represented by w = (w[1], . . . , w[m]) (which we shall
call a global state variable), where each w[i] for i = 1, . . . ,m is a propositional variable. A sequence
w0,j, . . . , wk,j of global state variables is called a symbolic k-computation j.

The propositional formula [Mϕ,s0]k, representing the k-computations in the k-model is dened as
follows:

[Mϕ,s0
]k := Is0(w0,0) ∧

fk(ϕ)∧

j=1

k−1∧

i=0

TR(wi,j, wi+1,j),

where w0,0, and wi,j for 0 ≤ i ≤ k and 1 ≤ j ≤ fk(ϕ) are global state variables. [Mϕ,s0]k encodes the
initial state s0 by w0,0 and constrains the fk(ϕ)3 symbolic k-computions to be valid k-computations in
Mk.

The next step of the algorithm consists in translating an ECTLKD formula ϕ into a propositional
formula. Let w, v be global state variables. We need the following propositional formulae for the encod-
ing:
2The upper approximation is |W |.
3The function fk determines the number of k-computations sufcient for checking an ECTLKD formula, see [22] for more
details.

- p(w) encodes a proposition p of ECTLKD.
- H(w, v) represents logical equivalence between global state encodings
(i.e., representing the same global state).
- HPi(w, v) encodes the set all global states in which agent i is running correctly.
- HKi(w, v) represents logical equivalence between i-local state encodings,
(i.e., representing the same i-local state).
- TR(w, v) is a formula encoding the transition relation TR.
- Lk,j(l) encodes a backward loop connecting the k-th state to the l-th state in the symbolic
k−computation j, for 0 ≤ l ≤ k.

The translation of ϕ at state wm,n into the propositional formula [ϕ][m,n]
k is as follows (we give the

translation of selected formulas only):
[EXα][m,n]

k :=
∨fk(ϕ)

i=1

(
H(wm,n, w0,i) ∧ [α][1,i]

k

)
,

[EGα][m,n]
k :=

∨fk(ϕ)
i=1

(
H(wm,n, w0,i) ∧ (

∨k
l=0 Lk,i(l)) ∧

∧k
j=0[α][j,i]k

)
,

[E(αUβ)][m,n]
k :=

∨fk(ϕ)
i=1

(
H(wm,n, w0,i) ∧

∨k
j=0

(
[β][j,i]k ∧

∧j−1
t=0 [α][t,i]k

))
,

[Plα][m,n]
k :=

∨fk(ϕ)
i=1

(
Is0(w0,i) ∧

∨k
j=0

(
[α][j,i]k ∧ HPl(wm,n, wj,i)

))
,

[Kt
lα]

[m,n]

k :=
∨fk(ϕ)

i=1

(
Is0(w0,i) ∧

∨k
j=0

(
[α][j,i]k ∧ HKl(wm,n, wj,i) ∧

HPt(wm,n, wj,i)
))

,

[Klα][m,n]
k :=

∨fk(ϕ)
i=1

(
Is0(w0,i) ∧

∨k
j=0

(
[α][j,i]k ∧ HKl(wm,n, wj,i)

))
.

Given the translations above, we can now check ϕ overMk by checking the satisability of the proposi-
tional formula [Mϕ,s0]k ∧ [ϕ]Mk , where [ϕ]Mk = [ϕ][0,0]

k . The translation above is shown in [22] to be
correct and complete.

4.2. Verification via OBDDs

OBDDs are an efcient representation for the manipulation of boolean functions. As an example, consider
the boolean function a ∧ (b ∨ c). The truth table of this function would be 8 lines long. Equivalently,
one can evaluate the truth value of this function by representing the function as a directed graph, as
exemplied on Figure 1 (a). As it is clear from the picture, under certain assumptions, this graph can
be simplied into the graph pictured on Figure 1 (b). This “reduced” representation is called the OBDD
of the boolean function. Besides offering a compact representation of boolean functions, OBDDs of
different functions can be composed efciently. In [2] algorithms are provided for the manipulation and
composition of OBDDs.

OBDDs are used in the verication of the model checking of systems specied by means of formulae
of CTL, a logic used to reason about branching time [11]. Here states of the model and relations are
represented by means of propositional formulae. A CTL formula is identied with a set of states: the
states of the model satisfying the formula. As a set of states can be represented as a propositional formula,
each CTL formula can be characterised by a propositional formula. Thus, the problem of model checking
for CTL is reduced to the construction of propositional formulae. This is achieved by composing OBDDs,
or by computing x-points of operators on OBDDs; we refer to [11] for the details.

