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Abstract. Distributed service oriented architectures (SOAs) are increas-
ingly used by users, who are insufficiently skilled in the art of distributed
system programming. A good example are computational scientists who
build large-scale distributed systems using service-oriented Grid comput-
ing infrastructures. Computational scientists use these infrastructure to
build scientific applications, which are composed from basic Web ser-
vices into larger orchestrations using workflow languages, such as the
Business Process Execution Language. For these users reliability of the
infrastructure is of significant importance and that has to be provided
in the presence of hardware or operational failures. The primitives avail-
able to achieve such reliability currently leave much to be desired by
users who do not necessarily have a strong education in distributed sys-
tem construction. We characterise scientific service compositions and the
environment they operate in by introducing the notion of global scien-
tific BPEL workflows. We outline the threats to the reliability of such
workflows and discuss the limited support that available specifications
and mechanisms provide to achieve reliability. Furthermore, we propose
a line of research to address the identified issues by investigating auto-
nomic mechanisms that assist computational scientists in building, exe-
cuting and maintaining reliable workflows.

1 Introduction

Achieving reliability is a key concern in the design of distributed software sys-
tems. In this paper we argue that the service-oriented Grid computing infras-
tructures that have attracted computational scientists as a new set of non-expert
users currently only provide inadequate support at both design and runtime to
cater for reliability. As we demonstrate, this gap is increased by the fact that
scientific service compositions suffer from challenging threats to their reliability.
Due to the proliferation of scientific service-oriented applications, it is important
to investigate what kind of additional support can be offered to their developers
and users.
? This research has been funded by the UK EPSRC through grants GR/R97207/01

(e-Materials) and GR/S90843/01 (OMII Managed Programme)



2 Bruno Wassermann and Wolfgang Emmerich

If computational scientists are not provided with more effective means to
tackle issues of reliability, then this will present a serious impediment to the suc-
cessful use of service-oriented technologies in scientific computing and thereby
limit the realisation of its benefits. We therefore want to raise awareness, char-
acterise the problem, and propose a line of research to build autonomic mech-
anisms that can enable non-expert users to build and execute reliable service
compositions by handling failures automatically whenever possible and through
meaningful interaction with human users in any other cases.

The main contribution of this paper is the characterisation of scientific service
compositions and the environment they operate. We outline the ample threats to
their reliability. We do this by introducing the notion of global scientific BPEL
workflows (section 2) to get a clearer picture of what computational scientists
need to be enabled to deal with. Then, we briefly present a typical instance
of a scientific service composition and the failures it suffers from (section 3).
In order to demonstrate that current mechanisms and specifications have failed
to address the issue of reliability successfully, we review existing approaches
(section 4). The second contribution of this paper lies in a proposal outline
to investigate the application of autonomic mechanisms to achieve reliability
and ways of effective interaction between these mechanisms and human users
to achieve better coverage (section 5), before discussing closely related work
(section 6).

2 Global Scientific BPEL Workflows

2.1 Scientific Workflows

Computational sciences have increasing demands on compute power, data stor-
age capacity and collaboration across organisational boundaries. These require-
ments are satisfied by modern Grids, which have evolved into service-oriented
computing environments comprised of collections of basic Web services. In order
to express scientific experiments, these basic services need to be composed into
larger orchestrations. In prior work, we have shown that the Business Process
Execution Language (BPEL) as the industry standard for Web service orches-
trations has shown to be suitable for this task and it is desirable for faster
turnaround of ideas for experiments for computational scientists to take con-
trol of their own orchestrations. Computational scientists have been enabled
to model scientific workflows through the tool offering developed by the OMII-
BPEL project [1] and [2]. In this section, we briefly characterise the key elements
of such compositions, or workflows, to identify their impact on reliability.

