

Measurement Challenges for Optical Printed Circuit Boards Invited Talk

David R. Selviah Department of Electronic and Electrical Engineering, University College London, UCL

OFMC Conference 15th October 2007 d.selviah@ee.ucl.ac.uk

Integration of Optics and Electronics

- Polymer multimode waveguides
- On or in the PCB substrate or laminated between PCB boards
- Out of plane mid-board connection

Integrated Optical and Electronic Interconnect PCB Manufacturing (OPCB) Project Aims

1. Establish waveguide design rules

- Build into commercial CAD layout software to ease the design of OPCBs and to ensure widespread use.
- Understand the effect of waveguide wall roughness and cross sectional shape on loss and bit error rate.
- 2. Develop low cost, PCB compatible manufacturing techniques for OPCBs
 - Compare the commercial and technological benefits of several high and low risk manufacturing technologies
 - Environmental testing, reproducibility
- 3. Design an optical-electrical connector
 - Low cost, dismountable, passive, self-aligning, mid-board, multichannel, duplex, long life

Project Partners

Academic Partners

UCL (Lead) Heriot-Watt University Loughborough University

Industrial Partners

- Xyratex (Lead)
- **BAE Systems**
- Renishaw
- Exxelis
- Stevenage Circuits (SCL)
- Cadence
- Rsoft Design
- Xaar
- NPL

- Optical modelling & characterisation
- Laser writing and polymer chemistry
- Laser ablation, ink jet printing, flip-chip assembly
- End user mass data storage
- End user aerospace applications
- End user optical sensor applications
- Polymer development and fabrication
- PCB manufacturers
- Design tools for PCBs
- Modelling tools
- Print head technology
- Waveguide/material characterisation

Polymer Formulation

- Truemode[™] acrylate Exxelis
- Dry film Exxelis, Heriot Watt, SCL
- High UV curing rate polymer Heriot Watt
- Polymer viscosity control Loughborough, Xaar
- Surface wetting control Loughborough
- Polysiloxane

Polymer Measurements

- Refractive index of core and cladding
- Refractive index uniformity across wafer
 - 2D and 3D refractive index mapping
- Glass transition temperature
- Viscosity
- Absorption Spectrum
- Effect of humidity, temperature cycling, vibration
- Aging Characteristics

Polymer Waveguides

Waveguide losses

The measured attenuation spectrum for the multifunctional acrylate polymer waveguides.

Waveguide loss measured by Terahertz Photonics using the cutback method: 0.05 dB/cm at 850 nm

Environmental Stability

Guide unaffected by:

- Board lamination: 1 hour at 180°C
- Solder reflow:160 seconds at 288°C
- Damp heat: 85% RH @ 85°C
- Temperature cycling: -40 to 85°C (2 wks)
- High degradation temperature: ~ 400°C

Ink Jet Deposition of Polymer Waveguides

- Localised deposition of cladding and / or core materials
 - More materials efficient
 - Active response to local features
- Materials
 - Solutions
 - e.g. PMMA in solvent
 - Limited deposition rate
 - Functional materials

Control of Surface Wetting

- Need to control contact angle of polymer droplet on surface
 - Wetting angle determines waveguide cross-section and printing resolution
 - Control of surface chemistry (balance of wetting and adhesion)

Wettable surface leads to broad droplet

Non-wettable surface leads to high contact angle, but limited adhesion

OPCB Waveguide Fabrication Methods

- UV Photolithography Exxelis \Rightarrow SCL
- UV Laser Direct Write Heriot Watt \Rightarrow SCL
- Excimer Laser ablation Loughborough \Rightarrow SCL
- Ink Jet Printing Loughborough \Rightarrow SCL
- UV embossing/stamping Exxelis/EPIGEM
- Polymer Extrusion BAE Systems

SCL – Stevenage Circuits Ltd.

ELECTRO-OPTICAL PRINTED CIRCUIT BOARD MANUFACTURING TECHNIQUES

Source: Exxelis Ltd

Source: Fraunhofer IZM

Source: Varioprint AG

83X 15KU WD:31MM S:00000 P:00000

Source: IBM Zürich

Preliminary Work

- Strong absorption of Excimer laser by polymer
 - Efficient ablation
 - Minimal heating
- Characterisation of laser machining parameters
 - Control ablation rate / depth
 - Minimisation of debris
 - Side wall roughness

Groove machined in acrylic - test structure

Ink Jet System

- Ink Jet printing system established
- Head stationary, substrate moved
- High speed camera on loan from EPSRC – droplet imaging

Large area writing

Aerotech sub-µm precision stages 600 x 300 mm travel

OPCB Waveguide Mirror Fabrication Methods

- UV Laser Direct Write Heriot Watt
- Eximer Laser ablation Loughborough

Laser written polymer structures

Optical microscope image showing end on view of vertical and 45° surfaces

<u>Cladding</u> spun over waveguide cores (and other features): same polymer $\Delta n \sim 1\%$, blanket cured under UV lamp (N2 atmos.)

