
This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted
PDF and full text (HTML) versions will be made available soon.

A Perl toolkit for LIMS development

Source Code for Biology and Medicine 2008, 3:4 doi:10.1186/1751-0473-3-4

James A Morris (james.morris@ucl.ac.uk)
Simon A Gayther (s.gayther@ucl.ac.uk)

Ian J Jacobs (i.jacobs@ucl.ac.uk)
Christopher Jones (c.jones@ucl.ac.uk)

ISSN 1751-0473

Article type Software review

Submission date 14 December 2007

Acceptance date 19 March 2008

Publication date 19 March 2008

Article URL http://www.scfbm.org/content/3/1/4

This peer-reviewed article was published immediately upon acceptance. It can be downloaded,
printed and distributed freely for any purposes (see copyright notice below).

Articles in Source Code for Biology and Medicine are listed in PubMed and archived at PubMed
Central.

For information about publishing your research in Source Code for Biology and Medicine or any
BioMed Central journal, go to

http://www.scfbm.org/info/instructions/

For information about other BioMed Central publications go to

http://www.biomedcentral.com/

Source Code for Biology and
Medicine

© 2008 Morris et al., licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:james.morris@ucl.ac.uk
mailto:s.gayther@ucl.ac.uk
mailto:i.jacobs@ucl.ac.uk
mailto:c.jones@ucl.ac.uk
http://www.scfbm.org/content/3/1/4
http://www.scfbm.org/info/instructions/
http://www.biomedcentral.com/
http://creativecommons.org/licenses/by/2.0

 - 1 -

A Perl toolkit for LIMS development

James A Morris, Simon A Gayther

, Ian J Jacobs and Christopher Jones

§

Translational Research Laboratories, UCL EGA Institute for Women's Health, University

College London, United Kingdom

§
Corresponding author

Email addresses:

JAM: james.morris@ucl.ac.uk

SAG: s.gayther@ucl.ac.uk

IJJ: i.jacobs@ucl.ac.uk

CJ: c.jones@ucl.ac.uk

 - 2 -

Abstract

Background

High throughput laboratory techniques generate huge quantities of scientific data. Laboratory

Information Management Systems (LIMS) are a necessary requirement, dealing with sample

tracking, data storage and data reporting. Commercial LIMS solutions are available, but these

can be both costly and overly complex for the task. The development of bespoke LIMS solutions

offers a number of advantages, including the flexibility to fulfil all a laboratory's requirements at

a fraction of the price of a commercial system. The programming language Perl is a perfect

development solution for LIMS applications because of Perl’s powerful but simple to use

database and web interaction, it is also well known for enabling rapid application development

and deployment, and boasts a very active and helpful developer community. The development of

an in house LIMS from scratch however can take considerable time and resources, so

programming tools that enable the rapid development of LIMS applications are essential but

there are currently no LIMS development tools for Perl.

Results

We have developed ArrayPipeline, a Perl toolkit providing object oriented methods that facilitate

the rapid development of bespoke LIMS applications. The toolkit includes Perl objects that

encapsulate key components of a LIMS, providing methods for creating interactive web pages,

interacting with databases, error tracking and reporting, and user and session management. The

MT_Plate object provides methods for manipulation and management of microtitre plates, while

a given LIMS can be encapsulated by extension of the core modules, providing system specific

methods for database interaction and web page management.

 - 3 -

Conclusions

This important addition to the Perl developer's library will make the development of in house

LIMS applications quicker and easier encouraging laboratories to create bespoke LIMS

applications to meet their specific data management requirements.

Background
High throughput investigation techniques such as microarrays are now well established in

scientific research. As the costs of these techniques fall, greater numbers of laboratories are

adopting these approaches. High throughput techniques and the equipment associated with them

provide researchers with a number of new challenges, one of which is the management and

storage of the vast quantities of data they generate. Laboratory notebooks and computer

spreadsheets still form the data management strategy for many research scientists, and this

simple approach has advantages in the ease of storage and viewing of the data for low throughput

approaches however this approach is inadequate for the amounts of data generated using the

latest laboratory techniques.

The solution to this data management challenge is the implementation of a Laboratory

Information Management System (LIMS), a computer application designed to track samples,

store data generated by laboratory equipment and experiments and report these data. There are

numerous commercial LIMS applications available however these can be very costly and

sometimes overly complex. The system may also fail to support all the requirements a laboratory

has, such as for a specialised piece of equipment with unique data import and export formats. For

all of these reasons the development of an in house bespoke LIMS is often the best solution for a

laboratory’s data management requirements.