Scientific workflows display some interesting properties. They operate on a
large scale, both in terms of the number of operations they invoke, the degree of
parallelism, the size and number of messages they exchange with service partners
and the amount of data they handle. Consequently, and given the nature of
the computations they are designed to handle, scientific workflows are resource-
intensive and long-running, which makes them prone to resource exhaustion
(i.e. memory, threads, file descriptors,) and increases the likelihood of internal
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or latent errors from various components materialising themselves as critical
failures. Furthermore, scientific workflows often operate and employ resources
in a wide-area setting, which introduces further issues with respect to their
stability. This state of affairs is not helped by the heterogeneity of the underlying
operating systems and hardware and the fact that resource schedulers, such as
Condor are explicitly addressing the scavenging of unused CPU cycles, which
results in termination or relocation of computation when nodes are beginning to
be used again or when nodes are actually switched off.

Computational scientists are certainly computer literate and may posses some
excellent programming skills in certain languages (most notably FORTRAN,
C and C++). However, they should by no means be regarded as experts in
distribution middleware and the underlying technologies used in service-oriented
Grid computing and BPEL enactment environments. Therefore, they will benefit
from simple to use mechanisms that provide support for ensuring the reliability
of scientific service compositions.

2.2 Global Computing

Research collaborations are increasing in size and often involve participating or-
ganisations, which are geographically widely dispersed. Wide-area distribution
enables such collaboration and increases the capacity to handle larger compu-
tational loads. Scientific workflows must integrate resources that are distributed
over wide-area settings for various reasons. First, the computations exposed by
scientific services are typically resource-intensive and their compositions require
the exchange of large numbers of SOAP messages. Provisioning all required re-
sources within a single organisation could easily become prohibitively expensive.
Second, some services and the expertise they encapsulate are developed and
maintained by individual organisations, which then make such services available
for invocation via the Internet, but may not release the source. A third instance
of resource sharing arises out of the need to pool Grid compute nodes. In such
a setting the resource managers (exposed as Web services) responsible for job
scheduling are local to the actual compute nodes and will have to be accessed
by their clients over a wide-area network.

This makes scientific workflows expressed in a service-oriented computing
environment a prime example of global computing, in which the components of
an application are distributed across the Internet. Cardelli asserts that wide-area
computing systems are fully asynchronous distributed systems making several
new phenomena visible that could previously be hidden to a sufficient extent on
LANs [3]. These observables include barriers (e.g., firewall) introduced due to the
involvement of separate administrative domains and unpredictably fluctuating
network conditions making long delays indistinguishable from failures. This is
the category of applications scientific service compositions are a part of.

Being an instance of global computing systems has an impact on the avail-
able options for ensuring the reliability of scientific workflows. We cannot rely on
timeouts to determine process failures and even if we were to ignore the impos-
sibility result of reaching consensus in an asynchronous distributed system [4],
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relying on mechanisms such as fault detectors may be prohibitively expensive.
Techniques primarily developed for mobile networks, such as for example proba-
bilistic broadcasts have no direct feasible application as they may rather resemble
a DDoS attack (but see [5]).

2.3 Middleware Components

Operating System

Java Virtual Machine

Servlet Container

BPEL Engine Web Services Container

Fig. 1. Stack of high-level middleware components involved in hosting and running
BPEL workflows.

Compositions need to be modelled using the tools of a buildtime in such a
way as to ensure subsequent reliable execution in a runtime. In OMII-BPEL, this
buildtime involves graphical modelling environments whose features assist users
in designing, validating, debugging and deploying a workflow in an executable
format. There is merit to briefly examine what a typical runtime consists of.

We consider middleware components as they occur in a typical Java environ-
ment, shown in Fig. 1. Distributed scientific applications may rely upon some or
all of these middleware components in order to provide correct service. However,
a considerable degree of complexity arises from the various middleware com-
ponents and their interactions with each other, which can give rise to various
failures. For example, the limitations on the number of sockets, threads or size
of memory per process imposed by the operating system can lead to conditions
causing the servlet container to crash. This then causes the subsequent failure
of one or more parts of a workflow. Or, some problem in the servlet container
preventing clients from accessing a particular resource (e.g., an XML Schema),
may, via a chain of dependencies, cause a remote service to terminate abnor-
mally. Such failures are extremely difficult to debug as none of the components
involved provides much useful information.