We review below the algorithm for the verication of temporal, epistemic, and correctness modalities
for MAS presented in [20]. This approach is similar, in spirit, to the traditional model checking tech-

000 0 0 1 1 1

(a) (b)

a

b

c c c c

b

10

a

b

c

0

0

0

1

10

0 1 1 10 0 1

110

0 1

0
1

Figure 1. OBDD representation for a ∧ (b ∨ c).

niques for the logic CTL. Indeed, it starts by representing the various parameters of a system by means
of propositional formulae. Then, this representation is used for the verication of CTLKD formulae.

The number nv(i) of propositional variables required to encode the local states of an agent i is
nv(i) = 0log2|Li|1. Similarly, to encode an agent’s action, the number na(i) of propositional variables
wi required is na(i) = 0log2|Acti|1. Thus, a global state s can be encoded as a propositional vec-
tor (v1, . . . , vN), where N =

∑
i

nv(i). An action a ∈ Act can be encoded as a propositional vector

(w1, . . . , wM), where M =
∑
i

na(i). In turn, a propositional vector can be identied with a propo-

sitional formula, represented by a conjunction of literals, i.e. a conjunction of propositional variables
or their negation. In this way, a set of global states (or actions) can be expressed as the disjunction of
the propositional formulae encoding each global state in the set. Having encoded local states, global
states, and actions by means of propositional formulae, all the remaining parameters can be expressed
as boolean functions, too. Indeed, the transition relation can be translated into propositional formulae.
The set of initial states is easily translated, too. In addition to the parameters presented above, the al-
gorithm for model checking presented below requires the denition of n boolean functions RK

i (s, s′)
(one for each agent) representing the epistemic accessibility relation, the denition of n boolean func-
tions RO

i (s, s′) representing the accessibility relations for the correctness operator, and the denition
of a boolean function Rt(s, s′) representing the temporal transitions. The boolean function Rt(s, s′)
can be obtained from the transition relation TR by quantifying over actions. This quantication can
be translated into a propositional formula using a disjunction (see [5] for a similar approach to boolean
quantication). The set of reachable states is also needed by the algorithm: the setW of reachable global
states can be expressed symbolically by a propositional formula, and it can be computed as the x-point
of the operator τ(Q) = (I(s) ∨ ∃s′(Rt(s′, s) ∧ Q(s′)). The x-point of τ can be computed by iterating
from τ(∅) as standard (see [5]).

We now have all the ingredients in place to present the algorithm SAT (ϕ) to compute the set of
global states (expressed as a propositional formula) in which a formula ϕ holds, denoted by [[ϕ]]. The
following are input parameters for the algorithm:

- the propositional variables (v1, . . . , vN) and (w1, . . . , wM) for states and actions;
- the function V(p) returning the set of global states in which p holds.
- the set of initial states I , encoded as a propositional formula;
- the set of reachable statesW , encoded as a propositional formula;

- the boolean function Rt encoding the temporal transition;
- n boolean functions encoding the accessibility relations ∼i;
- n boolean functions encoding the accessibility relations ∼O

i .
The algorithm is as follows:

SAT (ϕ) {
ϕ is a proposition: return V(ϕ);
ϕ is ¬ϕ1: returnG \ SAT (ϕ1);
ϕ is ϕ1 ∧ ϕ2: return SAT (ϕ1) ∩ SAT (ϕ2);
ϕ is EXϕ1: return SATEX(ϕ1);
ϕ is E(ϕ1Uϕ2): return SATEU(ϕ1, ϕ2);
ϕ is EGϕ1: return SATEG(ϕ1);
ϕ is Kiϕ1: return SATK(ϕ1, i);
ϕ is K̂j

iϕ1: return SATKH(ϕ1, i, j);
ϕ is Oiϕ1: return SATO(ϕ1, i);
ϕ is EΓϕ1: return SATE(ϕ1, Γ);
ϕ is DΓϕ1: return SATD(ϕ1, Γ);
ϕ is CΓϕ1: return SATC(ϕ1, Γ);

