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Abstract:
Early vision is best understood in terms of two key information bottlenecks along the visual

pathway — the optic nerve and, more severely, attention. Two effective strategies for sampling and
representing visual inputs in the light of the bottlenecks are (1) data compression with minimum
information loss and (2) data deletion. This paper reviews two lines of theoretical work which
understand processes in retina and primary visual cortex (V1) in this framework. The first is an
efficient coding principle which argues that early visual processes compress input into a more effi-
cient form to transmit as much information as possible through channels of limited capacity. It can
explain the properties of visual sampling and the nature of the receptive fields of retina and V1. It
has also been argued to reveal the independent causes of the inputs. The second theoretical tack
is the hypothesis that neural activities in V1 represent the bottom up saliencies of visual inputs,
such that information can be selected for, or discarded from, detailed or attentive processing. This
theory links V1 physiology with pre-attentive visual selection behavior. By making experimentally
testable predictions, the potentials and limitations of both sets of theories can be explored.

1 Introduction and scope

Vision is the most intensively studied aspect of the brain, physiologically, anatomically, and be-
haviorally (Zigmond et al 1999). Theoretical studies of vision suggest computational principles or
hypotheses to understand why physiology and anatomy are as they are from behavior, and vice
versa. The retina and V1, since they are better known physiologically and anatomically, afford
greater opportunities for developing theories of their functional roles, since theoretical predictions
can be more easily verified in existing data or tested in new experiments. This paper reviews some
such theoretical studies. Focusing on the why of the physiology, it excludes descriptive models con-
cerning what and how, e.g., models of the center-surround receptive fields of the retinal ganglion
cells, or mechanistic models of how orientation tuning in V1 develops. Useful reviews of early
vision with related or different emphases and opinions can be found in, e.g., Atick (1992), Meister
and Berry 1999, Simoncelli and Olshausen (2001), Lennie (2003), Lee (2003), and Olshausen and
Field (2005).
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Figure 1: Process flow diagram illustrating two bottom-up strategies proposed for early vision to
reduce data rate through information bottlenecks — (1) data compression with minimum informa-
tion loss, and, (2) creating a saliency map to enable lossy selection of information.
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Early vision creates representations at successive stages along the visual pathway, from retina
to lateral geniculate nucleus (LGN) to V1. Its role is perhaps best understood in terms of how these
representations overcome critical information bottlenecks along the visual pathway. This review
focuses on the studies that developed these theories.

Retinal receptors could receive information at an estimated rate of 109 bits per second (Kelly
1962), i.e., roughly 25 frames per second of images of 2000x2000 pixels at one byte per pixel. Along
the visual pathway, the first obvious bottleneck is the optic nerve from retina to LGN en route to
V1. One million ganglion cells in humans, each transmitting information at about 10 bit/second
(Nirenberg, et al 2001) give a transmission capacity of only 107 bits/second in the optic nerve, a
reduction of 2 orders of magnitude1. The second bottleneck is more subtle, but much more dev-
astating. Visual attention is estimated as having the capacity of only 40 bits/second for humans
(Sziklai 1956).

Data compression without information loss can reduce the data rate very effectively, and
should thus be a goal for early vision. Engineering image compression methods, for instance the
JPEG algorithm, can compress natural image data 20 fold without noticable information loss. How-
ever, the reduction from 109 to 40 bits/second is heavily lossy, as demonstrated by our blindness
to unattended visual inputs even when they are salient, the phenomenon known as inattentional
blindness (Simons and Chabris 1999). Therefore, data deletion by information selection must occur
along the visual pathway. An effective method of selection is to process only a limited portion of
visual space at the center of vision (which has a higher spatial resolution). Then, selection should
be such that the selected (rather than the ignored) location is more likely important or relevant to
the animal. While attentional selection is often goal-directed, such as during reading when gaze is
directed to the text locations, carrying out much of the selection quickly and by bottom-up (or au-
tonomous) mechanisms is computationally efficient, and indeed essential to respond to unexpected
events. Bottom up selection is more potent (Jonides 1981) and quicker (Nakayama and Mackeben
1989) than top-down selection, which could be based on features, or objects, as well as location
(Pashler 1998). Early visual processes could facilitate bottom up selection by explicitly computing
and representing bottom up saliency to guide selection of salient locations. Meanwhile, any data
reduction before the selection should be as information lossless as possible, for any lost informa-
tion could never be selected to be perceived. This suggests a process flow diagram in Fig. (1) for
early vision to incorporate sequentially two data reduction strategies: (1) data compression with
minimum information loss and (2) creating a representation with explicit saliency information to
facilitate selection by saliency.

First I review studies motivated by the first data reduction strategy. It has been argued that
early visual processes should take advantage of the statistical regularities or redundancies of visual
inputs to represent as much input information as possible given limited neural resources (Barlow
1961). Limits may lie in the number of neurons, power consumption by neural activities, and noise,
leading to information or attentional bottlenecks. Hence, input sampling by the cones, and activity
transforms by the receptive fields (RFs), should be optimally designed to encode the raw inputs
in an efficient form, i.e., data compression with minimal information loss — an efficient coding
principle. As efficient coding often involves removing redundant representations of information,
it could also have the cognitive role of revealing the underlying independent components of the
inputs, e.g., individual objects. This principle has been shown to explain, to various extents, the
color sensitivities of cones, distributions of receptors on the retina, properties of RFs of retinal gan-

1In the version of the manuscript published in the journal, a mistake was made on the number of bits per second trans-
mitted by a ganglion cell, and consequently on the transmission capacity of the optic nerve.
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glion cells and V1 cells, and their behavioral manifestations in psychophysical performance. As
efficiency depends on the statistics of input, neural properties should adapt to prevailing visual
scenes, providing testable predictions about the effects of visual adaptation and development con-
ditions.

An important question is the stage along the visual pathway at which massively lossy infor-
mation selection should occur. Postponing lossy selection could postpone the irreversible informa-
tion deletion, and unfortunately also the completion of cognitive processing. While it is reasonable
to assume that data compression with minimum information loss may continue till little more ef-
ficiency can be gained, efficient coding should encounter difficulties in explaining major ongoing
processing at the stage serving the goal of lossy selection. I will review the difficulties in using
efficient coding to understand certain V1 properties such as the over-complete representation of vi-
sual inputs, and the influence on a V1 neuron’s response of contextual inputs outside its RF. These
properties will be shown to be consistent with the goal of information selection, the second data
reduction strategy. Specifically, V1 is hypothesized (Li 1999ab, 2002, Zhaoping 2005) to create a
bottom up saliency map of visual space, such that a location with a higher scalar value in this map
is more likely selected. The saliency values are proposed to be represented by the firing rates of
V1 neurons, such that the RF location of the most active V1 cell is most likely selected, regardless
of its feature tuning. This hypothesis additionally links V1 physiology with the visual behavior of
pre-attentive selection and segmentation, again providing testable predictions and motivating new
experimental investigations.

This paper presents a particular, rather than an all-inclusive, view. While the efficient coding
theory and the V1 saliency map theory involve different theoretical concepts and methodologies,
they both concern the understanding of early vision in terms of its role of overcoming information
bottlenecks in the visual and cognitive pathways. The very same experimental data shaped the
development of both theories, indicating that data exposing limitations in one theory can drive
the development of another as we move from one visual stage to the next. The many gaps in
our understanding of early vision, and in the coverage of previous work, will hopefully motivate
stimulating discussions and future studies.

2 The efficient coding principle

This section will review the formulation of this principle and its application to understand retina
and V1 processes. Response properties of large monopolar cells (LMC) in blowfly’s eye and the
cone densities on human retina will illustrate optimal input sampling given a finite number of
sensors or neural response levels. The RF transforms (in space, time, color, stereo) of the retinal
ganglion cells and V1 cells will illustrate how input redundancy should be more or less reduced in
low or high noise conditions respectively.

The formulation of the efficient coding principle for early vision goes as follows (see Atick
1992 for a detailed introduction). Let sensory input signal S occur with probability P (S). In-
put sampling and encoding processes transform S to neural response or output O = K(S) + N

by a linear (kernel) or nonlinear function K(.), while typically introducing noise N (see Fig. (2)).
For instance, in a blowfly’s compound eye, S is the input contrast, K(S) describes the sigmoid-
like gain control of S by large monopolar cells (LMC). For another example, S = (S1, S2, ..., SM )

could be a vector describing responses from M photoreceptors, O another vector of inputs to
many retinal ganglion cells, the receptor-to-ganglion transform maybe approximated linearly as
Oi =

∑

j KijSj + Ni, where Kij is the effective neural connection from the jth receptor to the ith
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Figure 2: Efficient coding K transforms the signal S to neural responses O to extract maximum
amount of information I(O;S) about signal S, given limited resources, e.g., capacity (dynamic
range) or energy consumption of the output channels. Often, gain control accommodates the signal
within the dynamic range. With high signal-to-noise (S/N), removing correlations between input
channels makes information transmitted by different output channels non-redundant. With low
S/N, averaging between channels helps smoothing out noise and recover inputs from correlated
responses.

ganglion via the retinal interneurons. Let noise N occur with probability PN (N), O has a condi-
tional probability distribution P (O|S) = PN (O − K(S)), typically a uni-modal function centered
near O = K(S), and a marginal distribution P (O) =

∫

dSP (O|S)P (S). The entropy H(O) =

−
∫

dOP (O) log2 P (O) characterizes the randomness or variability in O. When S is known, this
randomness is reduced to conditional entropy H(O|S) = −

∫

dOdSP (O,S) log2 P (O|S), where the
joint probability P (O,S) = P (O|S)P (S). The information in S about O, or in O about S, is thus
the reduced randomness (or ignorance) in one signal by fixing another,

Information I(O;S) = H(O) −H(O|S) = H(S) −H(S|O) (1)

To maximize I(O;S), the optimal K depends on the statistics P (S) and PN (N) of the inputs and
noise, and the forms of constraints on neural resources. We call

∑

i I(S
′
i;Si) where S′

i = Si+ input
noise in input channel i, input data rate, and

∑

i I(Oi;O
′
i) (=

∑

iH(Oi)+ constant) output data
rate, where O′

i = Oi −No,i, and No,i is the intrinsic noise in the output channel i not attributable to
input noise. In high (input) signal-to-noise ratio (S/N) regimes, input data rate is high, redundancy
reduction or decorrelation between information channels helps to reduce output data rate. In low
S/N regimes, the input data rate is low, input smoothing, which thus introduces or retains cor-
relations, helps avoid unnecessary waste of output channel capacity in transmitting noise. These
points are elaborated throughout this section.