Each of the middleware components contributes independent failure modes
and each application may exercise different parts of these components under
varying conditions. Hence, in order to ensure the reliable execution of a com-
position, a process modeller must reason about how potential failures in the
middleware may influence their applications’ ability to provide correct service.
This may be a formidable challenge for software engineers, but presents a wholly
unacceptable burden on computational scientists.
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3 Example: Failures in the Polymorph Search Workflow

Scientific workflows are subject to many different failures. These failures often
have no direct obvious cause and can have complex effects, such as cascading
failures of components. In this section we briefly present a typical scientific BPEL
workflow and discuss some of the failures that it experiences in practice. We refer
the reader to [1] for a more detailed account of this workflow.

Fig. 2. Abstract overview of the polymorph search workflow illustrating its component
sub-workflows. For simplicity, omits details of the services involved and distribution of
services and sub-workflows.

The domain of the polymorph search workflow is Theoretical Chemistry and
its application is the computational prediction of organic crystal structures. Its
characteristics are typical of a realistic scientific workflow. It involves massively
parallel computations, at times executing up to 7, 600 service invocations con-
currently. The individual compute jobs resulting from these invocations take
anything between two minutes and several hours to complete. The total data
volume resulting from a single polymorph search is in the region of 6 GB and
parts of this data will be exchanged among sub-workflows and other services in
a large number of SOAP messages.

In order to conquer the size and complexity of the polymorph search work-
flow, it has been designed and built as several BPEL processes, which are hi-
erarchically composed so that a main process coordinates among several sub-
workflows. An abstract overview is shown in figure 2. The invokeMolpakDmarel
workflow (top-level) starts by gathering some input data and then invokes a num-
ber of instances of the invokeMolpak sub-workflow in parallel. As results become
available from this, they are fed to a large number of concurrently executing in-
stances of invokeDmarel. Both of these workflows make use of the gsSubmit
sub-workflow, which encapsulates the steps necessary to submit compute jobs
to a Grid via the GridSAM job submission and job monitoring services [6]. As
the results of individual invokeDmarel invocations are returned, the top-level
workflow submits them to the visualizer sub-workflow. Visualizer uses a Web
service hosted by Southampton University to present molecule data in a stan-
dard tabular format and to render results on a scatter plot.

A selection of the failures experienced with the polymorph search workflow
helps to illustrate the brittleness such compositions suffer from.
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Omission failures. Some omission failures may go undetected and therefore
result in corrupted results. For example, an instance of the visualizer process may
fail due to its partner service in Southampton being temporarily unavailable,
exhaustion of disk space, etc. As the visualizer sub-workflow provides for one-
way invocation through its interface, such a failure will go undetected. A user
would be left to manually inspect the resulting data for this omission as no part
of the system capable of resolving the issue may have become aware of it.

Cascading failures. There are various scenarios that cause cascading fail-
ures to occur. One example for this is when an invoked service tries to reply to
its caller after the latter has failed. The invoked service will fail as well and it is
easy to see how this may lead to further cascading failures in a system of hierar-
chically composed sub-workflows. Furthermore, the Web service container of the
invoked service may merely report the caller’s failure as a broken connection.

Application-specific failures. A service being faced with a compute job
which will never complete has little information available to decide how to han-
dle this job and will itself never terminate (unless through resource exhaustion).
A user however could in theory inspect this job and decide that it is an irrelevant
outlier and should be discarded. However, there is currently no automated mech-
anism to establish this link from detection of the problem to making a human
operator attentive to it and supplying further information.

4 Existing Approaches

In this section we present a brief survey of the key facilities made available by
BPEL and various Web service specifications for handling failures.