}

In the algorithm above, SATEX, SATEG, SATEU are the standard procedures for CTLmodel check-
ing [11], in which the temporal relation is Rt and, instead of temporal states, global states are consid-
ered. We refer to [19] for the denition of the procedures SATK(ϕ, i), SATKH(ϕ1, i, j), SATO(ϕ, i),
SATE(ϕ, Γ), SATD(ϕ, Γ), and SATC(ϕ, Γ). The algorithm SAT can be used to verify whether or not
a formula ϕ holds in a model by comparing two set of states: the set SAT (ϕ) and the set of reachable
statesW . As sets of states are expressed as OBDDs, verication in a model is reduced to the comparison
of the OBDDs for SAT (ϕ) and for W .

5. Dining Cryptographers: modelling, encoding and experimental results

5.1. Protocol description

The anonymous broadcasting of information is one of the main problems discussed in cryptography. The
Dining Cryptographers (DC) protocol is a protocol to maintain anonymity in broadcasted information. It
was introduced by D. Chaum. The original wording from [4] is included below.

”Three cryptographers are sitting down to dinner at their favorite three-star restaurant. Their waiter
informs them that arrangements have been made with the maitre d’hotel for the bill to be paid anony-
mously. One of the cryptographers might be paying for dinner, or it might have been NSA (U.S. National
Security Agency). The three cryptographers respect each other’s right to make an anonymous payment,
but they wonder if NSA is paying. They resolve their uncertainty fairly by carrying out the following
protocol:

Each cryptographer ips an unbiased coin behind his menu, between him and the cryptographer
on his right, so that only the two of them can see the outcome. Each cryptographer then states aloud

whether the two coins he can see–the one he ipped and the one his left-hand neighbor ipped–fell on
the same side or on different sides. If one of the cryptographers is the payer, he states the opposite
of what he sees. An odd number of differences uttered at the table indicates that a cryptographer is
paying; an even number indicates that NSA is paying (assuming that dinner was paid for only once). Yet
if a cryptographer is paying, neither of the other two learns anything from the utterances about which
cryptographer it is.”

The same protocol can be run also for a number of cryptographers greater than three (see [4]). In
line with literature in security here we consider a variation of the protocol in which we assume that some
cryptographers may be faulty. In particular, we allow them to say the opposite of what they are supposed
to, i.e., they can choose to behave correctly or to cheat when announcing the values of the coins they
see. The new protocol is called Cheating Dining Cryptographers (CDC) protocol. In the next section we
discuss encoding and verication of this protocol.

5.2. Encoding of the CDC protocol

In this section we model the protocol differently from what presented in [15, 10, 20]. While the for-
malism of interpreted systems is used there, here we decouple the transitions to a ner level, and use
asynchronously communicating automata. This description is more convoluted and less intuitive, but as
we show below it offers considerable advantages in terms of efciency. It further allows to present a
comparison of different approaches for its verication.

To formalise the protocol we assume that all the events such as coin tosses, determining who is
paying and the utterances of the cryptographers can occur in turn, rather then simultaneously. Moreover,
instead of enumerating all the possible outcomes of coins tosses, etc., we generate these implicitly using
automata that execute independently, and nally synchronizing in order to communicate the result. The
aim of the DC protocol is to assure that at the end of the run every cryptographer knows whether it
was the NSA or one of cryptographers. Furthermore, if a cryptographer paid, then none of the other
cryptographers knows who it was. In the case of CDC protocol we add an assumption that the above
properties hold only when all agents behave correctly.

Concretely, we proceed as follows. In the general case, there are n1 and n2 automata modelling
cheating and honest cryptographers, respectively. An automaton for the honest cryptographer Ai (i =
n1 + 1, . . . , n1 + n2) has got 5 states with the meaning explained by their labels: 0 (the initial state),
seeEquali, seeDifferenti , saidEquali, and saidDifferenti . If the cryptographer can cheat, then the au-
tomaton Ai (i = 1, . . . , n1) has two additional states: lieEquali and lieDifferenti . The above mentioned
automata model what every cryptographer says depending on the coins he sees.

Moreover, there are n = n1 + n2 automata Ai (i = n + 1, . . . , 2n) determining who is paying for
the dinner. Each of them has three states: 0 (the initial state), paidi−n, and notPaidi−n. These automata
synchronize in order to determine at most one cryptographer who pays: this automaton moves to the
state paid, whereas the remaining automata reach the state notPaid. In particular, if the NSA is paying,
all the automata Ai (i = n + 1 . . . , 2n) reach the state notPaidi−n. After determining who pays, every
automaton communicates the outcome to the respective cryptographer.