Waveguide terminated with 45-deg mirror

Out-of-plane coupling, using 45-deg mirror (silver)

Microscope image looking down on mirror coupling light towards camera

OPTICAL INPUT

Waveguide Termination

- Investigating the formation of profiled mirrors to direct light
- More efficient light capture and transmission than traditional 45° mirrors
- Careful characterisation of machining rates and design of beam delivery system required
- Metal coating to form mirror surfaces

Measurement Challenges for Optical Printed Circuit Boards – Physical measurements

- Waveguide Side Wall Roughness
- 45 degree mirror roughness
- Waveguide cross sectional shape
- Refractive index in three dimensions
- Refractive index (humidity, temperature, vibration)
- Polymer aging, delamination properties
- Connector misalignment tolerance

POLYMER WAVEGUIDE CHARACTERISTICS

Waveguide Material

UV-curable polymeric acrylate (Truemode®) Propagation loss @ 850 nm: 0.04 dB/cm Heat degradation resilience: up to 350°C

Waveguide properties

Size:	70 µm x 70 µm
Core index:	1.556
Cladding index:	1.526

Numerical aperture: 0.302

Waveguide Array

Centre to centre pitch: 250 µm

Waveguide Output Face Photographs

50 μ m × 50 μ m Waveguide

50 μ m × 140 μ m Waveguide

- Photolithographicly fabricated by Exxelis
- Cut with a dicing saw, unpolished
- VCSEL illuminated

Ink Jet Printing Preliminary Results

- Functional materials ink jetted
- Extensive spreading
- Further characterisation of process required

Preliminary Results

- Investigating process parameters to influence deposit size and spread
- Many defects to be understood

Laser written polymer structures

SEM images of polymer structures written using imaged 50 µm square aperture (chrome on glass)

Ink Jet Challenges

- Ink formulation
 - Viscosity, surface tension
- Drying effects
 - Coffee stain
- Wall roughness caused by multiple droplets
- Wetting and droplet spread

PMMA on glass. Deposited by pipette.

Droplet merging, effect on wall roughness

Measurement Challenges for Optical Printed Circuit Boards – Optical measurements

- Propagation Loss
- Transition Loss
- Bend Radiation Loss
- Waveguide Input/Output Coupling Loss
- Waveguide Cross Talk
- Waveguide output face photograph
- 45 degree mirror loss
- Connector misalignment effect on loss
- Equilibrium length

Waveguide Structures

- Straight waveguides 480 mm x 70 μm x 70 μm
- Bends with a range of radii
- Crossings
- Splitters
- Spiral waveguides
- Tapered waveguides
- Bent tapered waveguides
- In plane mirrors

Waveguide Structures

Optical Loss Measurement Technique

- Standard measurement
 - Input mode scrambled multimode fibre
 - Output integrating sphere
- Practical Measurement
 - Input VCSEL illumination
 - Output photodiode
- VCSEL simulation measurement
 - Input "single mode" fibre

Image of "single mode" fibre output with 850 nm VCSEL input

Optical Loss Measurement

Far Field from 50/125 µm fibre with and without mode scrambling

PARALLEL OPTICAL TRANSCEIVER DESIGN

xyratex.

- Quad duplex parallel optical transceiver
- 10.3 Gbps per channel (82 Gb/s aggregate bandwidth)
- Electronic daughtercard connector
- Flexible and rigid PCB sections
- Optical backplane interface

PHOTONIC INTERFACE DESIGN

xyratex.

PIN Array

Source: Microsemi Corporation

Source: ULM Photonics GmbH

GRIN Lens Array

Source: GRINTech GmbH

OPCB with **MT** - socket interposer

(b) MT-plug

Ceramic lens holder

Alignment Precision x: $\pm 3 \mu m$ y: $\pm 4 \mu m$ z: $\pm 10 \mu m$

PROTOTYPE DEMONSTRATOR CONSTRUCTION

xyratex•

Daughtercard to Optical Backplane Coupling Evaluation

MT - Socket interposer on the top of backplane

Actual alignment of the component

3886 µm

UCL

Contour map of VCSEL and PD misalignment

- Dashed rectangle in the middle of the maps corresponds to the expected relative insertion loss according to the calculated misalignments along *x* and *y*.
- The minimum insertion loss was 4.4 dB, corresponded to x = 0, y = 0, z = 0

Relative insertion loss of VCSEL and pd as they move away from the OPCB waveguides

Transition loss

Schematic diagram of one set of curved waveguides.