4.1 Transactional Mechanisms

The traditional transaction model based on the four properties of atomicity, con-
sistency, isolation and durability (ACID) has been applied with great success in
database management systems (DBMS). Its success for short-lived transactions
is, to a large extent, due to the fact that it effectively handles concurrency and
failures on behalf of a programmer. It would therefore seem to also afford a con-
venient implementation of backward error recovery in the context of scientific
workflows.

However, whilst ACID transactions are necessary and useful for certain cases
in service-oriented applications, it is well known that they are of limited use in
large-scale, long-running processes [7] and advanced transactions models (ATMs)
have been devised that relax some of the properties of ACID transactions. ATMs
allow programmers to focus on business logic rather than reason about excep-
tional executions by providing runtime support for handling failures and con-
currency similar to the one afforded by ACID transactions.

Concepts from various ATMs have found application in workflow manage-
ment systems (WFMS). For example, [8] has applied the concepts developed
to preserve reliability in multidatabase systems [9] to WFMSs. In [8] a single
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workflow/process represents a global transaction and its individual activities
represent sub-transactions. Consequently, process modellers need to equip ac-
tivities with transactional characteristics, such as compensatable (effects can
be undone), retriable (will eventually commit) and pivot (either commits or
fails) [9]. This affords the definition of a well-formed process, in which a single
pivot activity is preceded only by compensatable activities and followed by retri-
able activities. In case the pivot activity fails, all previous ones can be undone,
and in case it succeeds, all following activities are guaranteed to succeed even-
tually. Therefore, processes which are structured so as to adhere to the concept
of well-formedness, can then achieve semi-atomicity, which affords preservation
of the local autonomy of participants, whilst still preserving consistency in the
presence of failures.

Although these concepts solve some of the issues we identified with the use
of ACID transactions, there are a number issues when applied in our context.
First, for computational scientists, the execution characteristics of individual
activities in their workflows are far from obvious and reasoning about this is
complex. Second, the constraints imposed by the property of well-formedness
are too restrictive in practice when applied to large scientific workflows. The
primary reason for this is that scientific workflows make use of hierarchical com-
position of a number of sub-workflows in order to conquer the complexity of
large compositions during design and maintenance. Third, even if we were to re-
lax the property of well-formedness, as shown in [10] in the context of MDBMs by
introducing flexible transactions with retriable alternatives, the resulting guar-
antee of eventual reliability, that is, a guarantee that an activity will succeed at
some point in the future, may introduce considerable delays. Instead, it would
be preferable to detect and resolve an issue sooner rather than later, possibly by
notifying a human operator.

4.2 BPEL Compensation-Handling

BPEL provides process modellers with various tools to build reliable workflows.
It comes equipped with constructs to handle faults similar to the exception
handling constructs in modern programming languages. It furthermore offers
constructs to carry out compensation.

The concept of compensation as implemented in BPEL is restrictive and
complex. In [11] the authors identify the combination of explicit and implicit
compensation in BPEL as a main source of this complexity and question whether
this added complexity is actually justified by any benefits. The lack of control
for steering compensation provided to process modellers is criticised in [12]. It is
furthermore noted that there is no support for reasoning about the correctness
of an overall workflow in case compensation has been applied. It is also not the
case that services usually come equipped with compensating operations, which
is a problem in cross-organisational compositions where a developer may have
no control over another organisation’s services. In our experience, implementing
forward error recovery in BPEL is complicated by the assumptions its relevant
constructs are based on; immediate termination and backward error recovery.
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This restriction is revealed in the BPEL specification, which states that the sole
aim of fault handling in BPEL is to undo the effects of an unsuccessful scope.
Yet, achieving forward error recovery whenever possible is of utmost importance
in scientific workflows and should be made as simple as possible.

4.3 WS-Reliability

A number of specifications have been defined in order to increase the reliability
of Web services. A crucial component of reliable distributed systems is reliable
message delivery. There are two competing, but rather similar, specifications
in the area of WS-Reliability (WS-R) area ([13, 14]). WS-R supports the reli-
able exchange of SOAP messages between endpoints and allows applications to
configure parameters such as message delivery semantics and timeouts. Message
queuing systems suggest themselves as an implementation of WS-R.