Furthermore, we introduce n automata Ai (i = 2n + 1, . . . , 3n) that model ipping coins. Each
of them has three states: 0 (the initial state), headi−2n, and taili−2n. These automata rst determine
the result of the ipping, independently of other automata, and next they synchronise with the appro-
priate automata what corresponds to communicating the outcome to cryptographers – as a result, every

cryptographer enters the the state seeEqual or seeDifferent.
Finally, we have one automatonA3n+1 which models the counter of “different” among the utterances.

This automaton also starts from the initial state 0 and then in turn registers what the cryptographers said
and how many differences currently there are. In order to do this, it synchronises with the automata
modelling cryptographers; it terminates either in the state even or odd.

The total number of the automata is 3n + 1. We set all the states of automata to be green with the
exception of the states lieEquali and lieDifferenti (i = 1, . . . , n1).

An instance of the protocol with two honest and one cheating cryptographer is visualised in Figures
2–6. The network consists of 10 automata: three representing which coins cryptographers can see and
what they say (Fig. 4 and 5), three determining who pays (Fig. 2), three modelling the toss-ups (Fig.
3), and one playing the role of the counter of “different” in utterances (Fig. 6). The above automata
are composed into the product automaton A with the initial state s0 = 〈0, 0, 0, 0, 0, 0, 0, 0, 0, 0〉. The
global actions, the global states and the transition relation are built according to Denition 2.2. The
automaton A is turned into the modelMwith a valuation function V dened over a set of the propositions
PV = {paid1, paid2, paid3, even, odd} as follows:

• paidi ∈ V((l1, . . . , l10)) iff l3+i = paidi, for i = 1, 2, 3,

• even ∈ V((l1, . . . , l10)) iff l10 = even,

• odd ∈ V((l1, . . . , l10)) iff l10 = odd.

Furthermore, we introduce a set of three agents Agt = {1, 2, 3} representing the three cryptographers:
one cheating and two honest. The behaviour of every agent (cryptographer) is modelled by the following
automata: one determining what he can see and say, one determining whether he pays, two modelling
toss-ups, and one modelling the counter. So, the function Obs is dened as follows:

• Obs(1) = {1, 4, 7, 8, 10},

• Obs(2) = {2, 5, 8, 9, 10},

• Obs(3) = {3, 6, 7, 9, 10}.

Nowwe present an example computation. At the beginning, the automata modelling toss-ups execute
the actions h1, h2, h3 in turn. These actions set the random results of coin tosses. Therefore, after three
steps the global state s3 = 〈0, 0, 0, 0, 0, 0, head1 , head2, head3, 0〉 is reached. Next, the automata deter-
mining who pays for dinner execute the synchronised action s0 which indicates that the agency pays, so
the global state of the model is s4 = 〈0, 0, 0, notPaid1 , notPaid2, notPaid3, head1, head2, head3, 0〉.
Next, the cryptographers see the results of coin tosses and every of them says whether he sees equal or
different sides of coins. Finally, the counter counts the number of differences. Assuming that the cheating
cryptographer does not cheat in this run, the nal state of this scenario, after executing 13 transitions, is
〈saidEqual1, saidEqual2, saidEqual3, notPaid1, notPaid2, notPaid3, head1, head2, head3, even〉.
In the general case of n cryptographers, the maximal number of red transitions is equal to 4n + 1. This
number is called the maximal depth of the model.

Figure 2. The automata A4, A5, A6 determining
who pays for dinner.

Figure 3. The automata A7,A8,A9 modelling toss-
ups.

Figure 4. The automataA2, A3 modelling what honest cryptographers can see and say.

Figure 5. The automaton A1 modelling what cheating
cryptographer can see and say.

Figure 6. The automaton A10 modelling the
counter of differences in the utterances.

Symbol Formula Model Satisable

Form1 AG(odd ∧ ¬paid1 ⇒ K1(
∨

i=2,...,n paidi)) MDCn Yes
Form2 AG(odd ∧ ¬paid1 ⇒

∨
i=2,...,n K1(paidi)) MDCn No

Form3 AG(¬paid1 ⇒ K1(
∨

i=2,...,n paidi)) MDCn No
Form4 AG(even ⇒K̂1

n(
∧

i=1,...,n ¬paidi)) M1
CDCn

Yes

Table 1. The tested formulae.