In general, output entropy H(O) = I(O;S) +H(O|S) conveys information both about S by
the amount I(O;S) and about noise by the amount H(O|S). In the noiseless limit, maximizing
I(O;S) is equivalent to maximizing H(O). The well-known inequality H(O) ≤ ∑i H(Oi) implies
that H(O) is maximized when the equality H(O) =

∑

iH(Oi) is achieved, and when the output
entropy H(Oi) is maximal in each channel i. Neural resources restrict the available output values
or dynamic range for responses O, e.g., in terms of maximum neural firing rates, thus limiting
H(Oi). For instance, if neuron i has only two possible response values Oi (per second), it can
transmit no more than H(Oi) = log2 2 = 1 bit/second of information when each response value
is utilized equally often, in this case P (Oi) = 1/2 for both Oi values. Mathematically, equality
H(O) =

∑

iH(Oi) occurs when different output neurons convey different aspects of the informa-
tion in S, so M such neurons can jointly transmit M bits/second. If one neuron always responds
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exactly the same as another, information from the second neuron’s response is redundant, and
the total information conveyed by one neuron is the same as that by both. Thus, H(O) is max-
imized when neurons respond independently, i.e., P (O1, O2, ...ON ) = P (O1)P (O2)...P (ON ), the
joint probability factorizes into marginal probabilities. Such a coding scheme for O is said to be
an independent component code (or factorial code) of input S. This is why in the noiseless limit,
I(O;S) is maximized when responses Oi and Oj are not correlated, and, if required by the infor-
mation rate, when each channel Oi utilizes different output states equally often.

Typically, natural scene signals S obey statistical regularities in P (S) with (1) different sig-
nal values not occurring equally often, and, (2) different input channels Si and Sj , e.g., responses
from neighboring photoreceptors, conveying redundant information. For instance, if two responses
from two photoreceptors respectively are very correlated, once one response is known, the second
response is largely predictable, and only the difference between it and the first response (or, the
non-predictable residual response) conveys additional, non-redundant, information. If M such
photoreceptors (input channels) contain 8 bits/second of information in each channel j, S/N � 1

is good. If, say, 7 out of the 8 bits/second of information in each channel is redundant informa-
tion already present in other channels, the total amount of joint information H(S) is only about
M bits/second (for large M ), much less than the apparent 8 ×M bits/second. Transmitting the
raw input directly to the brain using O = S would be inefficient, or even impossible if, e.g., the
M output channels O = (O1, O2, ..., OM ) have a limited capacity of only H(Oi) = 1 bit/second
each. The transform or coding S → O ≈ K(S) could maximize efficiency such that (1) neurons
Oi and Oj respond independently, and (2) each response value of O is equally utilized. Then, all
input information could be faithfully transmitted through responses O even though each output
channel conveys only 1 bits/second. Accordingly, e.g., the connections from the photoreceptors to
the retinal ganglion cells are such that, in bright illumination, ganglion cells are tuned to response
differences between nearby photoreceptors, making their responses more independent from each
other. These ganglion cells are called feature detectors (Barlow 1961) for responding to informative
(rather than redundant) image contrast features.

However, when the input S/N � 1 is so poor that each input channel has no more than, say,
0.5 bit/second of useful information, M such channels convey no more than M/2 bits/second, or
much less when considering input redundancy. The output channel capacity H(O) = I(O;S) +

H(O|S) wastes a fraction H(O|S) = H(N) on transmitting noise N which is typically less redun-
dant between input channels, costing metabolic energy to fire action potentials (Levy and Baxter
1996). To minimize this waste, a different transform K is desirable to average out input noise,
thereby introducing some redundancy in response O, i.e., correlation between different response
channels and unequal use of different response states within a channel. In such a case, the out-
put channel capacity (e.g., of M bits/second) is often not fully utilized, and output redundancy
helps signal recovery. Hence, efficient coding is not necessarily de-correlation (or output histogram
equalization), which is suitable only in the high S/N case. Finding the most efficient K given any
S/N level thus results in an optimization problem of minimizing the quantity

E(K) = neural cost − λ× I(O;S), (2)

where the Lagrange multiplier λ balances information extraction I(O;S) and cost. The optimal
code K is the solution(s) to equation ∂E(K)/∂K = 0.

The above is an analytical formulation (Srinivasan, Laughlin, Dubs 1982, Linsker 1990, Atick
and Redlich 1990, van Hateren 1992) of the efficient coding principle (Barlow 1961), which proposes
that early visual processing, in particular the RF transformation, compresses the raw data with min-
imum loss, such that maximum information I(O;S) can be transmitted faithfully to higher visual
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areas despite information bottlenecks such as the optic nerve. The neural cost is often the required
output channel capacity

∑

iH(Oi) or the required output power (cf. Levy and Baxter 1996)
∑

i〈O2
i 〉

where 〈...〉 denotes ensemble average, e.g., 〈O2
i 〉 =

∫

dOiO
2
i P (Oi). Importantly, in the noiseless

limit, different output neurons of an efficient code carry different independent components in the
data, promising cognitive advantages by revealing the underlying perceptual entities, e.g., even
objects, responsible for the data. This efficient coding principle is sometimes also termed Info-
max (i.e., maximizing I(O;S)), sparse coding (i.e., minimizing

∑

iH(Oi) or
∑

i〈O2
i 〉), independent

component analysis, and (in low noise cases) redundancy reduction (Nadal and Parga 1993).
We now apply this principle to understand input sampling by the retinal cells and transfor-

mations by the RFs of the retinal and V1 cells. For better illustration, most examples below are
simplified to focus only on the relevant dimension(s), e.g., when focusing on input contrast levels
to blowfly’s eye, dimensions of space and time are ignored.

2.1 Efficient neural sampling in the retina

In blowfly’s compound eye, we consider S to be a scalar value S for the input contrast, K(S) is
the contrast response function, giving a scalar LMC response O = K(S). Without multiple output
neurons to make independent, making different response values O equally probable is sufficient
to maximize information extraction I(O;S). Accordingly, given an output dynamic range, I(O;S)

is maximized when the input sampling density dK(S)/dS, i.e., the number of response levels O
allocated to each input interval, matches input density P (S), i.e., dK/dS ∝ P (S), so that P (O) =

P (S)dS/dO = P (S)/(dK/dS) = constant, to utilize all response levels equally. Blowflies have
indeed been found to be consistent with this strategy (Laughlin 1981). This also holds in noisy
cases, unless S/N is too low to fully utilize the available channel capacity H(O) by constant P (O)

(in which case P (O) should be more peaked at zero or low activities to save cost).
Analogously, human cones are more densely packed in the fovea, so that their density matches

the distribution of the images of relevant objects on the retina (Lewis, Garcia, and Zhaoping 2003),
so that the limited resource of 107 cones can be best utilized. Here, input S is the location of a
relevant visual object, output O is the identity or index of the cone most excited by the object, and
I(O;S) is the amount of information in cone responses about the object’s location. Assuming (in a
gross simplification) that only the objects of interest are relevant, and that they tend to be brought
to the center of vision by eye movements, the distribution P (S) of the object image locations on
the retina will indeed peak at the fovea. This distribution, quantitatively derived from the charac-
teristics of the human eye movements, indeed matches the retinal distribution of the human cones
reasonably well, although this leaves open whether the eye movement characteristics is the cause
or effect of the cone distribution or whether they co-adapt to each other. If the cones were uni-
formly distributed on the retina, the peripheral ones would be under-utilized, fewer cones would
be at the fovea, on average giving less precise information about the object locations.

Equation (2) has also been applied to color sampling by cones at a single spatial location.
Here, the input is the visual surface color reflectance S = S(l) as a function of light wavelength l,
and the outputs O = (Or, Og , Ob) model responses from red (r), green (g), and blue (b) cones of
wavelength sensitivity R(l− li) for i = r, g, bwith peak sensitivity occurring at optimal wavelength
li. Given sensory noise Ni and illumination E(l) from sun light, Oi =

∫

dlR(l − li)S(l)E(l) +

Ni. Just as the contrast response function K(S) of blowfly’s LMC can be optimized to maximize
information extraction, the color sensitivities can be similarly optimized by the choice of li, an
operation that largely explains the cones’ sensitivities in humans (Lewis and Zhaoping 2006). This
makes responses from different cones (particularly red and green) suitably correlated with each
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other, to smooth out the often substantial noise in dim light and/or under fine spatial resolution.

2.2 Efficient coding by early visual receptive fields

The efficient coding principle has been much more extensively applied to understand the RF trans-
forms of the receptor responses by retinal ganglion cells (or LGN cells) and V1 neurons. Now
we denote the receptor outputs by S + N, including both signal S and noise N, and post-synaptic
responses by O. The problem is simplified by approximating the neural transforms as linear

O = K(S + N) + No, or, in component form, Oi =
∑

j

Kij(Sj +Nj) +No,i (3)

where No is the neural noise introduced by the transform, so KN + No is the total noise (originally
denoted by symbol N). As discussed earlier, whether the optimal RF transform K decorrelates
inputs or not depends on the input S/N level. To focus on such RF transforms as combining the
original S channels, I omit nonlinear gain control processes such as those in the LMC of blowflies
(Nadal and Parga 1994).

Optimizing K accurately requires precise information about P (S), i.e., a joint probability dis-
tribution on M pixel values (S1, S2, ..., SM ). Unfortunately, this is not available for large M. How-
ever, given the second order correlation RS

ij ≡ 〈SiSj〉 between inputs, a maximum entropy ap-
proximation of P (S) is a Gaussian distribution P (S) ∝ exp[−∑ij SiSj(R

S)−1
ij /2], where (RS)−1

is the inverse matrix of matrix RS (with elements RS
ij ) and the signals are simplified as (or pre-

transformed to) having zero mean. This approximation has the advantage of enabling analytical
solutions of the optimal K (Linsker 1990, Atick and Redlich 1990, Atick et al 1992, Dong and Atick
1995, Li and Atick 1994ab, Li 1996), and captures well our ignorance of the higher order statistics.