Whilst the service offered by WS-R provides an important component to
maintain reliability, two issues become apparent in practice. First, the cost that
arises from maintaining message queues does not bode well for scientific work-
flows. This cost arises from persisting messages in some form of database and
includes storing additional message histories in the case exactly-once semantics
are required. During a single run, a scientific workflow may make thousands of
service invocations and may consequently send and receive in the region of tens
of thousands of SOAP messages. Second, WS-R guarantees that a message will
be delivered eventually. In a loosely-coupled, highly distributed environment in-
volving different administrative domains it becomes difficult to predict for how
long a particular set of services may be unavailable to process an incoming mes-
sage. That is, the delay introduced by the concept of eventual reliability can be
significant and an opportunity to detect and resolve a failure is missed.

In summary, we find that even though there are mechanisms to address relia-
bility, they cannot be easily applied to scientific service compositions. The main
characteristics of such compositions (long-running, resource-intensive, highly dis-
tributed) make the use of ACID transactions impractical. ATMs impose restric-
tions on the structure of workflows, which are difficult to adhere to in practice.
Due to the demand for forward error recovery whenever possible and due the
described complexity, which makes it difficult to anticipate all possible failures,
BPEL’s compensation constructs often fail to provide adequate support. The
cost incurred by WS-R may actually be prohibitive and the range of failures
encountered by scientific service compositions cannot be solved by reliable mes-
saging alone. This leads us to the question what is actually needed to enable
computational scientists to build reliable, fault-tolerant service compositions.

5 Making Reliability Useable

Making service-oriented Grid computing infrastructures directly ’programmable’
by computational scientists has a number of benefits to offer that can advance
scientific computing.
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However, current mechanisms to address reliability are lacking in various
respects. This forces computational scientists who develop complex compositions
to engage in a lengthy, time-consuming and often frustrating process of trial-and-
error where vulnerabilities are discovered through numerous runs of a workflow
and protected against by piecemeal modifications. This process of ’design-by-
trial-and-error’ is not acceptable. The aim of our proposed research is therefore
to enable computational scientists to design and execute global scientific BPEL
workflows with reasonable trust that the composition will handle any failures
and progress forward to completion.

We can derive a number of key features that any reasonable solution should
offer. It is desirable to detect failures as soon as possible so that they can be
handled and the overall workflow is able to progress forward. This is in contrast
to notification of failures by timeouts and undoing a great deal of work in light of
failures. In cases where it may be impossible to avoid undoing already completed
computations, the least amount of work that needs to be undone in order to pro-
ceed to completion should be identified. Of course, any automated handling of
failures should be efficient and above all lead to correct behaviour of the system.
Achieving correct behaviour is complicated in the case of application-specific
failures. Last but not least, it is of crucial importance to allow computational
scientists to interact with any autonomic fault handling mechanisms in an in-
tuitive manner so as to be able to indicate desired behaviour and possibly to
increase coverage. Amongst other things, this means that autonomic failure han-
dling must be able to operate satisfactorily with the least amount of input from
users.

Our proposed solution for achieving our stated objective consists of three
major parts.

Failure investigation service. Failure investigation is a crucial element
in enabling clever(er) handling of failures. Our experience with scientific BPEL
workflows suggests that it may often be possible to handle otherwise fatal fail-
ures successfully, if only there was more information available to drive autonomic
failure handling mechanisms. The design and implementation of a failure inves-
tigation service pose a number of interesting questions to be addressed. One
question is what kind of infrastructure is actually needed and what kind of in-
formation such an infrastructure should provide. Another issue is to determine
what level of support can be achieved without being concerned about providing
a global view of system state.