5.3. Experimental results

In this section we present the verication results for several properties of the protocols DC and CDC
– for n agents. The models are denoted MDCn and M1

CDCn
respectively, the latter including only one

cheating cryptographer. The presented tests were performed on a workstation equipped with the AMD
Athlon XP+ 2400 MHz processor and 2 GB RAM running under Fedora Linux.

5.3.1. BMC: Verifying CDC with Verics

The verication system VerICS has been used to perform the experiments with BMC. VerICS [6] is a veri-
cation tool for real-time and multi-agent systems. It offers three complementary methods of model check-
ing: SAT-based Bounded Model Checking (BMC), SAT-based Unbounded Model Checking (UMC), and
an on-the-y verication while constructing abstract models of systems. The theoretical background for
its implementation has been presented in several papers [7, 17, 23].

All the tested formulae are listed in Table 1. In order to provide a better intuition behind the properties
they express, the formulas are given in the universal form. However, notice that BMC handles universal
formulae indirectly by looking for counterexamples to their negations (i.e., the existential formulae). The
results of verication are presented in Table 2 where the number of cryptographers (n), the length of the
symbolic paths (k), time and memory needed for BMC translations (BMC[s], BMC[MB]) and time of
SAT verication (SAT[s]) as well as the number of generated variables (Vars) and clauses (Clauses) are
given.

The rst three properties are checked for the DC protocol, i.e., without cheating cryptographers. The
formula Form1 expresses Chaum’s property which states that always when the number of differences is
odd and the rst cryptographer has not paid for the dinner, then he knows that some other cryptographer
paid for dinner. The formula ¬Form1 has been tested over two symbolic paths.

The formula Form2 states that always when the number of differences is odd and the rst cryptog-
rapher has not paid for dinner, then he knows the cryptographer who paid for dinner. This formula is
obviously not true in the model because, following the protocol, none of the cryptographers can possess
such an information. If odd holds, then the rst cryptographer knows that one of the cryptographers has
paid but he does not know which one. In this case the number of symbolic paths is equal to n.

The formula Form3 states that it is always true that if the rst cryptographer has not paid for dinner,
then he knows that some other cryptographer pays. Since this property is true only if the number of
differences is odd, the formula is not true in the model. In this case one symbolic path sufces to check
that the formula ¬Form3 is true. Moreover this property can be checked on a very small depth of the
symbolic path. This example shows that BMC is very powerful in such cases. We can verify this formula

Formula n k BMC[s] BMC[MB] SAT[s] Vars Clauses

3 13 0.69 7.06 267.67 21922 67855
Form1 4 17 1.33 9.80 3010.89 40107 60200

5 21 2.11 13.45 19729.38 62637 194244
6 25 3.08 19.25 87224.75 90959 281919
3 13 1.5 10.53 84.98 44450 140017

Form2 4 17 5.19 26.41 730.72 139015 442119
5 21 13.59 58.18 4019.71 335877 1070691
6 25 31.1 123.00 31675.79 706087 2250907
100 1 3.75 22.17 0.12 96561 284528

Form3 500 1 109.16 436.09 3.98 2082111 6220764
1000 1 499.20 1889.8 19.34 8164166 24441422
3 13 0.72 7.19 1602.18 23050 71323

Form4 4 17 1.40 10.56 30979.78 41815 129693
5 21 2.19 14.14 106624.84 65038 201664

Table 2. The results of verication of DC and CDC using VerICS.

for even 1000 cryptographers (4001 automata)!
The formula Form4 says that the last cryptographer knows that always when the rst cryptographer

behaves correctly and the number of differences is even, then any of the cryptographers is not a payer.
Unlike the other properties it is veried in the model with one cheating cryptographer. Observe that in
such a model the formula AG(even ⇒ Kn(

∧
i=1,...,n ¬paidi)) is not valid since the even number of

differences does not ensure that NSA paid for dinner. Therefore in Form4 operator K̂1
n instead of Kn is

used. Now the formula K̂1
n(

∧
i=1,...,n ¬paidi) expresses that agent n knows that any of cryptographers

did not pay on condition that agent 1 does not cheat. This change makes the whole property true. The
formula ¬Form4 has been tested on two symbolic paths of the maximal length.