Alternatively, one can sample natural scene statistics and obtain K by simulation algorithms,
e.g., through gradient descent in the K space to minimize E(K). Bell and Sejnowski (1997) did
this, finding V1 RFs by maximizing H(O) (corresponding to the noiseless limit N → 0 when
I(O;S) = H(O) + constant), with neural cost constrained to a fixed output dynamic range. Note
that once O is obtained, S can be reconstructed by S = K

−1
O + noise when K is invertible (i.e.,

when O is a complete or over-complete representation). While input reconstruction is not the goal
of efficient coding, it is worth noting the link between efficient coding and another line of works
often referred to as sparse coding, also aimed to understand early visual processing (Olshausen
and Field 1997, van Hateren and Ruderman 1998, Simoncelli and Olshausen 2001). These works
proposed that visual input S with input distributions P (S) can be generated as a weighted sum
of a set of basis function, weighted by components O1, O2, ... of O with sparse distributions P (Oi)

for all i. Thus, the column vectors of K
−1 correspond to the basis functions. Since larger I(O;S)

enables better generation of S from O, and since sparseness for O is equivalent to constraining the
neural cost as entropies

∑

iH(Oi), such sparse coding formulation is an alternative formulation of
the efficient coding principle. Indeed, in practice, their typical algorithms find O and K

−1 by min-
imizing an objective function E = 〈(S − K

−1
O)2〉 + λ

∑

i Sp(Oi) where Sp(Oi), e.g., Sp(Oi) = |Oi|,
describes a cost of non-sparseness (which encourages a sharply peaked distribution P (Oi) and thus
low H(Oi)), while the reconstruction error 〈(S − K

−1
O)2〉 should roughly scale with 2−2I(O;S). It

is thus not surprising that these algorithms (e.g., Olshausen and Field 1997), which were mostly
simulated for low noise cases, produce results similar to those by simulation algorithms (e.g., Bell
and Sejnowski 1997) for efficient coding to minimize E(K) of equation (2), also in the noiseless
limit. All these simulational algorithms have the advantage of being performed online while being
exposed to individual natural images S, thus all orders of statistics in P (S) are absorbed by the al-
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gorithms without having to approximate P (S). Importantly, their results (e.g., Bell and Sejnowski
1997, Olshausen and Field 1997, van Hateren and Ruderman 1998, Simoncelli and Olshausen 2001)
confirmed the previous analytical results on K, particularly of V1 RFs (Li and Atick 1994ab, Li 1996),
obtained by approximating P (S) by up to second order statistics only.

In general, inputs S = S(x, t, e, c) depend on space x, time t, eye origin e, and input cone type
c. The RF transform for a V1 cell, for instance, can reflect selectivities to all these input dimensions,
so that a cell can be tuned to orientation (involving only x), motion direction (involving x, t), spatial
scale (x), eye origin (e), color (c), and depth (x, e) or combinations of them. I will review the find-
ings in the efficient coding formulation as in equations (2) and (3) using Gaussian approximation
for P (S) (also with all noise assumed to be Gaussian and independent), to take advantage of the
analytical convenience and insight, and of the flexibility to handle different signal-to-noise levels.
The analytical approach also avoids tampering with translation and scale invariance in input statis-
tics (something which is hard to avoid in simulation studies when images of, say, 12x12 pixels are
used) which can bias the scales and shapes of the RFs found. It will be shown that (Fig (3)), by this
approximation, the optimal K under neural cost

∑

i〈O2
i 〉 can be decomposed into three conceptual

components: (1) principal component decomposition of inputs, (2) gain control of each principal
component according to its S/N, and (3) multiplexing the resulting components. Coding in space,
stereo, time, color, at different S/N levels simply differ by input statistics P (S) and S/N, but will
lead to a diversity of transforms K like the RFs observed physiologically.

o

according to
S/N of each 
component

gain control

g U

K = U g K

Efficient coding K of Gaussian signals decomposed into three components: K  , g, U.

Principal 
component
decomposition O = K(S+N)+N

response
GaussianGaussian 

inputs
S+N

Multiplexing

K

o

o

o

Figure 3: Three conceptual components, Ko, g, and U, in the efficient coding K of Gaussian signals.

2.3 Illustration: stereo coding in V1

For illustration (Fig. (4)), we focus first only on the input dimension of eye origin, e = L,R, for
left and right eyes with 2-dimensional input signal S = (SL, SR). The single abstract step to find
an optimal coding K by solving ∂E/∂K = 0 is decomposed into several conceptual steps here for
didactic convenience. The signals S = (SL, SR) may be the pixel values at a particular location,
average image luminances, or the Fourier components (at a particular frequency) of the images.
For simplicity, assume that they have zero means and equal variance (or power) 〈S2

L〉 = 〈S2
R〉.

Binocular input redundancy is evident in the correlation matrix:

RS ≡
(

〈S2
L〉 〈SLSR〉

〈SRSL〉 〈S2
R〉

)

≡ 〈S2
L〉
(

1 r
r 1

)

where 0 ≤ r ≤ 1 is the correlation coefficient. The input distribution is then P (S) = P (SL, SR) ∝
exp[−(S2

L + S2
R − 2rSLSR)/(2σ2)] where σ2 = 〈S2

L〉(1 − r2). With sensory noise N = (NL, NR), the
input signals become OL,R = SL,R + NL,R. Encoding into principal components O+ and O− (Li
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Figure 4: Efficient coding illustrated by stereo coding. Left: correlated inputs (SL, SR) from the
two eyes are transformed to two decorrelated (by second-order) signals S± ∝ SL ± SR, ocular
summation and opponency, of different powers 〈S2

+〉 > 〈S2
−〉. Right: schematics of data S (or

S + N in noisy conditions) and their transforms to responses O by efficient coding. Each dot is a
sample data from distributions P (S) or P (O) in the two dimensional space of S or O. Correlation
〈SLSR〉 > 0 is manifested in the elliptical shape of the data distribution (particularly in the high
S/N condition). Gain control, S± → g±S±, produces, under high or low input S/N, decorrelated
or correlated responses (O1, O2). When S/N→ ∞, the weaker signal S− is relatively amplified for
(ocular) contrast or edge enhancement, g− > g+, leading to whitening or equal power responses
g2
+〈S2

+〉 ≈ g2
−〈S2

−〉. Both O1 and O2 are excited by input from one eye (right and left respectively)
and inhibited by input from another. When S/N� 1, the weaker signal S− is de-emphasized or
abandoned to avoid transmitting too much noise. BothO1 andO2 integrate the left and right inputs
to smooth out noise, while preferring right and left eyes respectively.

and Atick 1994b)

O± ≡ (OL ±OR)/
√

2 = S± +N±, where S± ≡ (SL ± SR)/
√

2 and N± ≡ (NL ±NR)/
√

2,

gives zero correlation 〈O+O−〉 between O+ and O−, and leaves the output probability factorized
P (O) = P (O+)P (O−) ∝ exp[− 1

2O
2
+/〈O2

+〉 − 1
2O

2
−/〈O2

−〉]. Note that 〈O2
i 〉 = 〈S2

i 〉 + 〈N2
i 〉, and,

assuming 〈N2〉 ≡ 〈N2
R〉 = 〈N2

L〉, then 〈N2
i 〉 = 〈N2〉 for all i = L,R,+,−. The ocular summation

signal S+ is stronger and conveys information about the 2-dimensional images, whereas the weaker
signal S− conveys ocular contrast (”edge”) or depth information. The signal power 〈S2

±〉 = (1 ±
r)〈S2

L〉 are the eigenvalues of RS for the corresponding principal components (eigenvectors). Since
the transform (OL, OR) → (O+, O−) is merely a 45o coordinate rotation in a 2-dimensional space,
(O+, O−) and (OL, OR) consume the same amount of total output power 〈O2

+〉 + 〈O2
−〉 = 〈O2

L〉 +

〈O2
R〉 (as is easily verified), and contain the same amount of information I(O;S). The transform

(OL, OR) → (O+, O−) is linear, as is approximately the case for V1 simple cells. The cell that
receives O+ is a binocular cell, summing inputs from both eyes, while the cell receiving O− is
ocularly opponent or unbalanced. It is known that for Gaussian signals, the information in each
channel Oi = Si +Ni for i = L, R, +, or −

I(Oi;Si) =
1

2
log2

〈O2
i 〉

〈N2
i 〉

=
1

2
log2

〈S2
i 〉 + 〈N2

i 〉
〈N2

i 〉
=

1

2
log2[1 +

〈S2
i 〉

〈N2
i 〉

], (4)
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depends only on the signal-to-noise 〈S2
i 〉/〈N2

i 〉. Non-zero correlation 〈SLSR〉 means that some of
the information in OL and OR (quantified in bits by I(OL;SL) and I(OR;SR)) is redundant. In
contrast, information in O+ and O− (quantified by I(O+;S+) and I(O−;S−)) is non-redundant.
Hence the total information

I(O;S) = I(O+;S+) + I(O−;S−) < I(OL;SL) + I(OR;SR). (5)

andO± is more efficient thanOL,R, since it requires less total information channel capacity I(O+;S+)+

I(O−;S−).
The quantity [

∑

i=L,R I(Oi;Si)]/I(O;S) − 1 measures the degree of redundancy in the code
O = (OL, OR). This redundancy causes unequal signal powers 〈O2

+〉 > 〈O2
−〉 and information

rates I(O+;S+) > I(O−;S−). If 〈O2
±〉 is the coding cost, the information, I± = 1

2 log2(〈O2
±〉) +

constant, increases logarithmically with the cost. Hence, spending any extra power budget gives
a better return in the weaker O− than the stronger O+ channel. This motivates awarding different
gains g± to the two channels, O± → g±O± with g+ < g− to amplify the ocular “edge” channel
S− + N− relatively, provided that this does not amplify input noise N− too much. In reality, the
coding transform OL,R → O± brings additional noise No (assuming 〈N2

o 〉 ≡ 〈N2
o,+〉 = 〈N2

o,−〉, for
simplicity). This gives output signal g±S±, output noiseN± = g±(NL±NR)/

√
2+No,±, and output

information

I± =
1

2
log2

〈O2
±〉

〈N2
±〉

=
1

2
log2

g2
±(〈S2

±〉 + 〈N2〉) + 〈N2
o 〉

g2
±〈N2〉 + 〈N2

o 〉
(6)

The optimal encoding is thus to find the gains g± that minimize

E(g+, g−) =
∑

k=+,−

E(gk) ≡
∑

k=+,−

[〈O2
k〉 − λIk ] = cost − λ · I(O;S) (7)

The optimal gains depend on the signal-to-noise (S/N) ratio in different ways in the high and low
S/N regions

g2
k ∝ Max

{[

1

2

〈S2
k〉

〈S2
k〉 + 〈N2〉

(

1 +

√

1 +
4λ

(ln 2)〈N2
o 〉

〈N2〉
〈S2

k〉

)

− 1

]

, 0

}

(8)

∝
{

〈S2
k〉

−1
, decrease with 〈S2

k〉 if 〈S2

k
〉

〈N2〉 � 1

Max{α〈S2
k〉

1/2 − 1, 0}, increase with 〈S2
k〉 if 〈S2

k
〉

〈N2〉 � 1, (α is a constant)

We first analyze the situation in the high S/N limit when g2
k ∝ 〈S2

k〉−1. As expected, this sup-
presses the stronger ocular summation signal S+ relative to the weaker ocular contrast signal S−,
to reduce cost. With negligible coding noise No (i.e., 〈N2

o
〉

g2

±
〈N2〉

� 1), output O and the original
input S + N contain about the same amount of information about the true signal S, but O con-
sumes much less power with g+ � g− ≤ 1, when input ocular correlation r ∼ 1. This gain
g± ∝ 〈S2

±〉−1/2 also equalizes output power 〈O2
+〉 ≈ 〈O2

−〉, since 〈O2
±〉 = g2

±〈S2
±〉 + noise power,

making the output correlation matrix Ro (with elements Ro
ab = 〈OaOb〉) proportional to an identity

matrix (since 〈O+O−〉 = 0). Such a transform S → O, which leaves output channels decorrelated
and with equal power, is called whitening. Now the two output channels O+ and O− are equally
and non-redundantly utilized.