Autonomic recovery strategies. In order to handle failures and enable
forward progress, autonomic recovery strategies need to monitor the various
components involved in scientific workflows and then take action to prevent the
various parts of a workflow from terminating abnormally. There are a number of
complications. First, there are many components which may suffer under very
different kinds of conditions and therefore require specialised failure investigation
and recovery. Second, given the limited degree of software engineering expertise
of our users, we cannot expect them to inform such recovery strategies through,
for example, sophisticated architectural models. This raises the question of how
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such strategies should be expressed? Should they be hard-coded and added to
a system by some kind of plug-in mechanism? Or can we enable computational
scientists to inform these strategies in an intuitive manner? We are furthermore
interested to determine the coverage such strategies can achieve, how to en-
sure recovery leading to correct system behaviour and to find out limits of such
autonomic strategies.

Division of Responsibility. The final part of our research deals with oppor-
tunities for interaction between computational scientists and autonomic recovery
strategies. There are two main elements to this. For the sake of accountability of
autonomic recovery strategies, it will be necessary to make reports available to
human users about any incidents and actions taken during a run of a workflow.
By identifying failures that cannot be addressed automatically, it will further-
more become possible to determine when human users should be involved in
decisions about which actions to take in order to handle such failures success-
fully. Autonomic strategies could then guide users in resolving issues and make
their repository of actions available to be steered by users. The question here is in
how far support for dividing responsibility between human users and autonomic
mechanisms can be used to overcome any limitations of the latter.

We believe that the combination of informed autonomic recovery strategies
and meaningful interaction with human users provides a promising avenue for
resolving some, if not many, of the reliability challenges computational scientists
are currently confronted with.

6 Related Work

There are a number of related efforts taking place at Cornell. Services to monitor
system health in support of high-availability in mission-critical Web service ap-
plications have been proposed in [15]. Astrolabe [5] has been proposed as a mon-
itoring standard applications could use to implement autonomic behaviour [16].
And finally, [17] discusses services for tracking of process group membership,
failure detection and reaching consensus.

Our work differentiates itself from these efforts in various respects. Our fail-
ure investigation service does not aim to support process group semantics or
achieve a global view of system state. We prefer to avoid the added cost and
complexity of establishing a strong notion of consistency and are instead inter-
ested to determine the capabilities and limits of mechanisms built on a simple
infrastructure that makes additional system information available on request.
In cases where achieving consensus may be required, we will investigate the use
of resolution schemes [18]. Defining our main target group to be computational
scientists means that we cannot expect them to use the features of a monitoring
service directly to implement autonomic behaviour in their workflows and that
we must limit the necessary setup and configuration activities. Another differ-
ence is our interest in investigating how the coverage achieved by such recovery
strategies can be increased through cooperation with human users.
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An interesting first step in the context of scientific grid applications is rep-
resented by OPERA-G [19]. However, the autonomic behaviour OPERA-G was
able to achieve is limited. We propose to develop autonomic recovery strategies
based on a richer set of information.

The issue of accountability of autonomic computing mechanisms has been
raised in [20] and [21].

7 Conclusion

In this paper we discussed the notion of global scientific BPEL workflows and the
environment they operate in. The examples of typical failures of global workflows
that occur in practice and their consequences provide an insight into the variety
and complexity of failures. This helps to confirm our experience. Namely, that
tackling the threats to a scientific workflow’s reliability is a challenging task, even
for experienced software engineers. Our brief examination of existing reliability
mechanisms and language constructs lets us conclude that neither do the pro-
posed techniques address the breadth of threats effectively nor do they provide
an interface that allows for sufficiently simple interaction with computational
scientists.

For solving many of the identified issues, we proposed a solution consisting
of three main parts. We aim to build an environment that can make basic infor-
mation about failures available in order to enable informed autonomic recovery
strategies. Furthermore, we will investigate how to achieve useful interaction
between human users and these mechanisms to overcome any limitations. The
proposed research seems promising and its components raise a number of in-
teresting questions which we look forward to addressing and examining more
closely.
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