Resource and Application Models for Advanced Grid Schedulers

Aleksandar Lazarevic, Lionel Sacks
Dept. of Electrical and Electronic Engineering, University College London
Problem

- Heterogeneous and dispersed systems
- Quest for effective scheduling technique
- Good scheduling decisions depend on quality and availability of information
- Importance of resource-efficient information dissemination.
Motivation - Scheduling

- Scheduling on distributed, heterogeneous and dynamic Grid resources.

- Current Schedulers
 - Queuing or Batch:
 - NQE, PBS, LSF, Load Leveler
 - Application Level:
 - AppLeS, MARS, SEA, DOME
 - Dynamic, Ranking:
 - Condor ClassAd language and matchmaker
Motivation – Info Distribution

- Current Globus approach: centralized LDAP information provider (MDS).

- Little research in alternatives: MDS works for current size of Grid clusters.

- Centralized services are becoming a bottleneck.

- SMP or clusters as gateways to the Grid?
Bright Ideas - Scheduling

- Advance reservation and partitioning of resources complex and wasteful.
- Low-level scheduling in multitasking OS can distort machine loading info.
- Decouple application load and node computational output
- Assign jobs based on requested turnaround and unsubscribed capacity.
Subscribed Load Scheduling

CPU Usage [%]

0 100

Proc 1 CPU Time

Proc 2 CPU Time

Proc 1 Projected T/T @ t

Unsubscribed @ t

Proc 1 Estimated T/T

Safety Mrg

Proc 1 Requested T/T

Time
Distinction between volatile and non-volatile resources.
Profiles in XML with modular matchmaker.
Nodes self assess the level of fitness for a given request and return a Bid Value.
Monitoring and feedback improve confidence levels and reduce safety margins
Bright Ideas - Information

- Small-Worlds principle – information shared among several neighbours and few distant nodes.
- Fuzzy picture of the Grid environment – enables “good” but not necessarily “best” decisions.
- Gaining credibility, good resilience to random node failures
Information Flows

- Localised, need-to-know information flow policy

- 3-Tier Information Flow:
 - Node Current State
 Low-latency, short shelf life
 - Volatile Resources State
 Self-organized, distributed, fuzzy
 - Accounting
 Centralized, reliable, accurate
Conclusions & Future Work

- New approaches needed to handle dynamic and heterogeneous resource pool.
- Reduce complexity and possible points of failure.
- Develop a prototype meta-scheduler and test on 200 CPU UCL Grid