Any coordinate rotation O → UO by angle θ in the two dimensional space O, multiplexes the
channels O+ and O− to give two alternative channels
(

O1

O2

)

= U

(

O+

O−

)

≡
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)(

O+

O−

)

=

(

cos(θ)O+ + sin(θ)O−

− sin(θ)O+ + cos(θ)O−

)

. (9)
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It turns out that2 the objective of the optimization E = cost -λI(O;S) is invariant to the rotation
O± → O1,2. This is intuitively seen in Fig. (4), particularly in the noise-free limit, in which responses
could be equivalently read out from any two orthogonal axes rotated from the two depicted ones
(O1, O2). Meanwhile, this rotation maintains whitening and decorrelation in the noiseless limit.
Hence, both encoding schemes SL,R → O± and SL,R → O1,2, with the former a special case of the
latter, are equally optimal in convey information about SL,R, and in saving the coding cost

∑

a〈O2
a〉.

Omitting noise,
(

O1

O2

)

=

(

SL(cos(θ)g+ + sin(θ)g−) + SR(cos(θ)g+ − sin(θ)g−)
SL(− sin(θ)g+ + cos(θ)g−) + SR(− sin(θ)g+ − cos(θ)g−)

)

.

Hence the two neurons coding O1 and O2 in general are differentially sensitive to inputs from
different eyes. In particular, θ = −45o gives O1,2 ∝ SL(g+ ∓ g−) + SR(g+ ± g−) shown in Fig. (4).
With g− > g+, both O1 and O2 are excited by input from one eye (right and left respectively) and
inhibited by input from another, extracting the ocular contrast signal. Varying U leads to a whole
spectrum of possible neural ocularities from very binocular to very monocular, as is indeed the case
in V1.

When S/N is too low, equation (8) indicates that the gain gk should decrease with signal
strength 〈S2

k〉, i.e., g− < g+. This is to avoid wasting the output channel by transmitting too much
noise g−N−. Then, the weaker signal channel is de-emphasized or totally abandoned, as illustrated
in Fig. (4). When g+ � g−, O1,2 ∝ g+(SL + SR) + noise, thus both output channels are integrating
the correlated inputs to smooth out noise, and are consequently correlated with each other. In V1,
cells with smaller RF sizes receive inputs with smaller S/N since they can not integrate signal over
space. These cells are thus predicted to be more likely binocular (unless the RF is so small that
correlation r → 0, leading to monocular cells (Li and Atick 1994b, Li 1995)). This coupling between
spatial coding and stereo coding is an example of coupling between various other input dimensions
discussed later. In dimmer environments, S/N is lowered for cells of all RF sizes. More V1 cells are
then binocular, and sensitivity g− to S− or depth information suffers consequently.

Changing the input statistics, i.e., the correlation matrix RS , through adaptation (Li 1995),
changes the optimal coding S → O. For instance, depriving the inputs to one eye leads to the
asymmetry RS

LL = 〈S2
L〉 6= RS

RR = 〈S2
R〉, while strabismus reduces the correlation coefficient r

in RS . Consequently (Li 1995), the eigenvectors and eigenvalues of RS change. In strabismus,
this leads to more monocular cells and thus stronger ocular dominance columns. In monocular
deprivation, this makes ocular dominance columns have uneven widths, since more neurons prefer
the dominant eye.

2.4 Applying efficient coding to understand coding in space, color, time, and
scale in retina and V1

Stereo coding illustrates a general recipe, as in Fig (3), for optimally efficient linear coding transfor-
mation O = K(S + N) + No of Gaussian signals S with correlation matrix RS , given independent
Gaussian input noise N and additional coding noise No. The recipe contains three conceptual
(though not neural) components: Ko, g, and U, as follows:

2For correlation matrix Ro of output O and correlation matrix RN of the output noise KN+No, the transform U changes
the correlation matrix Ro → URoUT and RN → URN UT . However, note from equations (7) and (6) that cost =

P

i〈O
2
i 〉 =

Tr (Ro), where Tr(.) denotes the trace of a matrix, and I(O;S) = 1

2

P

i=+,− log
〈O2

i
〉

〈N2

i
〉

= 1

2
log det Ro

det RN
, where det(.) denotes

the determinant of a matrix. Since for any matrix M , Tr(M)=Tr(UMUT ) and det(M) = det(UMUT ) for any rotation or
unitary matrix U (with UUT = 1), E = cost -λI(O;S) is invariant to U.
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S → S = KoS — find principal components (PCA) S = (S1,S2, ...Sk...) by transform Ko

Sk → Ok = gkSk — gain control gk (a function of Sk/Nk) to each PCA Sk by equation (8)
O → UO — freedom by any unitary transform U to suit any additional purpose3.
The overall effective transform is K = UgKo, where g is a diagonal matrix with elements

gkk = gk. When U = 1, the optimal coding transform is K = gKo. The resulting O = (O1, O2, ...)

has decorrelated components and retains the maximum information about S for a given output
cost

∑

k〈O2
k〉. Using any other unitary transform U gives equally optimal coding , since it leaves

the outputs O with the same information I(O;S) and cost, and, in the zero noise limit, the same
decorrelation. The three conceptual steps above are equivalent to the single mathematical operation
of finding the solution K of ∂E/∂K = 0 where E(K) = cost - λI(O;S). The solution is degenerate,
i.e., there are many equally good solutions corresponding to arbitrary choices of unitary transforms
(or rotations) U. The input statistics, manifested in the correlation matrix RS , determine the opti-
mal coding K through at least the first two conceptual steps. In particular, S/N levels control gk,
giving contrast enhancement and decorrelation in high S/N, and input smoothing and response
correlation in low S/N.

Signal plus with noise
S + N

Fourier frequency spectrums
S(k), N (k), g(k)

 1  10 100

10
4

10
5

10
6

Frequency k (cycles/image)

↙
S(k) + N (k)

S/N � 1

↑
noise N (k)

S/N � 1signal S(k) →

↓
g(k)

Filter shape
K(x) =

∫
dkg(k)eikx

↓

O, edge enhanced
finer scale noise smoothed

Figure 5: Efficient coding of visual input in space. Left: image S with white noise N. Right:
response O = K(S + N) after optimal filtering K. Middle: amplitude spectrums S(k) (dashed) and
N (k) (dotted) for signal and noise, and filter gain g(k) as function of frequency k. (The vertical
axis has an arbitrary scale). Inverse Fourier transform of g(k) gives the neural RF as K. An image
without noise typically has Fourier amplitudes S(k) ∼ 1/k. White noise N (k) ∼ constant leads to
high and low S/N at small and large frequency regions respectively. Thus, image contrast (edge) is
enhanced at low k where g(k) increases with k but smoothed at high k where g(k) decreases with
k to avoid transmitting too much noise.

We can now apply this recipe to visual coding in space, time, and color, always approximat-
ing signals as Gaussian. In spatial coding (Srinivasan et al 1982; Linsker 1990; Atick and Redlich
1990), a signal at visual location x is Sx. The correlation 〈SxSx′〉 is translation invariant, depending
only on x− x′. Thus the principal components of RS can be shown to be Fourier components, and
Ko is the Fourier transform such that Sk =

∑

x K
kx
o Sx ∼∑x e

−ikxSx for Fourier frequency k. Field
(1987) measured the power spectrum as 〈S2

k〉 ∼ 1/k2. Assuming white noise power 〈N 2
k 〉 = con-

3The U symmetry holds when the cost is
P

i〈O
2
i 〉 or H(O), but not

P

i H(Oi) except in the noiseless case. Given finite
noise, the cost of

P

i H(Oi) would break the U symmetry to a preferred U as the identity matrix, giving zero second order
correlation between output channels . The fact that early vision does not usually have the identity U suggests that the
cost is more likely output power

P

i〈O
2
i 〉 than

P

i H(Oi). For instance, the retinal coding maximizes second order output
correlation given

P

i〈O
2
i 〉 and I(O;S) in Gaussian approximation, perhaps aiding signal recovery.
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stant, the low k region has high signal-to-noise S2/N 2 and thus the gain gk or g(k) ∝ 〈S2
k〉−1/2 ∼ k

approximates whitening. This coding region thus emphasizes higher spatial frequencies and ex-
tracts image contrast. However, when frequency k is too high, S2/N 2 � 1 is low, g(k) quickly
decays with increasing k according to equation (8) in order not to amplify image contrast noise.
Hence, g(k) as a function of k peaks at k where S2(k)/N 2(k) ∼ 1 (Fig. (5)). If U is the inverse
Fourier transform Ux′k ∼ eikx′

, the whole transform Kx′x = (UgKo)x′x gives band-pass filters
K(x′ − x) ≡ Kx′x ∼ ∑

k g(k)e
ik(x′−x) with frequency sensitivities g(k). This filter gives response

Ox′ =
∑

xK(x′ − x)Sx + noise, for an output neuron with RF centered at x′. This is what retinal
output (ganglion) cells do, achieving a center-surround transform on the input and emphasizing
the intermediate frequency band for which S/N is of order 1. That is, they enhance image contrasts
up to an appropriate spatial detail without amplifying contrast noise. The filter K(x′ − x) is radi-
ally symmetric since the statistics 〈S2(k)〉, and thus g(k), depends only on the magnitude |k|. The
contrast sensitivity function to image gratings is the behavioral manifestation of g(k). In a dimmer
environment, inputs are weakened, say from 〈S2

k
〉

〈N 2〉 ∼ 100/k2 to 〈S2

k
〉

〈N 2〉 ∼ 1/k2, the peak sensitivity

occurs at a lower frequency k → k/10 where 〈S2

k
〉

〈N 2〉 ∼ 1, effectively making g(k) a low pass, i.e.,K(x)

integrates over space for image smoothing rather than contrast enhancing, to boost signal-to-noise
while sacrificing spatial resolution. This explains the dark adaptation of the retinal ganglion cells’
RFs, from center-surround contrast enhancing (band-pass) filter to Gaussian-like smoothing (low-
pass) filter, to integrate signals and smooth out contrast noise. The smoothing filters naturally lead
to highly correlated responses between output neurons, especially when the filter diameters are
larger than the distances between the RFs. Large output correlations indeed occur physiologically
(Puchalla et al 2005).