The programming language Perl[1] has established itself as a standard in the bioinformatics

community due to a number of features which make it a perfect solution for developing

bioinformatics applications. Perl provides advanced, yet simple to use database support and

 - 4 -

comprehensive support for internet services such as common gateway interface (CGI)

programming. Additionally Perl boasts a very active and helpful developer community which

includes the Comprehensive Perl Archive Network (CPAN [2]), a large repository of third party

modules containing reusable code solutions for many common development problems. As such

Perl is an excellent option for the development of a LIMS.

As the creation of LIMS can take considerable time and resources, tools that can assist

developers in common development tasks such as database interfacing and user interface

programming are essential. Currently there are no LIMS development tools available for Perl; as

a result we have developed the ArrayPipeline Toolkit providing object oriented methods for the

rapid deployment of LIMS applications.

Implementation
ArrayPipeline has been developed as a suite of Perl modules written in an object oriented style to

provide reusable code that behaves in a consistent manner. The toolkit includes a number of

methods that extend the functionality of two Perl modules; DBI.pm the standard database

interface module for Perl and CGI.pm, the common gateway interface class for Perl. Alongside

Perl the toolkit has been developed using two other standards in bioinformatics application

development; the open source database MySQL [3] and the freely available Apache web server

[4]. Although we have chosen to use MySQL and Apache for development of the toolkit it

should be possible to use any database based on the Structured Query Language (SQL) and any

CGI capable web server.

 - 5 -

Results

LIMS::Controller

LIMS::Controller is the core component of the ArrayPipeLine toolkit. It provides a single object

handle for the multiple sessions and routes of data input and output created by the many tools

necessary for building LIMS, such as CGI and DBI libraries, and also handles many basic

administration functions. LIMS::Controller inherits from classes within two modules,

LIMS::Web::Interface and LIMS::Database::Util, which independently control CGI and DBI

services respectively. The methods for database interaction available in LIMS::Database::Util

create a fully featured object layer to any relational MySQL database, with the majority of

methods compatible with any SQL based database. The methods that make up the database

object layer all extend code from Perl DBI (DataBase Interface) library, providing methods for

inserting, updating and retrieving database rows. All the available methods are simple and easy

to use but still provide flexibility to perform more complex database operations. There is also

flexibility in the data structures used for inserting, updating and retrieving data. Other file

formats, such as file formats, are handled as binary objects for storage in the database.

The development of interactive web pages for user interaction, using HTML and the

common gateway interface (CGI) protocol, is supported by a number of methods in the

LIMS::Web::Interface module. The majority of these are extensions of methods from the Perl

CGI library. Firstly upon the creation of a new LIMS object a Perl CGI object is automatically

created, which can then be used to create web fill-out forms and parse their contents. One

challenge associated with developing CGI applications is the maintenance of state across

multiple pages. The creation of correctly formatted URLs incorporating CGI parameter values

can be complex, so the LIMS::Web::Interface module contains forwarding methods that will

transfer data across multiple CGI pages. The use of formatting methods also means that URLs

are not hard coded into the CGI script, so any change to a URL can be made to a single

configuration file rather than to multiple CGI scripts.

 - 6 -

The Perl language and the CGI and DBI libraries all have extensive error capture and

reporting capabilities. The modules described above both contain error handling methods that,

via LIMS::Controller, provide a single consistent interface for capturing and reporting errors

from Perl, CGI and DBI. One significant extension to the DBI library code is in the case of

database inserts and updates; upon the generation of any errors, the LIMS object will issue a

rollback command cancelling any changes made to the database during the transaction. The

objects ‘kill’ method can test if any errors have been captured, and if so kill the script and print

out the errors in either plain text or formatted HTML.

Key to a successful LIMS is maintenance of data integrity, and this can be achieved

through restricting access to sensitive pages to known and trusted users. The LIMS::Controller

module extends Apache and MySQL authorization and security by providing methods for

verifying the username and password of anyone attempting to access a restricted web page, using

a ‘user_information’ table in the LIMS database. If this step is successful then a session is

automatically generated, however if inactive for longer than the set session time the session

expires and authentication is again required. A ‘log_out’ method is also provided for ending the

current session.