We should underline that BMC method is usually used for checking satisability of existential for-
mulae, i.e., checking that a universal formula does not hold. In this case, since all the computations of
CDC model are nite, checking validity of universal formulae is also possible. However such tests must
be performed on the whole model (in particular on the maximal length paths), thereby invalidating the
main BMC idea of nding counter-examples without exploring the whole model. This is the main cause
of the long time of verication for the given properties.

5.3.2. OBDD: Verifying CDC with MCMAS

Now, we present the experimental results obtained with MCMAS – a tool that implements the OBDD-
based algorithms presented in Subsection 4.2. MCMAS is released under the terms of the GNU General
Public License (GPL) and it is available for download [18].

In MCMAS, multi-agent systems are described using the language ISPL (Interpreted Systems Pro-

Agent SampleAgent
Lstate = {s0,s1,s2,s3};
Lgreen = {s0,s1,s2};
Action = {a1,a2,a3};
Protocol:
s0: {a1};
s1: {a2};
s2: {a1,a3};
s3: {a2,a3};

end Protocol
Ev:
s2 if ((AnotherAgent.Action=a7);
s3 if Lstate=s2;

end Ev
end Agent

Figure 7. ISPL example

gramming Language). Figure 7 gives a short example of this language. We refer to the les available
online [18] for the full syntax of ISPL. Formulae to be checked are provided at the end of the specication
le, using an intuitive syntax.

A given network of communicating automata can be encoded using the language ISPL by associating
each automaton to an agent (in the sense of MCMAS); synchronisation is achieved in MCMAS using the
appropriate evolution function for the agents. MCMAS can implement the function Obs for a network of
automata by taking the distributed knowledge of a set of automata (encoded as agents). The encoding
of the protocol of the dining Cryptographers using a network of automata, as presented in the previous
Section, is available for download [18].

Following standard conventions, we dene the size of a system as |W | + |R|, where |W | is the size
of the state space and |R| is the size of the relations. In our case, we dene |W | as the number all the
possible combinations of local states and actions.

Experimental results for the verication of M1
CDCn

are reported in Table 3. Differently from the
SAT-based Bounded Model Checking techniques presented above, time results for model checking using
OBDDs are not affected by the structure of the formula being veried. Typically, the time required to
execute the algorithm presented in Figure 4.2 is a fraction (in the order of 0.1% - 0.5%) of the time
required for the construction of the OBDDs representing the temporal relation, the set of reachable states,
etc. The temporal results in Table 3 refer to the verication time for various formulas, also discussed
later in of Table 1. Further, we veried the following:

AG((odd ∧ ¬paid1) → AF(K1(paid2 ∨ paid3) ∧ ¬K1(paid2) ∧ ¬K1(paid3)))

This formula expresses the idea that, if the rst cryptographer did not pay for dinner and the number
of “different” utterances is odd, then eventually the rst cryptographer knows that either the second or
the third cryptographer paid for dinner; moreover, in this case, the rst cryptographer does not know
which of these two is the payer (notice that this formula holds when the rst cryptographer is behaving
correctly). Intuitively this entirely captures the specication of the protocol.

N. sec Memory (bytes) BDD vars |S|
3 1 5281140 53 1.91E+07
4 4 6524788 69 1.48E+09
5 6 7229988 85 1.01E+11
6 424 56056516 101 6.48E+12
7 78 22589412 117 3.92E+14
8 8101 134174996 133 2.29E+16
9 508 39823892 149 1.29E+18
10 4841 60021380 165 7.15E+19
11 991 57448372 181 3.88E+21

Table 3. Experimental results with MCMAS

5.4. Discussion and comparison with existing work

Asmentioned at the beginning of Section 2, the protocol of the Dining Cryptographers has been modelled
in different ways by other authors [15, 20].