Coding in time is analogous to coding in space. Image statistics in time (Dong and Atick 1995)
determine the temporal frequency sensitivities g(ω) (of frequency ω) of the temporal filter. Given
a sustained input S(t) over time t, the output O(t) may be more sustained or transient depending
on whether the filter is more low pass (performing temporal smoothing) or band pass (enhancing
temporal contrast) (Srinivasan et al 1982, Li, 1992, Dong and Atick 1995, Li 1996, van Hateren and
Ruderman 1998). The filter responses should have a white power spectrum 〈O2(ω)〉 = constant up
to an ω, as confirmed experimentally for (LGN) neurons which receive inputs from retinal ganglion
cells (Dan et al 1996). The transform U (Dong and Atick 1995; Li 1996) can be chosen to make the
temporal filter causal, so the output O depends only on past input S.

bandpass filter for
achromatic channel
which has a higher S/N

Smoothing filter for
chromatic channel
which has a lower S/N

R+G

R−G

R
G G

G

R R

+

−

Multiplex by U

in color space

Figure 6: Coupling coding in space and color (only red (R) and green (G) for simplicity). Multi-
plexing the center-surround, contrast enhancing, achromatic (R+G) filter with the input smoothing
chromatic (R-G) filter gives, e.g., a red-center-green-surround double (in space and in color) oppo-
nency RF observed in retina.
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Visual color coding (Buchsbaum and Gottschalk 1983, Atick et al 1992) is analogous to stereo
coding, especially if we simplify by assuming only two cone types, red and green, of comparable
input power 〈S2

r 〉 ≈ 〈S2
g 〉 and correlation coefficient r ∝ 〈SrSg〉. Then, the luminance channel, S+ ∼

Sr + Sg, like the ocular summation channel, has a higher S/N than the chromatic channel S− ∼
Sr − Sg which is like the ocular opponent channel. Optimal coding awards appropriate gains to
them. In dim light, the diminished gain g− to the cone opponent channel is manifested behaviorally
as loss of color vision, with the luminance channel S+ dominating perception. Perceptual color
distortions after color adaptation can also be understood from the coding changes, in both the
compositions and gains g± of the luminance and chromatic channels, induced by changes in input
statistics (specifically in correlations, e.g., 〈SrSg〉, Atick et al 1993).

Physiologically, color and space codings are coupled in, e.g., the red-center-green-surround
double opponent RFs (Fig. (6)) of the retinal ganglion cells. This can be understood as follows
(Atick et al 1992). Both the luminance and chromatic channels require spatial efficient coding trans-
forms. From what we learned for the case of spatial coding, the stronger luminance channel S+

requires a center-surround or band pass spatial filter to enhance image contrast, while the weaker
chromatic channel S− requires a spatial smoothing filter to average out noise (thus color vision has
a lower spatial resolution). Multiplexing the two channels by rotation U in the 2-dimensional color
space, as in eq. (9) for stereo vision, leads to addition or subtraction of these two filters as illustrated
in Fig. (6), giving the red-center-green-surround or green-center-red-surround RFs.

Primary visual cortex receives the retinal outputs via LGN. V1 RFs are orientation selective
and shaped like small (Gabor) bars or edges. Different RFs have different orientations and sizes
(or are tuned to different spatial frequencies), in a multiscale fashion (also called wavelet coding
(Daubechies 1992)) such that RFs of different sizes are roughly scaled versions of each other. These
RFs can again be seen as components of an optimal code using a particular form of rotation (uni-
tary) matrix U in the coding transform K = UgKo. Before we show that, first note that the retinal RFs
arise when U = K

−1
o that multiplexes all Fourier components. The RFs, Kx′x ∼ ∑

k g(k)e
ik(x′−x),

are theoretically the same for all cells x′ except for spatial translations of x′. Another optimal code,
apparently not adopted anywhere in our visual system, is when U = 1, which does no multiplex-
ing. In this case, each RF, Kkx ∼ g(k)e−ikx, would be an infinitely large Fourier wave for a unique
frequency k. The U transform for the multiscale coding is somewhere in-between the two extremes
U = K

−1
o and U = 1. For a cortical RF, U multiplexes the principal components (Fourier waves)

within a finite frequency range k ∈ (ks
1,k

s
2), so the RF Ks(x′ − x) ∼ ∑

k∈(ks

1
,ks

2
) g(k)e

ik(x′−x) is re-
sponsive only to a restricted range of orientations and the magnitudes of k. Different cortical cells
have different RF center locations x′ and frequency/orientation ranges (ks

1,k
s
2) to give a complete

sampling (Li and Atick 1994a). The code can be viewed as an intermediate between the Fourier
wave code, in which each RF is infinitely large and responds to only one frequency and orienta-
tion, and the retinal code, in which each RF is small and responsive to all frequencies k and all
orientations.

In the same way that coupling color coding with spatial coding gives the red-center-green-
surround retinal ganglion cells, coupling coding in space with coding in stereo, color, and time
gives the varieties of V1 cells, such as double opponent color-tuned cells (Li and Atick 1994a), di-
rection selective cells (Li 1996, van Hateren and Ruderman 1998), and disparity selective cells (Li
and Atick 1994b). It leads also to correlations between selectivities to different feature dimensions
within a cell, e.g., cells tuned to color are tuned to lower spatial frequencies. Many of these correla-
tions, analyzed in detail in (Li and Atick 1994ab, Li 1995, 1996), are interesting and illustrative (not
elaborated here because of space) and provide many testable predictions. For instance, Li and Atick
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(1994b) predicted that cells tuned to horizontal (than vertical) orientation are more likely binocular
when they are tuned to medium-high spatial frequencies, as subsequently confirmed in single cell
and optimal imaging data (Zhaoping et al 2006). Similarly, the predicted poor sensitivity to color
and motion combination (Li 1996) has also been observed (Horwitz and Albright 2005).

3 V1 and information coding

So far, the efficient coding principle seems to account for not only RF properties for retinal cells,
but also for the vast diversity of RF properties in V1: tuning to orientation, color, ocularity, dis-
parity, motion direction, scale, and the correlations between these tunings in individual cells. This
suggests that the principle of data compression by efficient coding, with minimal information loss,
may progress from retina to V1. However, this section discusses two large problems with this ar-
gument: (1) there is no quantitative demonstration that V1 significantly improves coding efficiency
over retina; and no apparent bit rate bottleneck after the optic nerve; and (2) efficient coding has
difficulty in explaining some major aspects of V1 processing.

If one approximates all signals as Gaussian, the V1 cortical code is no more efficient than the
retinal code, in terms of information bits transmitted and the cost of neural power, since they both
belong to the set of degenerate optimal solutions of ∂E/∂K = 0. Is the cortical code more efficient
due to the higher order input statistics beyond the Gaussian approximation of P (S) (that breaks
the degeneracy of the optimal codes)? If so, bar stereo, why isn’t it adopted by the retina? In
fact, it has been shown that the dominant form of visual input redundancy (in terms of entropy
bits) arises from second order rather than higher order input statistics, e.g., correlation between
three pixels beyond that predicted from second order statistics (Schreiber 1956, Li and Atick 1994a,
Petrov and Zhaoping 2003). This motivated a hypothesis that the V1’s multiscale coding serves the
additional goal of translation and scale invariance (Li and Atick 1994a) to facilitate object recog-
nition presumably occurring only beyond retina. However, this does not explain the even more
puzzling fact of a 100 fold expansion from retina to V1 in the number of neurons (Barlow 1981) to
give a hugely overcomplete representation of inputs. For instance, to represent input orientation
completely at a particular spatial location and scale, only three neurons tuned to three different
orientations would be sufficient (Freeman and Adelson 1991). However, many more V1 cells tuned
to many different orientations are actually used. It is thus highly unlikely that the neighboring V1
neurons have decorrelated outputs, even considering the nonlinearity in the actual receptor-to-V1
transform. This contradicts the goal of efficient coding of reducing redundancy and revealing the
independent entities in high S/N. Nor does such an expansion improve signal recovery at low
S/N ratios since no retina-to-V1 transform could generate new information beyond that available
at retina. It has been argued that such an expansion can make the code even sparser (Olshausen
and Field 1997, Simoncelli and Olshausen 2001), making each neuron silent for most inputs except
for very specific input features. Indeed, M = 106 bits/second of information, transmitted by M

retina ganglions at 1 bits/second by each neuron, could be transmitted by 100M V1 neurons at
0.01 bits/second each (Nadal and Parga 1993), if, e.g., each V1 neuron is much less active with
a higher neural firing threshold. Such a sparser V1 representation however gains no coding ef-
ficiency. There is yet no reliable quantitative measure of the change in efficiency or data rate by
the V1 representation. It would be helpful to have quantitative analysis regarding how this rep-
resentation sufficiently exposes the underlying cognitive (putatively independent) components to
justify the cost of vastly more neurons. Minimizing energy consumption in neural signaling has
also been proposed to account for sparser coding (Levy and Baxter 1996, Lennie 2003), possibly
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favoring overcompleteness.
As argued in section (2.2), the sparse coding formulation (Olshausen and Field 1997) is an

alternative formulation of the same efficient coding principle. Hence, those V1 facts puzzling for
efficient coding are equally so for the sparse coding formulation, whose simulations typically gen-
erate representations much less overcomplete than that in V1 (Simoncelli and Olshausen 2001).
Often (e.g., Bell and Sejnowski 1997), kurtosis (defined as 〈x4〉/〈x2〉2 − 3 for any probability dis-
tribution P (x) of a random variable x) of response probabilities P (O) is used to demonstrate that
visual input is highly non-Gaussian, and that the responses from a filter resembling a V1 RF have
higher kurtosis (and are thus sparser) than those from a center-surround filter resembling a retinal
RF. However, one needs to caution that a large difference in kurtosis is only a small difference in
entropy bits. For instance, two probability distributions P1(x) ∝ e−x2/2 and P2(x) ∝ e−|x/0.1939|0.6

of equal variance 〈x2〉 have differential entropies 2 and 1.63 bits, respectively, but kurtosis values
of 0 and 12.6, respectively. While Fig. (7) demonstrates that higher order statistics (redundancy)
causes much or most of the relevant visual perception of object forms, this perception is after the
massively lossy visual selection (beyond efficient coding) through the attentional bottleneck.