Light through a bent waveguide of R= 5.5 mm - 34.5 mm

- Radius *R*, varied between 5 mm < R < 35 mm, ΔR = 1 mm
- Light lost due to scattering, transition loss, bend loss, and reflection and back-scattering
- Illuminated by a MM fiber with a red-laser.

Loss of waveguide bends as a function of bend radius

Width (µm)	Minimum Radius (mm)	Minimum Loss (dB)
50	13.5	0.74
75	15.3	0.91
100	17.7	1.18

Crosstalk in chirped waveguide array

100 μm 110 μm 120 μm 130 μm 140 μm 150 μm

- Light launched from VCSEL imaged via a GRIN lens into 50 µm x 150 µm waveguide
- Photolithographically fabricated chirped waveguide array
- Photomosaic with increased camera gain towards left

Crosstalk measurement 1 Relative power at 0th waveguide (dB) -5 -10 2nd 0th 3rd 1st 4th 5th 6th -15 -20 -25 -30 -35 500 750 1000 1250 -250 250 1500 *x* (µm) VCSEL

Power received at the end of 0th waveguide as a function of the lateral distance of the VCSEL from its center. The boundaries and the centers of the waveguides on the backplane are marked. In the cladding power drops at a rate of 0.011 dB/µm

Crosstalk measurement 3

SCR experienced by waveguides number 1 and 4 and of waveguides number 2 and 3 from the array of four in the connector if all are in use. Dashed-dot lines determine the boundaries of the maximum expected cross-talk based on current connector tolerances.

Insertion Loss and cross-talk

Stability testing of the MT – socket interposer 1

Insertion loss and signal to cross-talk (SCR) as a function of mating cycle for 75 engagements.

UCL

Stability testing of the MT – socket interposer 1

Histogram of insertion loss

Measurement Challenges for Optical Printed Circuit Boards – Communications Measurements

- Bit Error Rate for random bit streams
- Bit Error Rate for Ethernet protocol frames
- Eye Diagram
 - Jitter, Noise
- Modulation Transfer Function Bandwidth

Measurement system for 10 Gbit/s device

- Operating bit rate 9.95 to 11.10 Gbit/s
- Power -4.0 dBm to -1.08 dBm
- Wavelength range 840 nm to 860 nm

Bit Error Rate Measurement System – Fibre to fibre version

Bit error rate for laterally misaligned 1550 nm 2.5 Gb/s DFB laser

CHARACTERISATION SETUP

xyratex.

- Test traffic: 10 GbE LAN (10.3 Gbps)
- VCSEL bias current:
- VCSEL modulation current:
- Divergence:
- Output optical power:
- Average optical jitter:

Physical layer relay

board

and forest and free and free and free and for an and super-

xyratex•

- 11.91 mA
- 9.8 mA
- 25°
- 0.43 mW

31.2 ps (Pk - Pk)

TEST AND CHARACTERISATION

xyratex.

Arrangement:

Active connector - waveguide - patchcord

Active prototype connector

Optical Coupling Characterisation Test traffic: 10 GbE LAN (10.3 Gbps) Wavelength: 850 nm

Reference Signal – No Waveguide				
Jitter :	C).34 UI		
Relative Loss:	C) dB		
10 cm Wavegu	ide with Isapropa	anol		
litter	0.36 UI			
Relative Loss	4	.5 dB		

<u> 10 cm Waveguide – Diced and Polished</u>			
Jitter Relative Loss	0.56 UI	6.9 dB	

10 cm Waveguide – Diced Only		
Jitter Relative Loss	0.89 UI 7.9 dB	

xyratex•

University Acknowledgements

- University College London (UCL): David R. Selviah, Kai Wang, Ioannis Papakonstantinou, Michael Yau, Guoyu Yu, F. Anibal Fernández,
- Heriot-Watt University: Andy Walker, Aongus McCarthy, Himanshu Suyal, Mohammad Taghizadeh
- Loughborough University: David Hutt, Paul Conway, Karen Williams, Shefiu Zakariyah, John Chappell

Conclusions

- Measurement Challenges for Optical Printed Circuit Boards
 - Polymer Formulation
 - Physical Measurements
 - Optical Measurements
 - Communications Measurements