Sample tracking and management

One of the key components of high-throughput technologies is the microtiter plate, used for

storage and manipulation of experimental samples. The LIMS::MT_Plate module encapsulates a

microtitre plate, providing methods for creating and manipulating microtitre plate objects of

different formats including 96, 384 and 1536 well plates, as well as individual tubes. A plate

object for each microtitre format can be created, as child classes of the parental plate class they

inherit all standard methods as well as specific information pertaining to each format. The

standard features which can be used by all plate objects include methods for filling multiple and

individual wells, the identity of samples in plate can be returned either as individual wells or

 - 7 -

collectively. Some of the most useful features of the plate object are concerned with whole plate

manipulations, and methods are available to perform plate to plate transfers, join plates of a

similar format into a larger format, or combine plates. The LIMS::MT_Plate module contains

further methods for dealing with plates and samples, and is extremely useful for developing

applications for tracking and manipulating samples contained in microtitre plates. This is a

standalone module, which can also inherit from the LIMS package to automate data input and

export.

LIMS object

The LIMS object encapsulates a given LIMS, it inherits from LIMS::Controller, and enables

simplified interaction with all the components of the LIMS including the database, web pages

and plates. The object can quickly and easily be setup to work with a specific LIMS through

editing a configuration file with parameters appropriate to the system in question. The

configuration file parameters include database connection details, web set-up, directory structure

and sections of HTML code for common web elements such as the page headers, footers and

menus.

Once configured, the LIMS object will significantly increase the speed of development of

applications for the associated LIMS, such as in the creation of new web pages. Each web page

is divided into a header, sidebar and footer, the HTML for which is stored in the configuration

file. The generation of the LIMS object includes user session control utilising form parameters,

and provides methods for formatting the HTML layout of a new page quickly and easily; the

header and sidebar are both printed using a single method call, the page content is then added,

and finally the page footer and parameter forwarding is printed with another method call.

LIMS::ArrayPipeLine

LIMS::ArrayPipeLine is an example of a LIMS object, and is the module that encapsulates our

own laboratory’s microarray LIMS. Together with a database schema, configuration file and cgi

 - 8 -

scripts, this module serves as a suitable template for most LIMS requirements, including the

manipulation of microtitre plates, recording procedure and protocol information, and tracking

individual protocol components. Access to LIMS::Controller functions is provided by a single

class, LIMS::ArrayPipeLine::Pipeline_Owner, which enables the simple creation of inheriting

classes that can interact with the LIMS database. An example of this is the module

LIMS::ArrayPipeLine::Pipeline_Plate, which also inherits from LIMS::MT_Plate and provides

methods that enable the creation of MT_Plate objects from database entries and vice versa.

LIMS::Sample is a ‘stripped down’ version of LIMS::ArrayPipeLine, and is provided in the

LIMS::Controller distribution as an example system. It consists of the components required for

the tracking of microtitre plates and their contents, and includes a database schema,

configuration file, CGI scripts and detailed installation instructions. Detailed annotation of the

CGI scripts in this example system help to explain many of the features of the LIMS::Controller

toolkit.

Conclusions
The LIMS toolkit provides tools for the rapid development of LIMS applications including

methods for the automation of web page development tasks, database interaction and for dealing

with microtitre plates. These tools combine to provide the efficient creation of web pages for

user interaction, allowing the developer to concentrate on functionality rather than layout.

Methods for the creation and manipulation of microtitre plate objects importantly provide a

consistent way for dealing with experimental samples contained in plates or tubes. The methods

for database interaction provide a simple and consistent interface to any SQL based database for

routine tasks such as inserts, updates and selects. The toolkit also provides flexibility in the

methods, allowing more complex database operations to be performed. This provides

consistency of design and purpose, while reducing the risk of errors in the code.

 - 9 -

This important addition to the Perl developer's library will facilitate the rapid development

of bespoke LIMS applications using Perl.

 - 10 -

Availability and requirements

Project name: ArrayPipeline

Project home page: http://sourceforge.net/projects/arraypipeline

Operating systems(s): Platform independent

Programming Language: Perl

Other Requirements: Perl 5 or higher

License: GNU General Public License (GPL)

Restrictions: None

Competing interests
The authors declare no competing interests.

Authors' contributions
CJ led ArrayPipeline project development. JAM and CJ wrote all of the ArrayPipeline code and

prepared this manuscript. IJJ and SAG provided infrastructure and funding support. SAG is the

Director of Research at the Translational Research Laboratories. All authors have read and

approve the final manuscript.

Acknowledgements
The authors would like to thank the Mermaid charity (Denmark) for funding this work.

References
1. Perl [http://www.perl.org/]

2. CPAN [http://www.cpan.org/]

3. MySQL [http://www.mysql.com]

4. The Apache HTTP Server Project [http://httpd.apache.org]

	Start of article