A: original image B: A after randomizing
Fourier phases

C: A after whitening

Figure 7: An original image in A becomes meaningless when the phases of its Fourier transform are
replaced by random numbers, shown in B (After Field 1989). Hence, A and B have the same first
and second order statistics characterized by their common Fourier powers S2

k ∼ 1/k2, but B has no
higher order statistics. Whitening A eliminates the second order correlation in C, but preserves the
meaningful form information in the higher order statistics.

For discussion, we divert in this paragraph from the processing goal of data reduction. First,
from the perspective of form perception, the redundancy in the higher order statistics (Fig. (7))
should be kept, while that in the lower order statistics (which is useless for form perception) should
be removed. Second, the sparse coding formulation (Olshausen and Field 1997) also motivated a
generative model of visual inputs S by causes K

−1 with amplitudes O (see section (2.2)). It was
argued that overcomplete representations allow more and even non-independent causes, so that
some causes can explain away others given any inputs. For instance, a bar oriented at 0o could be
best generated by a cause (basis function) of 0o but not of 5o, thus the response amplitude Oi for
0o should explain away another Oi′ for 5o, i.e., Oi � Oi′ (Olshausen and Field 1997). This would
however require a severe nonlinearity in responses that, e.g., orientation tuning curves would be
much narrower than those of V1 RFs. While generative models for vision are expected to be very
helpful to understand top-down effects in higher level vision and their top-down feedbacks to V1,
they are beyond our scope here and our current knowledge about V1.

Additional difficulties for the coding theories arise from observations made since the 1970’s
that stimuli in the context outside a neuron’s RF significantly modulate its response in a complex
manner (Allman et al 1985). For instance, a neuron’s response to an optimally oriented bar within
its RF can be suppressed by up to 80% when there are surrounding bars of similar orientations
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outside the RF (Knierim and Van Essen 1992, Sillito et al 1995, Nothdurft et al 1999). This is called
iso-orientation suppression. The contextual suppression is weaker when the surrounding bars are
randomly oriented, and weakest when they are oriented orthogonally to the bar within the RF.
Meanwhile, the response to a weak contrast bar within the RF can be enhanced by up to 3-4 fold
when contextual bars are aligned with this bar, as if they are segments of a smooth contour —
i.e., colinear facilitation (Kapadia et al 1995). The horizontal intra-cortical connections (Gilbert and
Wiesel 1983, Rockland and Lund 1983), linking nearby cells with overlapping or non-overlapping
classical receptive fields (CRFs), are plausible neural substrates mediating the contextual influ-
ences. These observations seem like nuisances to the classical view of local feature detectors, or
CRFs, and were not taken very seriously immediately, partly due to a lack of theoretical frame-
works to understand them. Contextual suppressions maybe viewed as additional mechanisms for
redundancy reduction (Rao and Ballard 1999, Schwartz and Simoncelli 2001), leaving contextual
facilitation and the neural proliferation still unaccounted for.

To an animal, one bit of information about visual object identity typically has a very different
relevance from another bit of information on light luminance. Information Theory can quantify the
amount of information, and thereby help the design of optimal codes for information transmission, a
likely goal for the retina. However, it does not assess the meaning of information to design optimal
representations for information discrimination or selection (or discarding). Information selection and
distortion is a critical concern of the cortex that requires losing rather than preserving Shannon
Information. Rather than being a nuisance for a classical coding view, intra-cortical interactions
can be a wonderful means of implementing other goals. V1, the largest visual area in the brain,
equipped with additional neural mechanisms unavailable to retina, ought to be doing important
cognitive tasks beyond information transmission. One of the most important and challenging vi-
sual task is segmentation, much of it involves selection. To understand V1, we thus turn to the
second data reduction strategy for early vision (see section (1)), namely to build a representation
that facilitate bottom up visual selection.

4 The V1 hypothesis — creating a bottom up saliency map for
pre-attentive selection and segmentation

At its heart, vision is a problem of object recognition and localization for (eventually) motor re-
sponses. However, before this end comes the critical task of input selection of a limited aspects
of input for detailed processing by the attentional bottleneck. As discussed in section 1, it is com-
putationally efficient to carry out much of this selection quickly and by bottom up mechanisms
by directing attention to restricted visual space. Towards this goal, it has been recently proposed
that (Li 1999ab, 2002, Zhaoping 2005) V1 creates a bottom up saliency map of visual space, such
that a location with a higher scalar value in this map is more likely to be selected for further vi-
sual processing, i.e., to be salient and attract attention. The saliency values are represented by the
firing rates O = (O1, O2, ..., OM ) of the V1 neurons, such that the RF location of the most active
V1 cell is most likely to be selected, regardless of the input feature tunings of the V1 neurons. Let
(x1, x2, ..., xM ) denote the RF locations of the V1 cells, the most salient location is then x̂ = xî where
î = argmaxiOi. This means x̂ = argmaxx(maxxi=xOi), where xi = x means that the RF of the ith

cell covers location x, and the saliency map, SMAP(x), is

SMAP(x) ∝ maxxi=xOi, (10)
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Hence, the saliency value at each location x is determined by the maximum response to that lo-
cation. So for instance, a red-vertical bar excites a cell tuned to red color, another cell to vertical
orientation, and other cells to various features. Its saliency may be signaled by the response of the
red tuned cell alone if this is the maximum response from all cells at that location. Algorithmically,
selection of x̂ = xî does not require this maximum operation at each location, but only a single
maximum operation î = argmaxiOi over all neurons i regardless of their RF locations or preferred
input features. This is algorithmically perhaps the simplest possible operation to read a saliency
map, and can thus be performed very quickly — essential for bottom up selection. An alternative
rule SMAP(x) ∝ ∑

xi=xOi for saliency would be more complex to execute. It would require an
additional, non-trivial, processing to group responses Oi, from neurons with overlapping but most
likely non-identical RF spans, according to whether they are evoked by the same or different input
items around the same location, in order to sum them up. V1’s saliency output is perhaps read by
(at least) the superior colliculus (Tehovnik et al 2003) which receive inputs from V1 and directs gaze
(and thus attention). The maximum operation is thus likely performed within the read out area.

The overcomplete representation of inputs in V1, puzzling in the efficient coding framework,
greatly facilitates fast bottom up selection by V1 outputs (Zhaoping 2006). For instance, having
many different cells tuned to many different orientations (or features in general) near the same
location, the V1 representation O helps to ensure that there is always a cell Oi at each location
to explicitly signal the saliency value of this location if the saliency is due to an input orientation
(feature) close to any of these orientations (or features), rather than having it signalled implicitly by
activities of a group of neurons (and thus disabling the simple maximum operation î = argmaxiOi

to locate it)4. It is apparent that V1’s overcomplete representation should also be useful for other
computational goals which could also be served by V1. Indeed, V1 also sends its outputs to higher
visual areas for operations, e.g., recognition and learning, beyond selection. Within the scope of
this paper, I do not elaborate further our poor understanding of what constitutes the best V1 repre-
sentation for computing saliency as well as serving other goals.

Meanwhile, contextual influences, a nuisance under the classical view of feature detectors,
enable the response of a V1 neuron to be context or global input dependent. This is necessary for
saliency computations, since, e.g., a vertical bar is salient in a context of horizontal but not verti-
cal bars. The dominant contextual influence in V1 is iso-feature suppression, i.e., nearby neurons
tuned to similar features such as orientation and color are linked by (di-synaptic) inhibitory con-
nections (Knierim and Van Essen 1992, Wachtler et al, 2003 Jones et al 2001), and, in particular,
iso-orientation suppression. Consider an image containing a vertical bar surrounded by many hor-
izontal bars, and the responses of cells preferring the locations and orientations of the bars. The
response to the vertical bar (in a vertical preferring cell) escapes the iso-orientation suppression,
while those to the horizontal bars do not since each horizontal bar has iso-orientation neighbors.
Hence, the highest V1 response is from the cell responding to the vertical bar, whose location is thus
most salient by the V1 hypothesis, and pops out perceptually. By this mechanism, even though the
RFs and the intra-cortical connections mediating contextual influences are local (i.e., small sized or
of a finite range), V1 performs a global computation to enable cell responses to reflect context be-

4As discussed in Li (1996), V1 could have many different copies O1,O2, ...Op, ... (where superscript p identifies the
particular copy) of complete representation of S, such that each copy O

p = U
pgKoS has as many cells (or dimensions)

as the input S, and is associated with a particular choice of unitary matrix U
p. Each choice U

p specifies a particular set
of preferred orientations, colors, motion directions, etc. of the resulting RFs whose responses constitute O

p, such that the
whole representation (O1,O2, ...Op, ...) covers a whole spectrum of feature selectivities to span these feature dimensions
(although the gain matrix g assigns different sensitivities, some very small, to different feature values and their combina-
tions). In reality, the V1 representation is more like a tight frame of high redundant ratio (Daubechies 1992, Lee 1996, Salinas
and Abbott 2000) than a collection of complete representations (from the degenerate class), which would require (Li and
Atick 1994a), in addition to the oriented RFs, checker shaped RFs not typically observed physiologically.
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yond the range of the intra-cortical connections (Li 1998a, 1999a, 2000). Retinal neurons, in contrast,
respond in a largely context independent manner, and would not be adequate except perhaps for
signalling context independent saliency such as at a bright image spot.

Ignoring eccentricity dependence for simplicity (or consider only a sufficiently small range of
eccentricities), we assume that the properties of V1 RFs and intra-cortical interactions are transla-
tion invariant, such that, neural response properties to stimulus within its RF are regardless of the
RF location, and interaction between two neurons depends on (in addition to their preferred fea-
tures) the relative rather than absolute RF locations. Then, the V1 responses should be translation
invariant when the input is translation invariant, e.g., an image of a regular texture of horizontal
bars, or of more general input symmetry such as in an image of a slanted surface of homogeneous
texture. However, when the input is not translation invariant, V1 should produce correspond-
ing variabilities in its responses. The contextual influences, in particular iso-feature suppression,
are particularly suited to amplify such variances, which are often at salient locations, e.g., at the
unique vertical bar among the horizontal bars, or the border between a texture of horizontal bars
and another of vertical bars (Li 2000). Therefore, V1 detects and highlights the locations where in-
put symmetry breaks, and saliency could be computationally defined by the degree of such input
variance or spatial/temporal symmetry breaking (Li 1998ac, 1999a, 2000). The salient locations of
input symmetry breaking typically correspond to boundaries of object surfaces. Since the selection
of these locations proposed for V1 is executed before object recognition or classification, it has also
been termed as pre-attentive segmentation without classification (Li 1998c, 1999a).