In particular, [15] present and OBDD-based algorithm for the verication of a particular class of
interpreted systems (synchronous with perfect recall). Their algorithm accepts the class of formulae
whose structure is Xk(Kip) (where p is an atomic proposition and Xk denotes a concatenation of k
temporal operators X. It is shown that the problem of model checking this class of formulae can be
reduced to the verication of the equivalence of Boolean formulae, manipulated using OBDDs. This
methodology is applied to the verication of the protocol of the dining cryptographers. However, the
modelling appearing in [15] differs substantially from the modelling presented in this paper: indeed, in
synchronous systems with perfect recall all the information about coin tosses, utterances, etc., is stored
in a special agent, the Environment. The remaining agents do not have “local” states, but they are only
allowed to observe the environment, and to perform actions based on their observations. This restriction,
together with the restriction of limiting verication to a particular class of formulae, results in a much
smaller encoding. No tool is presented in [15], but partial experimental results are provided for the
verication of formulae in examples with up to 20 cryptographers.

The tool MCMAS is used in [20] to verify the protocol of the dining cryptographers, but with a
different encoding of the example. That encoding models each cryptographer using a single agent, with
an additional agent for the environment. Such an encoding is less efcient than the one we present, in that
various parameters are repeated for each agent. For instance, the number of utterances is stored separately
in each agent, while our approach encodes this information with a single automaton representing the
counter. It is clear that while [20] follows the formalism of interpreted systems to the letter, the efcient
decoupling presented here offers speed advantages. This fact is reected in the experimental results of
MCMAS: as shown in Table 3, we veried scenarios with up to 11 cryptographers, while the encoding
proposed in [20] allowed for the verication of 8 cryptographers only.

Therefore, we argue that our encoding offers a substantial improvement with respect to previous
works in two respects:

• Our encoding permits the verication of a larger class of formulae than [15], and it represents more
“autonomous” agents, characterised by private local states.

• Our encoding is more efcient than the one presented in [20], by enabling an improvement of
nearly 50% in performance when the same tool is used.

6. Conclusions and future work

In this paper we have presented a scenario of modelling and model checking of the dining cryptographers
protocol, in the presence of cheaters. In particular we have compared the performance of MCMAS and
VERICS using a common representation based on a network of automata.

Our experimental results, summarised in Tables 3 and 2, paint the following picture: rst, both
checkers were able to check a variety of complex formulae correctly and efciently. Specically, MCMAS
calculates the (symbolic representation of the) whole model before actually performing the checks. It
proves to be faster for many formulae and enables the verication of the full CTLKD syntax. On the
other hand, the experiments with VERICS conrmed that BMC is in general not complete and performs
best when nding shallow counterexamples. In this case, it can handle really huge models. The overall
conclusion coincides with the common belief that the OBDD and BMC techniques complement each
other.

It should be noted that our results are preliminary, as the main effort was focused on modelling issues
and not on the performance. Many optimisation techniques are widely used in model checking, usually
enabling verication of realistic systems, and both the presented methodologies should be combined with
these standard approaches, extended the presented framework.

While our results are limited to these two model checkers and each checker may benet from ad-
ditional optimisation techniques, it seems to us that these results may be generalised to the techniques
behind the checkers, i.e., BMC for VERICS and OBDD for MCMAS.

In other words, what we found is that depending on the model in hand one technique may be more
efcient than another. To check satisfaction on models up to a size of about 1020 it seems that MCMAS has
an advantage. Checking satisability of ECTLKD formulae only on large models is clearly something
that is better handled by VERICS.

A further novelty of this paper lies in the analysis of the protocol in terms of deontic, epistemic and
temporal properties (as opposed to temporal properties only). This allows to represent violations (i.e.,
cheating) in the behaviour of the cryptographers in a natural way. When comparing our approaches to
other available in the literature, we nd that this considerably simplies the specications to be checked
against, while still maintaining the feasibility of the model checking approach. We plan to continue
evaluating this approach by means of other protocols of interest and to pursue ideas resulting from the
novel formalisation of the DC protocol presented here when modelling other security protocols so that
possible efciency advantages may be replicated.

References
[1] Biere, A., Clarke, E., Raimi, R., Zhu, Y.: Verifying Safety Properties of a PowerPC Microprocessor Using

Symbolic Model Checking without BDDs, Proc. of the 11th Int. Conf. on Computer Aided Verication
(CAV’99), 1633, Springer-Verlag, 1999.

[2] Bryant, R. E.: Graph-Based Algorithms for Boolean Function Manipulation, IEEE Transactions on Comput-
ers, 35(8), August 1986, 677–691.