Conditional on the context of background homogeneity, input variance at a texture border
or a pop out location is a rare or low probability event. Hence, the saliency definition by the
degree of input symmetry breaking is related to the definition of saliency by surprise or novelty
(Itti and Baldi 2006, Lewis and Zhaoping 2005). Other definitions of saliency include: a salient
location is where an “interest point” detector (for a particular geometric image feature like a corner)
signals a hit, or where local (pixel or feature) entropy (i.e., information content) is high (Kadir and
Brady 2001). While it can be shown that saliency by novelty and saliency by high local entropy are
related, computational definitions of bottom up or general purpose saliency have not yet reached a
converging answer.

Given the above limitations, we take the behavioral definition of saliency, and the known V1
mechanisms from physiological and anatomical data, to test the V1 saliency hypothesis by com-
paring V1 predicted saliencies with the behaviorally measured ones. Saliency has been extensively
studied psychophysically using visual search tasks or segmentation tasks ( Treisman and Gelade
1980, Wolfe 1998). The saliency of the target in a visual search task, or the border between regions
in a segmentation task, is a measure of the target or border location to attract attention, i.e., be se-
lected, in order to be processed. Thus it can be measured in terms of the reaction time to perform
the task. For instance, searching for a vertical bar among horizontal ones, or a red dot among green
ones, is fast, with reaction times that are almost independent of the number of distractors (Treisman
and Gelade 1980, Julesz 1981). These are called feature search tasks since the target is defined by a
unique basic feature, e.g., vertical or red, which is absent in the distractors. In contrast, conjunction
search is difficult, for a target defined by a unique conjunction of features, e.g., a red-vertical bar
among red-horizonal bars and green-vertical bars (Treisman and Gelade 1980).

In the rest of the section, we will test the V1 hypothesis, through a physiologically based
V1 model, to see if saliencies predicted by V1 responses agree with existing behavioral data. This
section will then end with analysis to show that the V1 saliency theory, motivated by understanding
early vision in terms of information bottlenecks, better agrees with new experimental data than the
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traditional frameworks of saliency (Treisman and Gelade 1980, Julesz 1981, Wolfe, Case, Franzel
1989, Koch and Ullman 1985, Itti and Koch 2000), which were developed mostly from behavioral
data.

4.1 Testing the V1 saliency map in a V1 model

We should ideally examine if higher V1 responses predict higher saliencies, namely, behaviorally
faster visual selections. Many behavioral data on saliency in terms of the reaction times in visual
search and segmentation tasks are available in the literature (Wolfe, 1998). However, physiological
data based on stimuli like those in the behavioral experiments are few and far between. Further-
more, to determine the saliency of, say, the location of a visual target, we need to compare its
evoked V1 responses to responses to other locations in the scene, since, as hypothesized, the selec-
tion process should pick the classical RF of the most active neuron responding to the scene. This
would require the simultaneous recordings of many V1 units responding to many locations, a very
daunting task with current technology.

We thus resort to the simpler (though incomplete) alternative of simultaneously recording
from all neurons in a simulated V1 model (Li, 1999a, Fig. (8)). (Such a simplification is, in spirit, not
unlike recording under anesthesia in vivo or using in vitro slices, with many physiological mecha-
nisms and parameters being altered or deleted.) Our model includes only the most relevant parts
of V1, namely simplified models of pyramidal cells, interneurons, and intra-cortical connections,
in layer 2-3 of V1 (which mediate contextual influences). As a first demonstration of principle, a
further simplification was made by omitting input variations in color, time (except to model stim-
ulus onset), stereo, and scale without loss of generality. The neurons are modelled by membrane
potentials, e.g., xiθ and yi,θ denote the membrane potentials of the pyramidal and interneurons,
whose RFs are centered at i (here i denotes location within this V1 model rather than an index for
a cell elsewhere in this paper) and oriented at angle θ. Their outputs are modelled by firing rates
gx(xiθ) and gy(yiθ) which are sigmoid-like functions of the membrane potentials. The equations of
motion are

ẋiθ = −αxxiθ − gy(yi,θ) −
∑

∆θ 6=0

ψ(∆θ)gy(yi,θ+∆θ)

+Jogx(xiθ) +
∑

j 6=i,θ′

Jiθ,jθ′gx(xjθ′) + Iiθ + Io (11)

ẏiθ = −αyyiθ + gx(xiθ) +
∑

j 6=i,θ′

Wiθ,jθ′gx(xjθ′ ) + Ic (12)

where αxxiθ and αyyiθ model the decay to resting potentials, Iiθ model external visual inputs, Ic
and Io model background inputs, including noise and feature unspecific surround suppressions,
and the rest of the terms on the right hand side model interactions between neurons for feature spe-
cific contextual influences with finite range neural connections like Jiθ,jθ′ and Wiθ,jθ′ for example.
The pyramidal outputs gx(xiθ) (or their temporal averages) represent the V1 responses. Equations
(11) and (12) specify how the activities are initialized by external inputs and then modified by the
contextual influences via the neural connections.

This model (Li 1999a) has a translation invariant structure, such that all neurons of the same
type have the same properties, and the neural connections Jiθ,jθ′ (or Wiθ,jθ′ ) have the same struc-
ture from all the pre-synaptic neuron jθ′ except for a translation and rotation to suit jθ′ (Bressloff
et al 2002). The dynamics of this model are such that (1) model response does not spontaneously
break input translation symmetry when Iiθ is independent of i (otherwise, the model would hal-
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Figure 8: The V1 model and its function. The model (E) focuses on the part of V1 responsible for contextual
influences: layer 2-3 pyramidal cells, interneurons, and intra-cortical connections. Pyramidal cells and in-
terneurons interact with each other locally and reciprocally. A pyramidal cell can excite other pyramidal cells
monosynaptically, or inhibit them disynaptically, by projecting to the relevant inhibitory interneurons. Gen-
eral and local normalization of activities are also included in the model. Shown are also two input images (F,
G) to the model, and their output response maps (C,D). The input strengths are determined by the bar’s con-
trast. Each input bar in each example image has the same contrast in these examples. A principal (pyramidal)
cell can only receive direct visual input from an input bar in its CRF. The output responses depend on both the
input contrasts and the contextual stimuli of each bar due to contextual influences. Each input/output image
plotted is only a small part of a large extended input/output image. In many figures in the rest of this paper,
the thicknesses of the stimulus or response bars are plotted as proportional to their input/output strengthes
for visualization. At top (A, B) are saliency maps where the size of the circle at each location represents the
firing rate of the most active cell responding to that visual location. A location is highly salient if its saliency
map value has a high z score compared to the values in the background.

lucinate salient locations when there is none); (2) when the inputs are not translation invariant,
the model manifests these variant locations by response highlights whose magnitudes reflect, with
sufficient sensitivity, the degrees of input variances; and (3) the model reproduces the most rele-
vant physiological observations of neural responses with and without the contextual influences,
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Figure 9: Stimulus (top), model responses (bottom), and the z scores for the target (in the center
of each pattern), for four examples. A: A difficult search for a target bar lacking a horizontal bar
present in distractors. It forms a trivial pair of search asymmetry with Fig. (8DG). B: Difficult
search for a unique conjunction of orientation features. Searching for a target of a 45o bar among
distractors of different orientations 0o, 15o, or 30o from vertical in C is more difficult than among
identical distractor of 15o from vertical in D.

particularly the phenomena of iso-orientation suppression and colinear facilitation, etc outlined in
section (3). Condition (3) ensures that model sufficiently resembles reality to offer reasonable basis
for hypothesis testing. Conditions (1) and (2) are computational requirements for saliency compu-
tation. The fact that a single set of model parameters can be found to satisfy all three conditions
supports the hypothesis that V1 creates a saliency map.

Nonlinear dynamic analysis ensures that this recurrent network of interacting neurons is well
behaved in terms of stability and robustness (Li 1999a, 2001, Li and Dayan 1999). It can be shown
that equations (11) and (12) describe a minimal model, which has to include the inhibitory in-
terneurons but not necessarily neural spikes, for the required computation, particularly to satisfy
conditions (1) and (2) above simultaneously. The model design and analysis are mathematically
challenging and I omit the details (Li 1999a, 2001, Li and Dayan 1999). However, they are not as
formidable as simultaneous in vivo recordings from hundreds of V1 neurons using visual search
stimuli. Following the design and calibration, all model parameters are fixed (as published in Li
1998b, 1999a) for all input stimuli. The saliency of a visual location i is assessed by a z score,
zi = (Si − S̄)/σ, where Si = maxθ(gx(xiθ)) (here S links to word “saliency” rather than “signal”)
is the highest model response to that location, while S̄ and σ are the mean and standard devia-
tions of the population responses from the active neurons. Obviously, the z score is only used for
hypothesis testing and is not calculated by V1.
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Figure 10: Five subtle pairs of the visual search asymmetry studied by Treisman and Gormican
(1988) and directionally accounted for by the model. Stimulus patterns are shown with the targets’
z scores (of the most salient bar in each target) from the model marked under them.

The model responses to stimuli of visual search agree with human behavior. In orientation
feature search in Fig. (8 BDG), the target possessing a uniquely oriented bar pops out from dis-
tractors of uniformly oriented bars since a neuron responding to the uniquely oriented target bar
escapes the strong iso-orientation suppression experienced by neurons responding to the distractor
bars. In orientation conjunction search in Fig. (9B), the target does not pop out since neurons re-
sponding to each of its component bars experience iso-orientation suppression from the contextual
input just as neurons responding to a typical distractor bar. A vertical target bar among distractor
crosses in Fig. (9A) does not pop out since its evoked response is suppressed by the contextual
vertical bars in the crosses. This is the basis of typical observations that a target lacking a feature
present in distractors does not pop out (Treisman and Gelade 1980). The model shows that visual
searches become more difficult when the distractors are less similar as in Fig. (9CD), or are less reg-
ularly placed in space (Li 2002), as is also known psychophysically (Duncan and Humphreys 1989).
This is because (see a related argument (Rubenstein and Sagi 1990)) such stimulus changes increase
the variance of surround influences experienced by neurons responding to individual distractors,
thereby increasing σ and decreasing the target z score.

A more stringent test comes from applying the V1 model to the subtle examples of visual
search asymmetry, when the ease of visual search tasks changes slightly upon swapping the target
and the distractor. The direction of these slight changes would be difficult to predict much beyond
a chance level by an incorrect model or hypothesis without any parameter tuning. Nevertheless,
the model predicted (Li 1999b) these directions correctly in all of the five best known examples of
asymmetry (Treisman and Gormican 1988) shown in Fig. (10).
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4.2 Psychophysical test of the V1 theory of bottom up saliency

Motivated by understanding early vision in terms of information bottlenecks, the V1 saliency
hypothesis has some algorithmically simple but conceptually unusual or unexpected properties
which should be experimentally verified. In particular, the saliency of a location is signalled by the
most active neuron responding to it regardless of its feature tuning. For instance, the cross among
bars in Fig. (8G) is salient due to the more responsive neuron to the horizontal bar, and the weaker
response of another neuron to the vertical bar is ignored. This means the “less salient features”
at any location are invisible to bottom up saliency or selection, even though they are visible to
attention attracted to the location by the response to another feature at the same location. While
this algorithmically simple selection can be easily executed even by a feature blind reader of the
saliency map, it seems a waste not to consider the contributions of the ”less salient features” to
obtain a “better” saliency measure of a location x as the summation

∑

xi=xOi, rather than the max-
imum maxxi=xOi, of all responses to this location (see Lewis and Zhaoping (2005) for comparing
the two measures based on input statistics). If there is a task in which task relevant features are less
salient and “invisible” to bottom up selection by the V1 hypothesis (the maximum rule), the task
will be predicted as difficult if saliency plays a significant role, such as in reaction time conditions.

V1 

a b ctask relevant interfering composite = a+b

responses

stimuli
Schematic

Saliency

location
to each
response
the highest 
maps, or

Figure 11: Psychophysical test of the V1 saliency hypothesis. a, b, c: schematics of texture stimuli
(extending continuously in all directions beyond the portions shown), each followed by schematic
illustrations of V1’s responses and saliency maps, formulated as in Fig. (8). Every bar in b, or every
texture border bar in a, has fewer iso-orientation neighbours to induce iso-orientation suppression,
thus evoking less suppressed responses. The composite stimulus c, made by superposing a and b,
is predicted to be difficult to segment, since the task irrelevant features from b interfere with the
task relevant features from a, giving no saliency highlights to the texture border.

Fig. (11) shows texture patterns a, b, c that illustrate and test the prediction. Pattern a has
two iso-orientation textures, activating two populations of neurons, one for left tilt and another for
right tilt orientation. Pattern b is a uniform texture of a checkerboard of horizontal and vertical
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bars, evoking responses from another two groups of neurons for horizontal and vertical orienta-
tions respectively. With iso-orientation suppression, neurons responding to the texture border bars
in pattern a are more active than those responding to the background bars; since each border bar
has fewer iso-orientation neighbors to exert contextual iso-orientation suppression on the evoked
response. For ease of explanation, let us say, the responses from the most active neurons to a border
bar and a background bar are 10 and 5 spikes/second respectively. This response pattern makes
the border location more salient, making texture segmentation easy. Each bar in pattern b has as
many iso-orientation neighbors as a texture border bar in pattern a, hence evokes also a response
of 10 spikes/second. The composite pattern c, made by superposing patterns a and b, activates all
neurons responding to patterns a and b, each neuron responding roughly as it does to a or b alone
(omitting for simplicity any interactions between neurons tuned to different orientations, without
changing the conclusion). Now each texture element location evokes the same maximum response
of 10 spikes/second, and, by the V1 hypothesis, is as salient (or non-salient) as another location.
Hence the V1 theory predicts no saliency highlight at the border, thus texture segmentation is pre-
dicted to be much more difficult in c than a, as is apparent by viewing Fig. (11). The task relevant
tilted bars are “invisible” to V1 saliency to guide segmentation, while the task irrelevant horizontal
and vertical bars interfere with the task.

Note that if saliency of location x were determined by the summation rule
∑

xi=xOi, re-
sponses to various orientations at each texture element in pattern c could sum to preserve the
border highlight as 20 spikes/second against a background of 15 spikes/second, thus predicting
easy texture segmentation. The V1 theory prediction (by the maximum rule) is confirmed by psy-
chophysically measuring the reaction times of subjects to locate the texture border (Zhaoping and
May 2004). Additional data (Zhaoping and May 2004) confirmed other unique predictions from
the V1 theory, such as predictions of interference by irrelevant color on orientation based tasks,
and predictions of some phenomena of visual grouping due to the anisotropic nature of the con-
textual influences involving orientation features (arising from combining colinear facilitation with
iso-orientation suppression).

The V1 saliency theory bears an interesting relationship with previous, traditional, theories
of bottom up saliency (Treisman and Gelade 1980, Julesz 1981, Wolfe, Case, Franzel 1989, most
of which also include top-down components). These theories were based mainly on behavioral
data, and could be seen as excellent phenomenological models of behavioral saliency. They can
be paraphrased as follows (Fig. (12A)). Visual inputs are analyzed by separate feature maps, e.g.,
red feature map, green feature map, vertical, horizontal, left tilt, and right tilt feature maps, etc.,
in several basic feature dimensions like orientation, color, and motion direction. The activation of
each input feature in its feature map decreases roughly with the number of the neighboring input
items sharing the same feature. Hence, in an image of a vertical bar among horizontal bars, the
vertical bar evokes a higher activation in the vertical feature map than those of each of the many
horizontal bars in the horizontal map. The activations in separate feature maps are summed to
produce a master saliency map. Accordingly, the vertical bar produces the highest activation at
its location in this master map and attracts visual selection. In contrast, a unique red-vertical bar,
among red-horizontal and green-vertical bars, does not evoke a higher activation in any one feature
map, red, green, vertical, or horizontal, and thus not in the master map either. The traditional
theories have been subsequently made more explicit (Koch and Ullman 1985) and implemented by
computer algorithms (Itti and Koch 2000). When applied to the stimuli in Fig. (11), it becomes clear
that the traditional theories correspond to the summation rule

∑

xi=xOi for saliency determination
when different response Oi to different orientations at the same location x represent responses
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A: Previous theories of bottom up visual saliency map

B: The theory of bottom up saliency map from V1, and its cartoon interpretation
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Figure 12: Schematic summaries of the previous and the V1 theories of the bottom up visual
saliency map. No separate feature maps, nor any summation of them, are needed in the V1 theory,
in contrast to previous theories. The V1 cells signal saliency despite their feature tuning, whereas
the previous theories explicitly or implicitly assumes a saliency map in a brain area where cells are
untuned to features.

from different feature maps. Thus, the traditional theory would predict easy segmentation for the
composite pattern of Fig. (11c), contrary to data.

The V1 saliency theory differs from the traditional theories mainly because it was motivated
by understanding V1. It aims for fast computation, thus requires no separate feature maps or any
combinations of them, nor any decoding of the input features to obtain saliency. Indeed, many V1
neurons, e.g., an orientation and motion direction tuned neuron, are tuned to more than one feature
dimension (Livingstone and Hubel 1984), making it impossible to have separate groups of V1 cells
for separate feature dimensions. Furthermore, V1 neurons signal saliency by their responses despite
their feature tunings, hence their firing rates are the universal currency for saliency (to bid for
selection) regardless of the feature selectivity of the cells, just like the purchasing power of Euro
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is independent of the nationality or gender of the currency holders (Fig. (12B)). In contrast, the
traditional theories were motivated by explaining the behavioral data by a natural framework,
without specifying the cortical location of the feature maps or the master saliency map, or a drive
for algorithmic simplicity. This in particular leads to the feature map summation rule for saliency
determination, and implies that the master saliency map should be in a higher level visual area
(such as lateral intraparietal area (LIP), Gottlieb et al 1998) where cells are untuned to features.

5 Summary

This paper reviews two lines of works to understand early vision by its role of data reduction in
the face of information bottlenecks. The efficient coding principle views the properties of input
sampling and input transformations by the early visual RFs as serving the goal of encoding visual
inputs efficiently, so that as much input information as possible can be transmitted to higher visual
areas through information channel bottlenecks. It not only accounts for these neural properties, but
also, by linking these properties with visual sensitivity in behavior, provides an understanding of
sensitivity or perceptual changes caused by adaptation to different environment (Atick et al 1993),
and of effects of developmental deprivation (Li 1995). Non-trivial and easily testable predictions
have also been made (Dong and Atick 1995, Li 1994b, 1996), some of which have subsequently
been confirmed experimentally, for example on the correlation between the preferred orientation
and ocularity of the V1 cells (Zhaoping et al 2006). The V1 saliency map hypothesis views V1 as
creating a bottom up saliency map to facilitate information selection or discarding, so that data
rate can be further reduced for detailed processing through the visual attentional bottleneck. This
hypothesis not only explains the V1 properties not accounted for by the efficient coding principle,
but also links V1’s physiology to complex visual search and segmentation behavior previously
thought of as not associated with V1. It also makes testable predictions, some of which have also
subsequently been confirmed as shown here and previously (e.g., Li 2002, Zhaoping and Snowden
2006). Furthermore, its computational considerations and physiological basis raised fundamental
questions about the traditional, behaviorally based, framework of visual selection mechanisms.

The goal of theoretical understanding is not only to give insights to the known facts, thus link-
ing seemingly unrelated data, e.g., from physiology and from behavior, but also to make testable
predictions and motivate new experiments and research directions. This strategy should be the
most fruitful also for answering many more unanswered questions regarding early visual pro-
cesses, most particularly the mysterious functional role of LGN, which receives retinal outputs,
sends outputs to V1, and receives massive feedback fibers from V1 (Casagrande et al 2005). This
paper also exposed a lack of full understanding of the overcomplete representation in V1, despite
our recognition of its usefulness in the saliency map and its contradiction to efficient coding. The
understanding is likely to arise from a better understanding of bottom up saliency computation,
and the study of possible roles of V1 (Lennie 2003, Lee 2003, Salinas and Abbott 2000, Olshausen
and Field 2005), such as learning and recognition, beyond input selection or even bottom up visual
processes. Furthermore, such pursuit can hopefully expose gaps in our current understanding and
prepare the way to investigate behavioral and physiological phenomena beyond early vision.
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