[3] Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., Hwang, L. J.: Symbolic Model Checking: 10 20

States and Beyond, Information and Computation, 98(2), June 1992, 142–170.

[4] Chaum, D.: The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability, Jour-
nal of Cryptology, 1(1), 1988, 65–75.

[5] Clarke, E. M., Grumberg, O., Peled, D.: Model Checking, MIT Press, 1999.

[6] Dembiński, P., Janowska, A., Janowski, P., Penczek, W., Pó!rola, A., Szreter, M., Woźna, B., Zbrzezny, A.:
VerICS: A Tool for Verifying Timed Automata and Estelle Specications, Proc. of the 9th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’03), 2619, Springer-Verlag, 2003.

[7] Doroś, A., Janowska, A., Janowski, P.: From Specication Languages to Timed Automata, Proc. of CS&P the
Int. Workshop on Concurrency, Specication and Programming (CS&P’02), 161(1), Humboldt University,
2002.

[8] Emerson, E. A., Clarke, E. M.: Using Branching-Time Temporal Logic to Synthesize Synchronization Skele-
tons, Science of Computer Programming, 2(3), 1982, 241–266.

[9] Fagin, R., Halpern, J. Y., Moses, Y., Vardi, M. Y.: Reasoning about Knowledge, MIT Press, Cambridge,
1995, ISBN 0-262-06162-7.

[10] van der Hoek, W., Wooldridge, M., van Otterloo, S.: Model Checking Knowledge and Time via Local
Propositions: Cooperative and Adversarial Systems, 2004, Submitted.

[11] Huth, M. R. A., Ryan, M. D.: Logic in Computer Science: Modelling and Reasoning about Systems, Cam-
bridge University Press, Cambridge, England, 2000, ISBN Hardback: ISBN 0-521-65200-6, Paperback:
ISBN 0-521-65602-8.

[12] Lomuscio, A., Sergot, M.: Deontic Interpreted Systems, Studia Logica, 75(1), 2003, 63–92.

[13] Lomuscio, A., Sergot, M.: A formalisation of violation, error recovery, and enforcement in the bit transmis-
sion problem, Journal of Applied Logic, 2(1), March 2004, 93–116.

[14] Lowe, G., Roscoe, A. W.: Using CSP to Detect Errors in the TMN Protocol, Software Engineering, 23(10),
1997, 659–669.

[15] van der Meyden, R., Su, K.: Symbolic Model Checking the Knowledge of the Dining Cryptographers, 17th
IEEE Computer Security Foundations Workshop, 2004.

[16] Penczek, W., Lomuscio, A.: Verifying Epistemic Properties of Multi-Agent Systems via Bounded Model
Checking, Proc. of the 2nd Int. Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS’03), ACM,
July 2003.

[17] Penczek, W., Woźna, B., Zbrzezny, A.: Bounded Model Checking for the Universal Fragment of CTL,
Fundamenta Informaticae, 51(1-2), 2002, 135–156.

[18] Raimondi, F., Lomuscio, A.: MCMAS - A tool for verication of multi-agent systems,
Http://www.cs.ucl.ac.uk/staff/f.raimondi/MCMAS/.

[19] Raimondi, F., Lomuscio, A.: Verication of multiagent systems via ordered binary decision diagrams: an
algorithm and its implementation, Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’04) (N. R. Jennings, C. Sierra, L. Sonenberg, M. Tambe, Eds.), II,
ACM, July 2004.

[20] Raimondi, F., Lomuscio, A.: Automatic verication of multi-agent systems by model checking via OBDDs,
Journal of Applied Logic, 2005, To appear in Special issue on Logic-based agent verication.

[21] Visser, W., Havelund, K., Brat, G., Park, S.: Model Checking Programs, Proc. of the 15th IEEE Int. Conf. on
Automated Software Engineering (ASE’00), IEEE Computer Society, 2000.

[22] Woźna, B., Lomuscio, A., Penczek, W.: BoundedModel Checking for Deontic Interpreted Systems, Proc. of
the 2nd Workshop on Logic and Communication in Multi-Agent Systems (LCMAS’04), 126, Elsevier, 2004.

[23] Woźna, B., Penczek, W., Zbrzezny, A.: Reachability for Timed Systems Based on SAT-Solvers, Proc. of the
Int. Workshop on Concurrency, Specication and Programming (CS&P’02), 161(2), Humboldt University,
2002.

